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Abstract

A large body of prior research on coref-
erence resolution recasts the problem as
a two-class classification problem. How-
ever, standard supervised machine learn-
ing algorithms that minimize classifica-
tion errors on the training instances do not
always lead to maximizing the F-measure
of the chosen evaluation metric for coref-
erence resolution. In this paper, we pro-
pose a nhovel approach comprising the use
of instance weighting and beam search to
maximize the evaluation metric score on
the training corpus during training. Ex-
perimental results show that this approach
achieves significant improvement over the
state-of-the-art. We report results on stan-
dard benchmark corpora (two MUC cor-
pora and three ACE corpora), when evalu-
ated using the link-based MUC metric and
the mention-based B-CUBED metric.

Introduction
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ing training, they apply standard supervised ma-
chine learning algorithms to minimize the number
of misclassified training instances; during testing,
they maximize either the local or the global proba-
bility of the coreferential relation assignments ac-
cording to the specific chosen resolution method.

However, minimizing the number of misclas-
sified training instances during training does not
guarantee maximizing the F-measure of the cho-
sen evaluation metric for coreference resolution.
First of all, coreference is a rare relation. There
are far fewer positive training instances than neg-
ative ones. Simply minimizing the number of mis-
classified training instances is suboptimal and fa-
VOrs negative training instances. Secondly, evalu-
ation metrics for coreference resolution are based
on global assignments. Not all errors have the
same impact on the metric score. Furthermore, the
extracted training instances are not equally easy to
be classified.

In this paper, we propose a novel approach
comprising the use of instance weighting and
beam search to address the above issues. Our pro-

Coreference resolution refers to the process @osed maximum metric score training (MMST)
determining whether two or more noun phraseapproach performs maximization of the chosen
(NPs) in a text refer to the same entity. Sucevaluation metric score on the training corpus dur-
cessful coreference resolution benefits many natg training. It iteratively assigns higher weights
ural language processing tasks. In the literaturéy the hard-to-classify training instances. The out-
most prior work on coreference resolution recastgut of training is a standard classifier. Hence,
the problem as a two-class classification problenaluring testing, MMST s faster than approaches
Machine learning-based classifiers are applied which optimize the assignment of coreferential re-
determine whether a candidate anaphor and a plations during testing. Experimental results show
tential antecedent are coreferential (Soon et athat MMST achieves significant improvements
2001; Ng and Cardie, 2002b). over the baselines. Unlike most of the previous
A large body of prior research on corefer-work, we report improved results over the state-
ence resolution follows the same process: dupf-the-art on all five standard benchmark corpora
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(two MUC corpora and three ACE corpora), witha model to optimize a chosen evaluation met-
both the link-based MUC metric and the mentionric other than classification accuracy on all train-
based B-CUBED metric. ing instances. Joachims (2005) suggested the use

The rest of this paper is organized as followsof support vector machines to optimize nonlinear
We first review the related work and the evaluatiomvaluation metrics. However, the approach does
metrics for coreference resolution in Section 2 andot differentiate between the errors in the same
3, respectively. Section 4 describes the proposedtegory in the contingency table. Furthermore, it
MMST algorithm. Experimental results and re-does not take into account inter-instance relation
lated discussions are given in Section 5. Finally(e.g., transitivity), which the evaluation metric for
we conclude in Section 6. coreference resolution cares about.

