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Abstract

There often exist multiple corpora for the
same natural language processing (NLP)
tasks. However, such corpora are gen-
erally used independently due to distinc-
tions in annotation standards. For the pur-
pose of full use of readily available hu-
man annotations, it is significant to simul-
taneously utilize multiple corpora of dif-
ferent annotation standards. In this pa-
per, we focus on the challenge of con-
stituent syntactic parsing with treebanks
of different annotations and propose a col-
laborative decoding (or co-decoding) ap-
proach to improve parsing accuracy by
leveraging bracket structure consensus be-
tween multiple parsing decoders trained
on individual treebanks. Experimental re-
sults show the effectiveness of the pro-
posed approach, which outperforms state-
of-the-art baselines, especially on long
sentences.
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In practice, there often exist more than one cor-
pus for the same NLP tasks. For example, for
constituent syntactic parsing (Collins, 1999; Char-
niak, 2000; Petrov et al., 2006) in Chinese, in ad-
dition to the most popular treebank Chinese Tree-
bank (CTB) (Xue et al., 2002), there are also
other treebanks such as Tsinghua Chinese Tree-
bank (TCT) (Zhou, 1996). For the purpose of
full use of readily available human annotations
for the same tasks, it is significant if such cor-
pora can be used jointly. At first sight, a di-
rect combination of multiple corpora is a way to
this end. However, corpora created for the same
NLP tasks are generally built by different orga-
nizations. Thus such corpora often follow dif-
ferent annotation standards and/or even different
linguistic theories. We take CTB and TCT as
a case study. Although both CTB and TCT are
Chomskian-style treebanks, they have annotation
divergences in at least two dimensions: a) CTB
and TCT have dramatically different tag sets, in-
cluding parts-of-speech and grammar labels, and
the tags cannot be mapped one to one; b) CTB
and TCT have distinct hierarchical structures. For
example, the words® E (Chinese)f* %4 (tradi-
tional) L4 (culture)” are grouped as a flat noun

Recent years have seen extensive applications gfrase according to the CTB standard (right side
machine learning methods to natural languagg, Fig. 1), but in TCT, the last two words are in-

processing problems. Typically, increase in thgtead grouped together beforehand (left side in
scale of training data boosts the performance qfig_ 1). The differences cause such treebanks
machine learning methods, which in turn enys gifferent annotations to be generally used in-
hances the quality of learning-based NLP systemgapendently. This paper is dedicated to solving
(Banko and Brill, 2001). However, annotatingihe problem of how to use jointly multiple dis-

data by human is expensive in time and labor. FQ§arate treebanks for constituent syntactic parsing.

this reason, human-annotated corpora are considgreafter, treebanks of different annotations are
ered as the most valuable resource for NLP.
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called heterogeneous treebanksnd correspond- np NP

ingly, the problem of syntactic parsing with het-

erogeneous treebanks is referred tohateroge- / \ / \

neous parsing nS np NR NN NN
Previous work on heterogeneous parsing is of-

ten based on treebank transformation (or treebank

conversion) (Wang etal., 1994; Niuetal., 2009). &g a n b E AEL% AL

The basic idea is to transform annotations of one
treebank (source treebank) to fit the standard of

another treebank (target treebank). Due to diver- 55 AL,

gences of treebank annotations, such transforma-

tion is generally achieved in an indirect way by T E fF % LA

selecting transformation results from the output of (Chinese) (traditional) (culture)

a parser trained on the target treebank. A com-

mon property of all the work mentioned above igigure 1: Example tree fragments with TCT (left)
that transformation accuracy is heavily depender@nd CTB (right) annotations

on the performance of parsers trained on the tar-
get treebank. Sometimes transformation accuracy
is not so satisfactory that techniques like instance
pruning are needed in order to refine transforma-
tion results (Niu et al., 2009). 2.1 Moaotivation

We claim there exists another way, interestingis section describes the motivation to use
but less studied for heterogeneous parsing. T'?:%-decoding for heterogeneous parsing. We first
basic idea is that, although there are annotatiqfye the example in Fig. 1 to illustrate what con-
divergences between heterogenous treebanks, @ensys information exists between heterogenous
tually we can also find consensus in c'_:mnotatio_nﬁ,eebankS and why such information might help
of bracket structures. Thus we would like to train,, improve parsing accuracy. This figure contains
parsers on individual heterogeneous treebanks agg, partial parse trees corresponding to the
guide the parsers to gain output with consensus {)orqs “+ & (Chinese) %, (traditional) 5 f&
bracket _structures as much as possible when th?é’ulture)", annotated according to the TCT (left
are parsing the same sentences. ~ side) and CTB (right side) standards respectively.

