
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 1272–1280,
Beijing, August 2010

Grouping Product Features Using Semi-Supervised Learning
with Soft-Constraints* 

Zhongwu Zhai†, Bing Liu‡, Hua Xu† and Peifa Jia†

†State Key Lab of Intelligent Tech. & Sys. 
Tsinghua National Lab for Info. Sci. and Tech. 
Dept. of Comp. Sci. & Tech., Tsinghua Univ. 

zhaizhongwu@gmail.com

‡Dept. of Comp. Sci.
University of Illinois at Chicago 

liub@cs.uic.edu

Abstract

In opinion mining of product reviews, one of-
ten wants to produce a summary of opinions 
based on product features/attributes. Howev-
er, for the same feature, people can express it 
with different words and phrases. To produce 
a meaningful summary, these words and 
phrases, which are domain synonyms, need to 
be grouped under the same feature group. 
This paper proposes a constrained semi-
supervised learning method to solve the prob-
lem. Experimental results using reviews from 
five different domains show that the proposed 
method is competent for the task. It outper-
forms the original EM and the state-of-the-art 
existing methods by a large margin. 

1 Introduction*

One form of opinion mining in product reviews 
is to produce a feature-based summary (Hu and 
Liu, 2004a; Liu, 2010). In this model, product 
features are first identified, and positive and neg-
ative opinions on them are aggregated to produce 
a summary on the features. Features of a product 
are attributes, components and other aspects of 
the product, e.g., “picture quality”, “battery life” 
and “zoom” of a digital camera. 

In reviews (or any writings), people often use 
different words and phrases to describe the same 
product feature. For example, “picture” and 
“photo” refer to the same feature for cameras. 
Grouping such synonyms is critical for effective 
opinion summary. Although WorldNet and other 
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thesaurus dictionaries can help to some extent, 
they are far from sufficient due to a few reasons. 
First, many words and phrases that are not syn-
onyms in a dictionary may refer to the same fea-
ture in an application domain. For example, “ap-
pearance” and “design” are not synonymous, but 
they can indicate the same feature, design.
Second, many synonyms are domain dependent. 
For example, “movie” and “picture” are syn-
onyms in movie reviews, but they are not syn-
onyms in camera reviews as “picture” is more 
likely to be synonymous to “photo” while “mov-
ie” to “video”. Third, determining which expres-
sions indicate the same feature can be dependent 
on the user’s application need. For example, in 
car reviews, internal design and external design 
can be regarded as two separate features, but can 
also be regarded as one feature, called “design”, 
based to the level of details that the user needs to 
study. In camera reviews, one may want to study 
battery as a whole (one feature), or as more than 
one feature, e.g., battery weight, and battery life. 
Due to this reason, in applications the user needs 
to be involved in synonym grouping.  

Before going further, let us introduce two con-
cepts, feature group and feature expression. Fea-
ture group (or feature for short) is the name of a 
feature (given by the user), while a feature ex-
pression of a feature is a word or phrase that ac-
tually appears in a review to indicate the feature. 
For example, a feature group could be named 
“picture quality”, but there are many possible 
expressions indicating the feature, e.g., “picture”, 
“photo”, “image”, and even the “picture quality” 
itself. All the feature expressions in a feature 
group signify the same feature.  

Grouping feature expressions manually into 
suitable groups is time consuming as there are 

1272



often hundreds of feature expressions. This paper 
helps the user to perform the task more efficient-
ly. To focus our research, we assume that feature 
expressions have been discovered from a review 
corpus by an existing system such as those in 
(Hu and Liu, 2004b; Popescu and Etzioni, 2005; 
Kim and Hovy, 2006; Kobayashi et al., 2007; 
Mei et al., 2007; Stoyanov and Cardie, 2008; Jin
et al., 2009; Ku et al., 2009). 

To reflect the user needs, he/she can manually 
label a small number of seeds for each feature 
group. The feature groups are also provided by 
the user based on his/her application needs. The 
system then assigns the rest of the feature ex-
pressions to suitable groups. To the best of our 
knowledge, this problem has not been studied in 
opinion mining (Pang and Lee, 2008).  

The problem can be formulated as semi-
supervised learning. The small set of seeds la-
beled by the user is the labeled data, and the rest 
of the discovered feature expressions are the un-
labeled data. This is the transductive setting 
(Joachims, 1999) because the unlabeled set is 
used in learning and also in testing since our ob-
jective is to assign unlabeled expressions to the 
right feature groups.  

Any semi-supervised learning method can be 
applied to tackle the problem. In this work, we 
use the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977). Specifically, we 
use the naïve Bayesian EM formulation in 
(Nigam et al., 2000), which runs a Bayesian clas-
sifier iteratively on the labeled and unlabeled 
data until the probabilities for the unlabeled data 
converge. When the algorithm ends, each unla-
beled example is assigned a posterior probability 
of belonging to each group.  