Daume Il (2006) proposed a structured learn-

2 Related Work ing framework for coreference resolution to ap-

Soonet al. (2001) proposed a training and testoroximately optimize the ACE metric. Our pro-
ing framework for coreference resolution. Dur-Posed approach differs in two aspects. First, we
ing training, a positive training instance is formecdirectly optimize the evaluation metric itself, and
by a pair of markables, i.e., the anaphor (a noufiot by approximation. Second, unlike the incre-
phrase) and its closest antecedent (another noliental localloss in Daume Il (2006), we evaluate
phrase). Each markable (noun phrase) betwedpg metric score globally.
the two, together with the anaphor, form a neg- In contrast to Ng (2005), Ng and Cardie
ative training instance. A classifier is trained or{f2002a) proposed a rule-induction system with
all training instances, using a standard supervisétlle pruning. However, their approach is specific
learning algorithm. During testing, all precedingto rule induction, and is not applicable to other
markables of a candidate anaphor are considerédpervised learning classifiers. Ng (2004) varied
as potential antecedents, and are tested in a baélfferent components of coreference resolution,
to-front manner. The process stops if either an a¢hoosing the combination of components that re-
tecedent is found or the beginning of the text iSults in a classifier with the highest F-measure on
reached. This framework has been widely used i@ held-out development set during training. In
the community of coreference resolution. contrast, our proposed approach employs instance
Recent work boosted the performance of corefveighting and beam search to maximize the F-
erence resolution by exploiting fine-tuned featur&easure of the evaluation metric during training.
sets under the above framework, or adopting afPur approach is general and applicable to any su-
ternative resolution methods during testing (Ngervised learning classifiers.
and Cardie, 2002b; Yang et al., 2003; Denis and Recently, Wick and McCallum (2009) pro-
Baldridge, 2007; Versley et al., 2008). posed a partition-wise model for coreference reso-
Ng (2005) proposed a ranking model to maxidution to maximize a chosen evaluation metric us-
mize F-measure during testing. In the approach, ing the Metropolis-Hastings algorithm (Metropo-
different coreference outputs for each test text afés et al., 1953; Hastings, 1970). However, they
generated, by varying four components in a corefound that training on classification accuracy, in
erence resolution system, i.e., the learning alganost cases, outperformed training on the corefer-
rithm, the instance creation method, the featurence evaluation metrics. Furthermore, similar to
set, and the clustering algorithm. An SVM-basedNg (2005), their approach requires the generation
ranker then picks the output that is likely to haveof multiple coreference assignments during test-
the highest F-measure. However, this approadhg.
is time-consuming during testing, as F-measure Vemulapalliet al. (2009) proposed a document-
maximization is performed during testing. Thislevel boosting technique for coreference resolu-
limits its usage on a very large corpus. tion by re-weighting the documents that have
In the community of machine learning, re-the lowest F-measures. By combining multiple
searchers have proposed approaches for learnicigssifiers generated in multiple iterations, they

1309



achieved a CEAF score slightly better than thevhere D, d, andm are the set of documents, a
baseline. Different from them, our approactdocument, and a mention, respectivedy, is the
works at the instance level, and we output a sirequivalence class generated by the key that con-

gle classifier. tainsm, while O,, is the overlap ofS,, and the
) ] equivalence class generated by the response that
3 Coreference Evaluation Metrics containsm. N is the total number of mentions in

In this section, we review two commonly used?- The precision, again, is computed by switch-
evaluation metrics for coreference resolution.  INg the role of key and response. F-measure is
First, we introduce the terminology. The goldcomputed in the same way as the MUC metric.

standard anno_tatlon and the output by a corefA: Maximum Metric Score Training
erence resolution system are called key and re-
sponse, respectively. In both the key and the raBefore explaining the algorithm, we describe our
sponse, a coreference chain is formed by a set ebreference clustering method used during test-
coreferential mentions. Mention(or markable) ing. It is the same as most prior work in the lit-
is a noun phrase which satisfies the markable degrature, including Sooat al. (2001) and Ng and
inition in an individual corpus. Aink refersto a Cardie (2002b). The individual classification de-
pair of coreferential mentions. If a mention has ngisions made by the coreference classifier do not
links to other mentions, it is calledsingleton guarantee that transitivity of coreferential NPs is

. . obeyed. So it can happen that the paiand B,

31 TheMUC Evaluation Metric and the paiB andC' are both classified as coref-
Vilain et al. (1995) introduced the link-basederential, but the paird and C is not classified
MUC evaluation metric for the MUC-6 and MUC- as coreferential by the classifier. After all coref-
7 coreference tasks. Lef; be an equivalence erential markable pairs are found (no matter by
class generated by the key (i.&; is a corefer- closest-first, best-first, or resolving-all strategies
ence chain), angd(S;) be a partition ofS; relative  as in different prior work), all coreferential pairs
to the response. Recall is the number of correctlyre clustered together to form the coreference out-
identified links over the number of links in the key.put. By doing so, transitivity is kept: a markable is

S (18] = p(S5)]) in a coreference chain if and only if it is classified
Recall = ZE|5'\ 1)’ to be coreferential to at least one other markable
] in the chain.