To realize this idea, we propose a generic colpegpite the distinctions in tag sets and bracket
laborative decoding (or co-decoding) framework,cryres, these parse trees actually have partial
where decoders trained on heterogeneous tregsreements in bracket structures. That is, not all
banks can exchange consensus information bge, ket structures in the parse trees are different.
tween each other during the decoding phase. Thgpecifically put, although the internal structures
oretically the framework is able to incorporate &f the parse trees are different, both CTB and
large number of treebanks and various functiongcT agree to take ¥ B %% X 4t” as a noun
that formalize consensus statistics. phrase. Motivated by this observation, we would

Our contributions can be summarized: 1) Wgye 19 guide parsers that are trained on CTB and
propose a co-decoding approach to directly utircT respectively to verify their output interac-
lizing heterogeneous treebanks; 2) we proposege|y py using consensus information implicitly
novel function to measure parsing consensus bggniained in these treebanks. Better performance
tween multiple decoders. We also conduct eXg expected when such information is considered.
periments on two Chinese treebanks: CTB and  feasible framework to make use of consensus
TCT. The results show that our approach achievesormation is n-best combination (Henderson
promising improvements over baseline systemg,q Brill, 1999; Sagae and Lavie, 2006; Zhang et
which make no use of consensus information. al., 2009; Fossum and Knight, 2009). In contrast

Collabor ative Decoding-based
Heterogeneous Parsing
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to previous work on n-best combination where
multiple parsers, say, Collins parser (Collins,
1999) and Berkeley parser (Petrov et al., 2006)
are trained on the same training data, n-best
combination for heterogeneous parsing is instead
allowed to use either a single parser or multiple
parsers which are trained on heterogeneous
treebanks. Consensus information can be incor-
porated during the combination of the output
(n-best list of full parse trees following distinct
annotation standards) of individual parsers. How-
ever, despite the success of n-best combination
methods, they suffer from the limited scope of
n-best list. Taking this into account, we prefer
to apply the co-decoding approach such that

consensus information is expected to affect thgng correspondingly refer to a decoder augmented
entire procedure of searching hypothesis space.yith consensus information asember decoder

So the basic steps of co-decoding for heteroge-
neous parsing is to first build baseline decoders on

2.2 System Overview X
] o . heterogeneous treebanks and then use the baseline
The idea of co-decoding is recently extensivelyjqqqers to parse sentences with consensus infor-

decoders

[ test data ]

Figure 2: Basic flow chart of co-decoding

studied in the literature of SMT (Li et al., 2009
Liu etal., 2009). As the name shows, co-decoding
requires multiple decoders be combined and pr
ceed collaboratively. As with n-best combination
there are at least two ways to build multiple de
coders: we can either use multiple parsers trained
on the same training data (use of diversity of mod-
els), or use a single parser on different training
data (use of diversity of datasets) Both ways

can build multiple decoders which are to be inte-
grated into co-decoding. For the latter case, one
method to get diverse training data is to use dif-
ferent portions of the same training set. In this
study we extend the case to an extreme situation
where heterogeneous treebanks are used to build
multiple decoders.

Fig. 2 represents a basic flow chart of heteroge-
neous parsing via co-decoding. Note that here we
discuss the case of co-decoding with only two de-
coders, but the framework is generic enough to in-
tegrate more than two decoders. For convenience
of reference, we call a decoder without incorpo-
rating consensus information baseline decoder

1To make terminologies clear, we ysarseras its regular
sense, including training models (ex. Collins model 2) and
parsing algorithms (ex. the CKY algorithm used in Collins
parser), and we usgecoderto represent parsing algorithms
with specified parameter values
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' mation exchanged between each other.

To complete co-decoding for heterogeneous
%’arsing, three key components should be consid-
ered in the system:

e Co-decoding model. A co-decoder con-
sists of multiple member decoders which are
baseline decoders augmented with consen-
sus information. Co-decoding model de-
fines how baseline decoders and consensus
information are correlated to get member de-
coders.

e Decoder coordination. Decoders in the co-
decoding model cannot proceed indepen-
dently but should have interactions between
each other in order to exchange consensus in-
formation. A decoder coordination strategy
decides on when, where, and how the inter-
actions happen.

e Consensus-based score function. Consensus-
based score functions formalize consensus
information between member decoders. Tak-
ing time complexity into consideration, con-
sensus statistics should be able to be com-
puted efficiently.