However, we can do better since the EM algo-
rithm only achieves local optimal. What local 
optimal it achieves depends on the initialization, 
i.e., the initial seeds. We show that some prior 
knowledge can help provide a better initialization, 
and consequently generate better grouping results. 
Thus, we propose to create another set of data 
extracted from the unlabeled set based on two 
pieces of natural language knowledge: 
1. Feature expressions sharing some common 

words are likely to belong to the same group, 
e.g., “battery life” and “battery power”. 

2. Feature expressions that are synonyms in a 
dictionary are likely to belong to the same 

group, e.g., “movie” and “picture”.  
We call these two pieces of prior knowledge soft 
constraints because they constrain the feature 
expressions to be in the same feature group. The 
constraints are soft (rather than hard) as they can 
be relaxed in the learning process. This relaxa-
tion is important because the above two con-
straints can result in wrong groupings. The EM 
algorithm is allowed to re-assign them to other 
groups in the learning process.  

We call the proposed framework constrained 
semi-supervised learning. Since we use EM and 
soft constraints, we call the proposed method SC-
EM. Clearly, the problem can also be attempted 
using some other techniques, e.g., topic modeling 
(e.g, LDA (Blei et al., 2003)), or clustering using 
distributional similarity (Pereira et al., 1993; Lin, 
1998; Chen et al., 2006; Sahami and Heilman, 
2006). However, our results show that these me-
thods do not perform as well. 

The input to the proposed algorithm consists 
of: a set of reviews R, and a set of discovered 
feature expressions F from R (using an existing 
algorithm). The user labels a small set of feature 
expressions, i.e., assigning them to the user-
specified feature groups. The system then assigns 
the rest of the discovered features to the feature 
groups. EM is run using the distributional (or 
surrounding words) contexts of feature expres-
sions in review set R to build a naïve Bayesian 
classifier in each iteration.  

Our evaluation was conducted using reviews 
from 5 different domains (insurance, mattress, 
vacuum, car and home-theater). The results show 
that the proposed method outperforms different 
variations of the topic modeling method LDA, k-
means clustering, and the recent unsupervised 
feature grouping method mLSA.  

In summary, this paper makes three main con-
tributions:
1. It proposes a new sub-problem of opinion 

mining, i.e., grouping feature expressions in 
the context of semi-supervised learning. Al-
though there are existing methods for solving 
the problem based on unsupervised learning, 
we argue that for practical use some form of 
supervision from the user is necessary to let 
the system know what the user wants.  

2. An EM formulation is used to solve the prob-
lem. We augment EM with two soft con-
straints. These constraints help guide EM to 
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produce better solutions. We note that these 
constraints can be relaxed in the process to 
correct the imperfection of the constraints.  

3. It is shown experimentally the new method 
outperforms the main existing state-of-the-art 
methods that can be applied to the task.  

2 Related Work 

This work is mainly related to existing research 
on synonyms grouping, which clusters words and 
phrases based on some form of similarity.  

The methods for measuring word similarity 
can be classified into two main types (Agirre et 
al., 2009): those relying on pre-existing know-
ledge resources (e.g., thesauri, or taxonomies) 
(Yang and Powers, 2005; Alvarez and Lim, 2007; 
Hughes and Ramage, 2007), and those based on 
distributional properties (Pereira et al., 1993; 
Lin, 1998; Chen et al., 2006; Sahami and 
Heilman, 2006; Pantel et al., 2009).   

In the category that relies on existing know-
ledge sources, the work of Carenini et al. (2005) 
is most related to ours. The authors proposed a 
method to map feature expressions to a given 
domain feature taxonomy, using several similari-
ty metrics on WordNet. This work does not use 
the word distribution information, which is its 
main weakness because many expressions of the 
same feature are not synonyms in WordNet as 
they are domain/application dependent. Dictiona-
ries do not contain domain specific knowledge, 
for which a domain corpus is needed.

Another related work is distributional similari-
ty, i.e., words with similar meaning tend to ap-
pear in similar contexts (Harris, 1968). As such, 
it fetches the surrounding words as context for 
each term. Similarity measures such as Cosine,
Jaccard, Dice, etc (Lee, 1999), can be employed 
to compute the similarities between the seeds and 
other feature expressions. To suit our need, we 
tested the k-means clustering with distributional 
similarity. However, it does not perform as well 
as the proposed method.  

Recent work also applied topic modeling (e.g., 
LDA) to solve the problem. Guo et al. (2009) 
proposed a multilevel latent semantic association 
technique (called mLSA) to group product feature 
expressions, which runs LDA twice. However, 
mLSA is an unsupervised approach. For our eval-
uation, we still implemented the method and 
compared it with our SC-EM method.  