Precision, on the other hand, is defined in the op- o
posite way by switching the role of key and re-4+1 InstanceWeighting

sponse. F-measure is a trade-off between rec&Uppose there are; andm, coreferential links
and precision. in the key and the response, respectively, and a
coreference resolution system successfully pre-
dicts n correct links. The recall and the preci-
sion are then7g—k andmlr, respectively. The learnt

3.2 TheB-CUBED Evaluation Metric classifier predicts false positive and false negative

Bagga and Baldwin (1998) introduced thdnstances during testing. For a false positive in-

mention-based B-CUBED metric. The B-Stance, if we could successfully predict it as neg-

CUBED metric measures the accuracy of corefdtive, the recall is unchanged, but the precision
erence resolution based on individual mentiondVill P& 77—, which is higher than the original
Hence, it also gives credit to the identification ofPr€cision - For a false negative instance, it
singletons, which the MUC metric does not. RelS more subtle. If the two markables in the in-

call is computed as stance are determined to be in the same corefer-
ence chain by the clustering algorithm, it does not

Recall = % Z \’O_m| matter whether we predict this instance as posi-

S| tive or negative, i.e., this false negative does not

2 Recall - Precision
"~ Recall + Precision

deD med
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change the F-measure of the evaluation metric at
all. If the two markables are not in the same coref-

erence chain under the clustering, in case that we
can predict it as positive, the recall will Bg%
which is higher than the original recaﬁi, and

the precision will beTjL‘LJrl1 which is higher than
the original precision.-, asn < m,. In both
cases, the F-measure improves. If we can instruct
the learning algorithm to pay more attention to
these false positive and false negative instances
and to predict them correctly by assigning them

more weight, we shoul I improve the. .
F-(:n(:\asﬁrge t, we should be able to improve t G%lthm expands all the leaf nodes in the beam. For

. : L example, in the first iteration, node 1 is expanded
In the literature, besides the training mstanc<ta0 enerate node 2 and 3. which corresponds to
extraction methods proposed by Soet al. g ' P

(2001) and Ng and Cardie (2002b) as discusse(iiladjI dmg' vyelg_hts to false p05|t|ye and false nega-
Ve training instances, respectively. An expanded

n Secthn 2, IV!cCarthy_apd L.ehnert (1995) use node always has two children in the binary search
all possible pairs of training instances. We als ree. All the nodes are then sorted in descending
use all pairs of training instances in our approach_
. . . ... order of F-measure. Only the to@ nodes are

to keep as much mformatlo_n as possible. Im.t'a” ept, and the remaining nodes are discarded. The
6.1” the pairs are equaI.Iy weighted. We then 'ter.ac_iiscélrded nodes can either be leaf nodes or non-
tively assign more weights to the hard-to-classify o'\ o, example, if node 5 is discarded
Ezg; S;’:rir:tzlraélehrﬂrocess 's conducted by gecause of low F-measure, it will not be expanded

9 ' to generate children in the binary search tree. The
4.2 Beam Search iterative algorithm stops when all the nodes in the

i beam are non-leaf nodes, i.e., all the nodes in the
Our proposed MMST algorithm searches for a S8}eam have been expanded

of weights to assign to training instances such

instances gives the maximum coreference metrigroposed maximum metric score training algo-

score when evaluated on the training instancefithm. In the algorithm, assume that we have
Beam search is used to limit the search. Eacly textsTy, 73, ..., T in the training data set.

search state corresponds to a set of weighted traig;, . and my,; are theith and jth markable in

ing instances, a classifier trained on the weighteghe text 73, respectively. Hence, for all <
training instances minimizing misclassificationsj, (mpi, M, wiij) S @ training instance for the
and the F-measure of the classifier when evalyngrkable pair(mg;, my;), in which wy;; is the

ated on the weighted training instances using thﬁeight of the instance. Lek,;; and L;gij be the
chosen coreference evaluation metric. The rogfye and predicted label of the P&y, my;),

of the search tree is the initial search state Wherr%spectively. LetV, C, F, and E be the set of

all the training instances have identical weights O\f\/eights{wkijll < k < N,i < j}, the classifier,
one. Each search statean expand into two dif- the F-measure, and a boolean indicator of whether
ferent children search statesands,. s; (sr) COr-  the search state has been expanded, respectively.
responds to assigning higher weights to the falsginally, 1/ is the beam size, antl controls how

positive (negative) training instances i1 The mych we update the weights in each iteration.
search space thus forms a binary search tree.