In the following subsections, we first presentanges over all consensus-based score functions
the generic co-decoding model and then descriie Eq. 3. Theoretically we can define a variety
in detail how member decoders collaborate. Fief consensus-based score functions.
nally we introduce a novel consensus-based scoreFor the simplest case where there are only two
function which is used to quantify consensus inmember decoders and one consensus-based score
formation exchanged between member decoder$unction, Eq. 2 and Eqg. 3 can be combined and

] ] simplified into the equation
2.3 Generic Co-decoding M odel
The generic co-decoding model described here is Fi(T) = P;(T) + M—i f(H1—i(S),T)  (4)
also used in (Li et al., 2009) for co-decoding of
machine translators. For a given senterftea where index; is set to the value of either 1 or 0.
parsing algorithm (decoder) seeks a parse Tree This simplified version is used in the experiments
which is optimal in the sense that it maximizes°f this study.

some score functiof’(7’), as shown in Eq. 1. 24 Decoder Coordination

T = argmax F(T) (1) This subsection discusses the problem of decoder
T's.t.S=yield(T) coordination. Note that although Eq. 2 is defined

where Ts.t.S = yield(T) represents the set of at sentence level, the co-decoding model actu-
parse trees that yield the input senterfte For Iy should be applied to the parsing procedure
baseline decoders, the score functiéi{T) is ©Of @ny subsequence (word span) of sentefice
generally just the inside probabilit?(T) 2 of So it is natural to render member decoders col-
a tree T, defined as the product of probabili-laborate whe_n they are process_ing the same word
ties of grammar rules appearing in parse tiee SPans- To this end, we would like to adopt best-
I P(r). In the co-decoding framework first CKY-style parsing algorithms as baseline de-
reR(T ' ’ .
F(T) is extended so as to integrate consensu§PUers: since CKY-style decoders have the prop-

based score functions which measure consensfidy that they process word spans in the ascend-

information between member decoders, as showi9 3order of span sizes. Moreover, the hypothe-
in Eq. 2. ses® spanning the same range of words are read-

ily stacked together in a chart cell before CKY-

style decoders move on to process other spans.

F(T) = P (T) + Z Ui (Hi(5),T) (2) Thus, member decoders can process the same
kkzm word spans collaboratively from small ones to big

We used,, to denote thek,, decoder and use ones until they finally complete parsing the entire
H,.(S) to denote corresponding parsing hypothsentence.
esis space of decodel,. Moreover, P,,(T) is A second issue in Eq. 2 is that consensus-
referred to asbaseline scoregiven by baseline based score functions are dependent on hypoth-
decoders andb,(H(S),T) is consensus score €sis spaced(S). Unfortunately, the whole hy-
between decoderd,, and d;., which is defined Pothesis space is not available most of the time.
as a linear combination of consensus-based scof@ address this issue, one practical method is to
functions, as shown in Eq. 3. approximateHy(.S) with a n-best hypothesis list.
For best-first CKY parsing, we actually retain all
U (Hk(9),T) = ZAk,sz,z(Hk(S),T) (3) unpruned partial hypotheses over the same span
1 as the approximation. Hereafter, the approxima-

tion is denoted agf;,(S)
where Hy(S),T) represents a consensus- _. -
Tra(Hy(5),T) rep Finally, we notice in EqQ. 2 that consensus score

based score function betwe€n and Hp(S),
and )\ ; is the corresponding weight. Indédx 3In the literature of syntactic parsing, especially in chart
- parsing, hypotheses is often calledges This paper will

2Actually, the joint probability P(S,T) of sentengeand  continue to use the terminolodypothesisvhen no ambigu-
parse tre€ is used, but we can prove th&{ S, T) = P(T'). ity exists.

n
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Wy (Hy(S), T) and Hy(S) form a circular depen-  Algorithm 1 CKY-style Co-decoding
dency: searching fof(S) requires both base- Argument: d{the set of baseline decodgrs
. S*{a sentence to be parsed
line score and consensus score; on the other hand,—
calculating consensus score neéfig S) (its ap- gteg;g
proximation in practice) to be known beforehand. 1. assign POS tags to senterge
Li et al. (2009) solves this dilemma with a boot- 2. ;nitialize ?aseline decodegsc h

i ; _ it 3- for span from 2 to sentendengthdo
strapping method. It. starts with seedy n-best lists for start from 1 to (sentenciength-span-+13io
generated by baseline decoders and then alter- end := (start + span - 1)
nates between calculating consensus scores and for eaclh :36(1136 dtectodéléd;jo