Our work is also related to constrained cluster-
ing (Wagstaff et al., 2001), which uses two forms 
of constraints, must-link and cannot-link. Must-
links state that some data points must be in the 
same cluster, and cannot-links state that some 
data points cannot be in the same cluster. In 
(Andrzejewski et al., 2009), the two constraints 
are added to LDA, called DF-LDA. We show 
that both these methods do not perform as well as 
our semi-supervised learning method SC-EM.

3 The Proposed Algorithm 

Since our problem can be formulated as semi-
supervised learning, we briefly describe the set-
ting in our context. Given a set C of classes (our 
feature groups), we use L to denote the small set 
of labeled examples (labeled feature expressions 
or seeds), and U the set of unlabeled examples 
(unlabeled feature expressions). A classifier is 
built using L and U to classify every example in 
U to a class. Several existing algorithms can be 
applied. In this work, we use EM as it is efficient 
and it allows prior knowledge to be used easily. 
Below, we first introduce the EM algorithm that 
we use, and then present our augmented EM. The 
constraints and their conflict handling are dis-
cussed in Section 4.  

3.1 Semi-Supervised Learning Using EM 

EM is a popular iterative algorithm for maximum 
likelihood estimation in problems with missing 
data. In our case, the group memberships of the 
unlabeled expressions are considered missing 
because they come without group labels.  

We use the EM algorithm based on naïve 
Bayesian classification (Nigam et al., 2000). Al-
though it is involved to derive, using it is simple. 
First, a classifier f is learned using only the la-
beled data L (Equations 1 and 2). Then, f is ap-
plied to assign a probabilistic label to each unla-
beled example in U (see Equation 3). Next, a 
new classifier f is learned using both L and the 
newly probabilistically labeled unlabeled exam-
ples in UPL, again using Equations 1 and 2. These 
last two steps iterate until convergence. 

We now explain the notations in the Equations. 
Given a set of training documents D, each docu-
ment di in D is considered as an ordered list of 
words. denotes the kth word in di, where 
each word is from the vocabulary V={w1, w2,…,
w|V|}. C={c1, c2,…, c|C|} is the set of pre-defined 
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classes or groups. Nti is the number of times the 
word wt occurs in document di.

For our problem, the surrounding words con-
texts of the labeled seeds form L, while the sur-
rounding words of the non-seed feature expres-
sions form U. When EM converges, the classifi-
cation labels of the unlabeled feature expressions 
give us the final grouping. Surrounding words 
contexts will be discussed in Section 5. 

3.2 Proposed Soft-Constrained EM 
Although EM can be directly applied to deal with 
our problem, we can do better. As we discussed 
earlier, EM only achieves local optimal based on 
the initialization, i.e., the labeled examples or 
seeds. We show that natural languages con-
straints can be used to provide a better initializa-
tion, i.e., to add more seeds that are likely to be 
correct, called soft-labeled examples or soft seeds 
(SL). Soft-labeled examples are handled diffe-
rently from the original labeled examples in L.
With the soft seeds, we have the proposed soft-
constrained EM (called SC-EM). 

Compared with the original EM, SC-EM has 
two main differences:

Soft constraints are applied to L and U to pro-
duce a set SL of soft-labeled examples (or soft 
seeds) to initialize EM in addition to L. SL is 
thus a subset of U. The training set size is in-
creased, which helps produce better results as 
our experimental results show.  
In the first iteration of EM, soft-labeled ex-
amples SL are treated in the same way as the 
labeled examples in L. Thus both SL and L are 
used as labeled examples to learn the initial 
classifier f0. However, in the subsequent itera-
tions, SL is treated in the same way as any ex-
amples in U. That is, the classifier fx from 
each iteration x (including f0) will predict U.
After that, a new classifier is built using both 
L and UPL (which is U with probabilistic la-

1 Laplace smoothing is used to prevent zero probabilities for 
infrequently occurring words. 

bels). Clearly, this implies that the class labels 
of the examples in SL are allowed to change. 
That is also why we call SL the soft-labeled 
set in contrast to the hard-labeled set L, i.e., 
the examples in L will not change labels in 
EM. The reason that SL is allowed to change 
labels/classes is because the constraints can 
make mistakes. EM may be able to correct 
some of the mistakes. 

The detailed algorithm is given in Figure 1. The 
constraints are discussed in Section 4. 