Figure 1 shows an example of a binary search Since we train the model on all possible pairs,
tree. Initially, the tree has only one node: the rootluring testing we also test if a potential anaphor is
(node 1 in the figure). In each iteration, the algoeoreferential to each preceding antecedent.

Figure 1: An example of a binary search tree
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INPUT: Ty, T, . . ., Tn
OUTPUT: classifierC'
wgi; < 1,foralll < k < Nandi < j
C < train({(mpi, mrj, wiij)|1 <k < N,i < j})
F <« resolve and evaluaté, . . ., TN with C
E < false
BEAM« {(W,C, F, E)}
repeat
BEAM’ « {}
for all (W, C, F, E) in BEAM do
BEAM’ «— BEAM’ | J{(W, C, F, true)}
if E=falsethen
predict aIILﬁﬂ.j withC (1 <k < N,i < j)
cluster into coreference chains basedlcmj
W'« W
foralll <k < N,i<jdo
if Lyij = falseandLj;; = true then
w;e,ij < w};ij + 4

end if
end for
C' train({(mki, Mkj, w;”’])‘l <k<N,i< j})
F’ « resolve and evaluafg, . . . , T'x with C’
BEAM’ « BEAM’ U{(W’, C',F', false)}
W' «— W

foralll <k < N,i<jdo
if Lyij = trueandLj,;; = falseand
Chain(my;) # Chain(my;) then
" 1"
Wy € Wiy

end if
end for
C" o~ train({(mki, mk],w;‘fu)\l <k<N,i< j})
F'"" + resolve and evaluatéy , . . ., T with C”’
BEAM’ « BEAM’ U{(W”,C”, F" | false)}
end if
end for

BEAM<« BEAM’

sort BEAM in descending order df, keep topM elements
until for all £ of all elements in BEAME = true
return C, from the top elementW, C, F, E) of BEAM

newswire (NWIRE). Each of the three data sets

contains two portions: training and development

test. They were used as our training set and test
set, respectively. The BNEWS, NPAPER, and

NWIRE data sets contain 216, 76, and 130 train-

ing texts, and 51, 17, and 29 test texts, respec-
tively.

Unlike some previous work on coreference res-
olution that assumes that the gold standard mark-
ables are known, we work directly on raw text in-
put. Versleyet al. (2008) presented the BART
packagé, an open source coreference resolution
toolkit, that accepts raw text input and reported
state-of-the-art MUC F-measures on the three
ACE corpora. BART uses an extended feature set
and tree kernel support vector machines (SVM)
under the Sooet al. (2001) training and testing
framework. We used the BART package in our ex-
periments, and implemented the proposed MMST
algorithm on top of it. In our experiments reported
in this paper, the features we used @enticalto
the features output by the preprocessing code of
BART reported in Versleyet al. (2008), except
that we did not use their tree-valued and string-
valued features (see the next subsection for de-
tails).

Figure 2: The maximum metric score training Since we use automatically extracted mark-

(MMST) algorithm

5 Experiments

5.1 Experimental Setup

In the experiments, we used all the five commonl
used evaluation corpora for coreference resol

ables, it is possible that some extracted markables
and the gold standard markables are unmatched,
or twinlessas defined in Stoyanost al. (2009).
How to use the B-CUBED metric for evaluating
twinless markables has been explored recently. In
is paper, we adopt thB3all variation proposed
lﬁ:ly Stoyanowet al. (2009), which retains all twin-

tion, namely the two MUC corpora (MUC6 and!€Ss markables. We also experimented with their
MUC7) and the three ACE corpora (BNEWS,BSO variation, which gave similar results. Note
NPAPER, and NWIRE). The MUC6 and thethat no matter which variant of the B-CUBED