. T completeds, start, en
u!odatlng n—b(_est hypothesis I_|sts. Such bootstrap- do co-decoding(start, end)
ping method is a natural choice to break down theend
circular dependency, but multi-pass re-decodingsyproutine:
might dramatically reduce decoding efficiency. complete(ds, start, end): base decodér generates
Actually, Li et al. (2009) restricts the iteration fYPotheses over the span (begin.end), and fills in best-

' N . X first caches.

number to two in their experiments. In this paper, co-decoding(start, end): calculate consensus score
we instead use an alternative to the bootstrappingand rerank hypotheses in best-first caches. The top 1 is

method. The process is described as follows. ~_SNoSen tobe the best-first hypothesis.

1. In traditional best-first CKY-style parsing al-
gorithms, hypotheses over the same worglete parsing on the spdstart, end] and gener-
spans are grouped according to some critextesH},(s). Theco-decodingorocedure calculates
rion of hypothesis equivalencE Among consensus score and locally reranks hypotheses in
equivalent hypotheses, only a single optimabest-first caches.
hypothesis is retained. In this paper, we in-
stead keep top of equivalent hypotheses in 2.5 Consensus-based Score Function

a data structure calldokst-first cache .
There are at least two feasible ways to mea-

2. Use hypotheses in best-first caches to al§.ure consensus between Constituency parse trees.

scorel;,(Hy(S), T) between decoders. we can either use functions on bracket structures

of parse trees, as in (Wang et al.,, 1994), or

3. Use baseline score and consensus score to lgse functions on head-dependent relations by first

cally rerank hypotheses in best-first cachegransforming constituency trees into dependency
Then remove hypotheses in caches except ties, as in (Niu et al., 2009). Although the co-

top one hypothesis. decoding model is generic enough to integrate var-

ious consensus-based score functions in a uniform

In this study, we choose the best-first CKY-stylgyay, this paper only uses a bracket structure-based
parsing algorithm used in Collins parser (Collins¢,nction.

1999). Algorithm 1 extends this algorithm for co- A5 mentioned above, the function proposed in
decoding. The first two steps initialize baseline(Wang et al., 1994) is based on bracket struc-
decodeirs and assign appropriate POS tags 10 Sgfires.  Unfortunately, that function is not appli-
tenceS®. Since baseline decoders are built on hetsgpe in the situation of this paper. The reason is
erogeneous treebanks, POS taggers correspor@ﬁiat’ the function in (Wang et al., 1994) is de-
ing to each baseline decoder are demanded, unlggsd to work on two parse trees, but this paper
gold POS tags are provided. 'The third step is thgstead needs a function on a trEeand a set of
core of the co—dgcodlng algor_lthm. Here t@m- {geg (the approximatioﬁk(S)). To this end, we
pleteprocedure invokes baseline decoders to COMiyst introduce the concept @bnstituent set (CS)

“the simplest criterion of equivalence is whether hypotheQf a parse tree. Conceptually, C$ of a parse tree is
ses have the same grammar labels. a set of word spans corresponding to all the sub-
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——————————— [1,3],[2,3],[1,1]

_______ 12,31,12,21,[3,3] Figure 4: left) two spans conflict; right) two spans
are compatible

[wi] [wa | [ws] [wa]  [wr] [wa] [ws] [wi]

- - [2,2] block, the first file was added to the CTB develop-
ment data, the second file was added to the CTB

testing data, and the remaining 8 files were added

to the CTB training data. For the sake of parsing

Figure 3: Constituent set of a synthetic parse tregfficiency, we randomly sampled 1,000 sentences
of no more than 40 words from the CTB test set.

; . _ CTB-Partitions| Train Dev Test
trees of the tree, as illustrated in Fig. 3. For exam SONTONGes 5724 12,855 T 1.000

ple, the constituent set of the tree rooted at node —zwords 627.833] 78.653 | 25100
6 has three elementsi, 1], [1,3], and([1,2]. For Ave-Length 30.1 30.0 | 203
Hy(S), the constituent set is defined as the union _TCT-Partitions | Train Dev | Test

: : . #Sentences 32,771 N/A 1,000
of constituent sets of all elements it contains. Aords 354 7671 A 1 10.400

Ave-Length 10.6 N/A 10.4

CS(HW(S) = ) os(T) N

Teim,(s) Table 1: Basic statistics on the CTB and TCT data
In practice, we need to cut off elements in CIPS-ParsEval data is publicly available for the
CS(Hg(S)) in order to retain most confident first Chinese syntactic parsing competition, CIPS-
word spans. ParsEval 2009. Compared to CTB, sentences in

With the concept of constituent set, aCIPS-ParsEval data are much shorter in length.
consensus-based score functionfoand H,(S) We removed sentences which have words less
can be defined as follows. than three. CIPS-ParsEval test set has 7,995 sen-

N tences after sentence pruning. As with the CTB

FUHR(S),T) = ZCGCS‘T)é(SC’ OSH(S)) (5) test set, we randomly sampled 1,000 sentences

CSD) for evaluating co-decoding performance. Since

CIPS-ParsEval data is actually a portion of the

TCT corpus, for convenience of reference, we will

refer to CIPS-ParsEval data as TCT in the follow-

ing sections. Table 1 contains statistics on CTB
and TCT.

The two training sets are used individually to
build baseline decoders. With regard to the test
sets, each sentence in the test sets should have
two kinds of POS tags, according to the CTB and
TCT standards respectively. To this end, we ap-
plied a HMM-based method for POS annotation
3.1 Dataand Performance Metric transformation (Zhu and Zhu, 2009). During the

The most recent version of the CTB corpus, cT8 OS transformation, the divergences of word seg-

6.0 and the CIPS ParsEval data are used as hetefggntation are omitted.

geneous treebanks in the experiments. Following FOr all experimentspracketing Flis usid as
the split utilized in (Huang et al., 2007), we di- € Performance metric, provided BVALB®.

vided the dataset into blocks of 10 files. For each Shttp://nip.cs.nyu.edu/evalb

where (¢, C'S(H(S))) is an indicator function
which returns one i € CS(T) is compatible
with all the elements irC'S(Hy(S)), zero oth-
erwise. Two spansia,b] and [z, j] are said to
be compatible if they satisfy one of the following
conditions: 1)i > b; 2)a > j; 3)a < i < band
j<b4)i<a<jandb < j. Fig 4 uses two
example to illustrate the concept of compatibility.

3 Experiments
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3.2 Basdine Decoders Test Set CTB | TCT
Baseline 79.82 | 81.02

As already mentioned above, we apply Collins Co-decoding| 80.33 | 81.77

parser in this paper. Specifically speaking, two

CKY-style baseline decoders to participate colable 2: Baseline and Co-decoding on the CTB

decoding are built on CTB and TCT respectivelyand TCT test sets

with Collins model two. For the CTB-based de-

coder, we use the CTB training data with slighthat on the CTB test set. In general, a relatively

modifications: we replaced POS tags of punctuatrong decoder can improve co-decoding perfor-

tions with specific punctuation symbols. mance more than a relatively weak decoder does.
To get the TCT-based decoder, we made followAt the first sight, the TCT-based decoder seems to

ing modifications. Firstly, TCT is available with have better performance than the CTB-based de-

manually annotated head indices for all the coreoder. But if taking sentence length into consid-

stituents in parse trees. For example, a grammaration, we can find that the TCT-based decoder

label, say, np-1, means that the constituent isig actually relatively weak. Table 3 shows the

noun phrase with the second child being its heagerformance of the CTB-based decoder on short

child. In order to relax context independence assentences.

sumptions made in PCFG, we appended head in- _

dices to grammar labels to get new labels, for ex34 Analysis

amplenpl. Secondly, since Collins parser is aFig. 5 shows the bracketing F1 on the CTB test set

lexicalized parser, head rules specific to the TC@at different settings of the best-first cache dize

corpus were manually created, which are used té-1 scores reach the peak befdrencreases to 6.

gether with readily available head indices. SuclAs a result, we sef’ to 5 in all our experiments.

adaptation is also used in (Chen et al., 2009);