MUC? corpora were defined in the DARPA Mes-metric is used, it is a fair comparison as long as
sage Understanding Conference (MUC-6, 1995he baseline and our proposed MMST algorithm
MUC-7, 1998). The dry-run texts were used as th@"® compared against each other using the same

training data sets. In both corpora, each trainin§-CUBED variant.
data set contains 30 texts. The test data sets f :
MUC6 and MUC7 consist of the 30 and 20 for-g'rz The Basdline Systems

mal evaluation texts, respectively. The ACE corWe include state-of-the-art coreference resolution
pora were defined in NIST Automatic Content Ex-Systems in the literature for comparison. Since
traction phase 2 (ACE-2) (NIST, 2002). The thredve use the BART package in our experiments,
data sets are from different news sources: broad- 1o /mww.sfs.uni-tuebingen.de/

cast news (BNEWS), newspaper (NPAPER), antversley/BART/
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we include the results of the original BART sys-line which trains and tests on all pairs. The per-
tem (with its extended feature set and SVM-lightformance of this system is shown in the romf-
TK (Moschitti, 2006), as reported in Versleyal. Style Baseline” in Table 1 and 2.
(2008)) as the first system for comparison. Vers-
ley et al. (2008) reported only the results on the™
three ACE data sets with the MUC evaluation met-
ric. Since we used all the five data sets in ouNext, we show the results of using the proposed
experiments, for fair comparison, we also includénaximum metric score training algorithm. From
the MUC results reported in Ng (2004). To thethe description of the algorithm, it can be seen that
best of our knowledge, Ng (2004) was the onlythere are two parameters in the algorithm. One
prior work which reported MUC metric scores onparameter is\/, the size of the beam. The other
all the five data sets. The MUC metric scores oparameter is), which controls how much we in-
Versleyet al. (2008) and Ng (2004) are listed in crease the weight of a training instance in each
the row “Versleyet al. 08” and “Ng 04", respec- iteration.
tively, in Table 1. For the B-CUBED metric, we  Since the best/ andé for the MUC evaluation
include Ng (2005) for comparison, although it ismetric were not known, we used held-out develop-
unclear how Ng (2005) interpreted the B-CUBEDmMenNt sets to tune the parameters. Specifically, we
metric. The scores are listed in the row “Ng 05trained classifiers with different combinations of
in Table 2. M andé on a development training set, and eval-
Tree kernel SVM learning is time-consuming.uated their performances on a development test
To reduce the training time needed, instead of uget. In our experiments, the development training
ing SVM-light-TK, we used a much faster learn-Set contained 2/3 of the texts in the training set
ing algorithm, J48, which is the WEKA imple- of each individual corpus, while the development
mentation of the C4.5 decision tree learning algoest set contained the remaining 1/3 of the texts.
rithm. (Quinlan, 1993; Witten and Frank, 2005)After having picked the best/ andé values, we
As tree-valued features and string-valued featurdkained a classifier on the entire training set with
cannot be used with J48, in our experiments WB'Ie chosen parameters. The learnt classifier was
excluded them from the extended feature set th#ten applied to the test set.
BART used to produce state-of-the-art MUC F-
measures on the three ACE corpora. All our re .
sults in this paper were obtained using this re -
duced feature set and J48 decision tree leari -f
ing. However, given sufficient computational re- ¢ =
sources, our proposed approach is able to apply
any supervised machine learning algorithms.
Our baselines that follow the Soenal. (2001) ’
framework, using the reduced feature set and J4o ’
decision tree learning, are shown in the rdNL- . ) .
Style Baseline” in Table 1 and 2. The resultsFIgure 3: Tuning) on the held-out development
suggest that our baseline system is comparable
to the state of the art. Although in Table 1, the To limit the search space, we tuned the two
performance of th&NL:style baseline is slightly parameters sequentially. First, we fixéd =
lower than Verslegt al. (2008) on the three ACE 1, which is equivalent to duplicating each train-
corpora, the computational time needed has begty instance once in J48, and evaluatéfl =
greatly reduced. 2, 4, 6, ..., 20. After having chosen the best
Our MMST algorithm trains and tests on all M that corresponded to the maximum F-measure,
pairs of markables. To show the effectiveness ofie fixed the value ofM, and evaluatedd =
weight updating of MMST, we built another base-0.1, 0.2, 0.3, ..., 2.0. Take MUCG6 as an exam-