81 T T T T T

3.3 Parsing Results CTB =

We conduct experiments on both CTB and TCT g5 |
test sets. Two parameters need to be set: the cut- [ 3

g

off threshold for constructing constituent set ofs

3 80 | LK .
H,(S) and the weight\ ® of consensus score in $ o
Eq. 4. We tuned the parameters on the CTB de- o5 L |
velopment set and finally set them to 5 and 20
respectively in the experiments. Table 2 presents , , , , ,
bracketing F1 scores of baseline systems and the 0 1 2 3 4 5 6

size of best-first cache

co-decoding approach. Here, the rowbafseline
represents the performance of individual baseline
decoders, and the comparison of baseline and cbigure 5: Bracketing F1 with varying best-first
decoding on a test set, say CTB, demonstratesiche size

how much boosting the other side, say TCT, can

supply. For the co-decoding approach, the size To eyaluate the effect of sentence length on co-
of best-first cache is set to 5 which achieves th8€coding, Table 3 presents F1 scores on portions

best result among the cache sizes we have expeff-the CTB test set, partitioned according to sen-
mented. tence length. From the results we can see that

As the results show, co-decoding achievego-decoding performs better on long sentences.

promising improvements over baseline system@ne possible reason is_ that member_deCO(_jers have
on both test sets. Interestingly, we see that tH8Cre consensus on big spans. Taking this obser-

improvement on the TCT test set is larger thaHation into consideration, one enhancement to the
co-decoding approach is to enable co-decoding

®We use the samg for both member decoders. only on long sentences. This way, parsing ef-
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Partitions | [0,10] | (10,20] | (20,30] | (30.40]  the expected precision of selected parse with re-
# Sentence | 276 254 266 204

Ave-Length | 607 | 1564 | 2543 | 35.20 spect to 'the set of parses to be combingd. Sagae
Baselne | 92831 8434 | 7898 | 7669 and Lavie (2006) proposes to recombine con-
Co-decoding| 92.84 | 84.36 | 79.43 | 77.65 stituents from the output of individual parsers.
More recently, Fossum and Knight (2009) studies
Table 3: Effect of sentence length on co-decoding combination method at production level. Zhang
performance et al. (2009) reranks n-best list of one parser with
scores derived from another parser.

ficiency of co-decoding can be improved. It is Compared to n-best combination, co-decoding

. L (Li et al., 2009; Liu et al., 2009) combines sys-
worth emphasizing that co-decoding is still help- . . :

tems during decoding phase. Theoretically, sys-
ful for parsers whose performance on short sen-

tences is not satisfactory, as shown in Table 2. tem combination during decoding phase helps de-

. ) o coders to select better approximation to hypothe-
Another interesting analysis is to check how PP yp

. - Sis space, since pruning is practically unavoidable.
many parsing results are affected by co—decoqu,o the best of our knowledge, co-decoding meth-
compared to baseline decoders. Table 4 shows . ’ . .
the statistics 0ds have not been applied to syntactic parsing.

Test Set| # All | # Improved | # Decreased 4.2 Treebank Transformation

CTB | 1000 225 109 The focus of this study is heterogeneous parsing.
TCT | 1000 263 92 Previous work on this challenge is generally based
on treebank transformation. Wang et al. (1994)
describes a method for transformation between

.constituency treebanks. The basic idea is to train
As the table shows, although overall accuracy is y

. ! a parser on a target treebank and generate a n-best
increased, we find that on some sentences, P 9 9

o . Cﬁ)ét for each sentence in source treebank(s). Then,
decoding instead worsens parsing accuracy.

n ) ) I )
. a matching metric which is a function on the num-
order to get insights on error sources, we many-

. . ber of the same word spans between two trees is
ally analyzed 20 sentences on which co-decodin fined to select a best parse from each n-best list
achieves negative results. We find a large pokf ine 1P - '
. iu et al. (2009) applies a closely similar frame-
tion (14 of 20) of sentences are short s.entencev\§Ork as with (Wang et al., 1994) to transform a
(of words less than 20). Actually, due to high ac'dependency treebank to a’ constituency one.
curacy of the CTB-based decoder on short sen-
tences, co-decoding is indifferent when this des Conclusions
coder is processing short sentences. And we also | _
find that some errors are derived from differencedNiS Paper proposed a co-decoding approach to
in annotation standards. Fortunately, the divet® challenge of heterogeneous parsing. Com-
gence of annotations mainly exists in relativelyP@réd to previous work on this challenge, co-
small spans. So one solution to the problem is tfecoding is able to directly utilize heterogeneous

enable co-decoding on relatively big spans. Thedteebanks by incorporating consensus information
will be done in our future work. between partial output of individual parsers dur-

ing the decoding phase. Experiments demonstrate
4 Redated Work the effectiveness of the co-decoding approach, es-
pecially the effectiveness on long sentences.

Table 4: Statistics on sentences of test data

4.1 System Combination
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