3 ResultsUsing Maximum Metric Score
Training
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MUCG6 MUC7 BNEWS NPAPER NWIRE

Model R|P]|] F R|P]| F R|P]| F R|P]|F R|P]| F
Versleyet al. 08 - - 60.7 65.4 63.0 [64.1 67.7 65.860.4 65.2 62.7
Ng 04 75.8 61.4 679 64.2 60.2 62.1 |[63.1 67.8 654 |73.5 63.3 680|53.1 60.6 56.6

SNL:-Style Baseline 67.0 49.2 56./ |63.0 54.2 58.3 |57.4 64.3 60.7 |61.6 67/.3 64.358.6 66.1 62.1

All-Style Baseline| 56.9 69.2 62.5 |51.5 73.4 60.6 |53.0 76.7 62.7 |56.3 75.4 64.453.0 745 61.9
MMST 73.3 59.9 65.97766.8 59.8 63.1°*170.5 61.9 65.9°*{69.9 64.0 66.§64.7 64.7 64.7°*"

M=6,6=10 | M=6,6=07 | M=6,6=18 |M=6,6=09| M=14, 5§ =0.7

Table 1: Results for the two MUC and three ACE corpora with M&li@luation metric

MUC6 MUC7 BNEWS NPAPER NWIRE
Model R|P| F R|P| F R|P]| F R|P]| F R|P|F
Ng 05 - - 57.0 77.1 656|628 71.2 66.7|59.3 75.4 66.4

SNL:Style Baselineé 57.8 74.4 65.1 |57/.6 76.5 65.7|62.0 747 67.8/61.8 70.4 658|658 759 /0.5

All-Style Baseline| 51.6 86.3 64.6 |49.1 90.1 63.6/61.6 83.7 71.0 |63.9 74.0 68.6|64.8 80.1 717
MMST 62.7 81.5 70971 61.8 73.6 67.27761.6 83.7 71.0** 63.1 76.2 69.1** 64.3 81.0 71.7

M=6,6=10 | M=88§§=08| M=6,6=09 |M=14,6=05|M=6,8=0.1

Table 2: Results for the two MUC and three ACE corpora withevaluation metric

For the MUC metric, when compared to the

" " Allstyle baseline, MMST gains 3.4, 2.5, 3.2, 2.4,
M and 2.8 improvement in F-measure on MUCS,
i MUC7, BNEWS, NPAPER, and NWIRE, respec-

tively. The experimental results clearly show that
MMST gains not only consistent, but also sta-
tistically significant improvement over both the
SNL:style baseline and th&ll-style baseline in all
combinations (five data sets and two baselines) on
Figure 4. Tuningy on the held-out developmentthe MUC metric, except that it is not significant
set (p = 0.06) over theSNL-style baseline in NPA-
PER. As for the B-CUBED metric, MMST gains

ple. The results of tuning/ on MUC6 are shown significant improvement in F-measure on MUCG6
in Figure 3. The maximum F-measure is obtaine@"d MUC7 data sets, while its performance on
whenM = 4 andM = 6. On all the differentys  the three ACE data sets are comparable toAhe
values we have tried, MMST outperforms both thétyle baseline.
SNL:style baseline and thall-style baseline on
the development test set. We then fixkd = 6,
and evaluated different values. The results are To see how MMST actually updates the weight,
shown in Figure 4. The best F-measure was olwe use the MUC metric as an example. Under the
tained whery = 1.0. Again, on all the different experimental settings, it takes 6 — 9 iterations for
0 values we have tried, MMST outperforms bothMMST to stop on the five data sets. The number
baselines on the development test set. of explored states in the binary search tree, includ-
The rows “MMST” in Table 1 and 2 show the ing the root, is 33, 39, 25, 29, and 75 on MUCS,
performance of MMST on the test sets, with theMUC7, BNEWS, NPAPER, and NWIRE, respec-
tuned parameters indicated. In our experimentsiyely. It is instructive to find out the final weight
the statistical significance test was conducted ad each instance. Take MUCG6 as an example, the
in Chinchor (1995).* and** stand forp < 0.05 number of positive instances with weight 1, 2, 3,
andp < 0.01 over theSNL:style baseline, respec- and 4 are 5,204, 1,568, 1,379, and 1,844, respec-
tively. T and ! stand forp < 0.05 andp < 0.01 tively, while the number of negative instances with
over theAll-style baseline, respectively. weight 1 and 2 are 503,141 and 1,755, respec-

F-measure

uuuuu

5.4 Discussion
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tively. Counting the weighted number of instance8UC?7, but not on the three ACE corpora. How-
(e.g., an instance with weight 2 is equivalent to 2ver, the results of MMST on the three ACE cor-
instances), we have 19,853 positive and 506,65dora with the B-CUBED evaluation metric are at
negative training instances. This changes the ratieast comparable with th&ll-style baseline. This
of the positive instances from9% to 3.8%. As a is because we always pick the classifier which cor-
by-product, MMST reduces data skewness, whileesponds to the maximum evaluation metric score
using all possible NP pairs for training to keep a®n the training set and the classifier correspond-
much information as possible. ing to theAll-style baseline is one of the candi-
The change of weights of the training instancedates. In addition, our MMST approach improves
is equivalent to the change of distribution of theupon state-of-the-art results (Ng, 2004; Ng, 2005;
training instances. This effectively changes th&ersley et al., 2008) on most of the five standard
classification hypothesis to the one that tends teenchmark corpora (two MUC corpora and three
yield higher evaluation metric score. Take the folACE corpora), with both the link-based MUC
lowing sentence in the MUCG6 data set as an exnetric and the mention-based B-CUBED metric.
ample: Finally, our approach performs all the F-
. measure maximization during training, and is very
In a news releasethe company said the new . . .
name more accurately refledts focus on high- fast during testing, since the output of the MMST
technology communications, including business  algorithm is a standard classifier. For example,
and entertainment software, interactive media 3 the MUCG data set with the MUC evaluation
and wireless data and voice transmission. o i
metric, it took 1.6 hours and 31 seconds for train-

In the above example, the pronoitsiis coref- ing and testing, respectively, on an Intel Xeon
erential to the antecedent NRe company The 2.33GHz machine.
baseline classifier gives a probability of 0.02 that
the two NPs are coreferential. The pair is clasé Conclusion
sified wrongly and none of the other pairs in the
article can link the two NPs together through clus!n this paper, we present a novel maximum met-
tering. However, with MMST, this probability in- fiC score training approach comprising the use of
creases to 0.54, which leads to the correct classistance weighting and beam search to maximize
fication. This is because the baseline classifier {§€ chosen coreference metric score on the train-
not good at predicting in the case when the sed?d corpus during training. Experimental results
ond markable is a pronoun. In the above exarhow that the approach achieves significant im-
ple, its can have another candidate antecedemt Provement over the baseline systems. The pro-
new name There are far more negative trainingPosed approach improves upon state-of-the-art re-
instances than positive ones for this case. In facults on most of the five standard benchmark cor-
in the induced decision tree by the baseline, theora (two MUC corpora and three ACE corpora),
leaf node Corresponding to the pa“e company with both the link-based MUC metric and the
— its has 7,782 training instances, out of whichnention-based B-CUBED metric.
only 175 are positive. With MMST, however,
these numbers decrease to 83 and 45, respectiveyck nowledgments
MMST also promotes the Anaphds_Pronoun
feature to a higher level in the decision tree. AlWe thank Yannick Versley for providing us
though we use decision tree to illustrate the workthe BART package and the preprocessed data.
ing of the algorithm, MMST is not limited to tree This research was done for CSIDM Project No.
learning, and can make use of any learning algd=SIDM-200804 partially funded by a grant from
rithms that are able to take advantage of instandge National Research Foundation (NRF) ad-
weighting. ministered by the Media Development Authority

It can also be seen that with the B-CUBED(MDA) of Singapore.
metric, MMST gains improvement on MUC6 and
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