4 Generating SL Using Constraints 

As mentioned earlier, two forms of constraints 
are used to induce the soft-labeled set SL. For 
easy reference, we reproduce them here:  
1. Feature expressions sharing some common 

words are likely to belong to the same group. 
2. Feature expressions that are synonyms in a 

dictionary are likely to belong to one group.  
According to the number of words, feature ex-
pressions can be categorized into single-word 
expressions and phrase expressions. They are 
handled differently. The detailed algorithm is 
given in Figure 2. In the algorithm, L is the la-
beled set and U is the unlabeled set. L, in fact, 
consists of a set of sets, L = {L1, L2, …, L|L|}. 
Each Li contains a set of labeled examples (fea-
ture expressions) of the ith class (feature group). 
Similarly, the output set SL (the soft-labeled set) 
also consists of a set of sets, i.e., SL = {SL1,
SL2, …, SL|L|}. Each SLi is a set of soft-labeled 
examples (feature expressions) of the ith class 

(11)

(21)

(3)

Input:
- Labeled examples L
- Unlabeled examples U
1 Extract SL from U using constraints (Section 4); 
2 Learn an initial naïve Bayesian classifier f0 using L

∪ SL and Equations 1 and 2; 
3 repeat
4 // E-Step 
5 for each example di in U (including SL) do
6 Using the current classifier fx to compute 

P(cj|di) using Equation 3. 
7 end
8 // M-Step 
9 Learn a new naïve Bayesian classifier fx from L

and U by computing P(wt|cj) and P(cj) using 
Equations 1 and 2. 

10 until the classifier parameters stabilize 
Output: the classifier fx from the last iteration.

 Figure 1. The proposed SC-EM algorithm  
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(feature group). Thus Li and SLi correspond to 
each other as they represent the original labeled 
examples and the newly soft-labeled examples of 
the ith class (or feature group) respectively.  

The algorithm basically compares each fea-
ture expression u in U (line 1) with each feature 
expression e (line 4) in every labeled subset Li
(line 2) based on the above two constraints. If 
any of the constraints is satisfied (lines 5-17), it 
means that u is likely to belong to Li (or the ith

class or feature group), and it is added to SLi.
There are conflict situations that need to be re-

solved. That is, u may satisfy a constraint of 
more than one labeled sub-set Li. For example, if 
u is a single word, it may be synonyms of feature 
expressions from more than one feature groups. 
The question is which group it is likely to belong. 
Further, u may be synonyms of a few single-
word feature expressions in Li. Clearly, u being a 
synonym of more than one word in Li is better 
than it is only the synonym of one word in Li.
Similar problems also occur when u is an ele-
ment of a feature expression phrase e.

To match u and e, there are a few possibilities. 
If both u and e are single words (lines 5-6), the 
algorithm checks if they are synonyms (line 7). 
The score in line 8 is discussed below. When one 
of u and e is a phrase, or both of them are phrases, 
we see whether they have shared words. Again, 
conflict situations can happen with multiple 
classes (feature groups) as discussed above. Note 
that in these cases, we do not use the synonym 
constraint, which does not help in our test.  

Given these complex cases, we need to decide 

which class that u should be assigned to or 
should not be assigned to any class (as it does not 
meet any constraint). We use a score to record 
the level of satisfaction. Once u is compared with 
each e in every class, the accumulated score is 
used to determine which class Li has the strong-
est association with u. The class j with the high-
est score is assigned to u. In other words, u is 
added to SLj. Regarding the score value, syn-
onyms gets the score of 1 (line 8), and intersec-
tion (shared words) gets the score equal to the 
size of the intersection (lines 10-17). 

5 Distributional Context Extraction 
To apply the proposed algorithm, a document di
needs to be prepared for each feature expression 
ei for naïve Bayesian learning. di is formed by 
aggregating the distributional context of each 
sentence sij in our corpus that contains the ex-
pression ei. The context of a sentence is the sur-
rounding words of ei in a text window of [-t, t], 
including the words in ei. Given a relevant cor-
pus R, the document di for each feature expres-
sion ei in L (or U) is generated using the algo-
rithm in Figure 3. Stopwords are removed. 
1 for each feature expression ei in L (or U) do
2       Si ← all sentences containing ei in R;
3       for each sentence sij ∈ Si do
4            dij ← words in a window of [-t, t] on the left 

and right (including the words in ei);
5       di ← words from all dij, j = 1, 2, …, |Si|; 
          // duplicates are kept as it is not union

Figure 3. Distributional context extraction 
For example, a feature expression from L (or 

U) is ei = “screen” and there are two sentences in 
our corpus R that contain “screen”

si1 = “The LCD screen gives clear picture”.
si2 = “The picture on the screen is blur”

We use the window size of [-3, 3]. Sentence si1,
gives us di1 = <LCD, screen, give, clear, picture> 
as a bag of words. “the” and “is” are removed as 
stopwords. si2 gives us di2 = <picture, screen, 
blur>. “on”, “the” and “is” are removed as stop-
words. Finally, we obtain the document di for 
feature expression ei as a bag of words: 

di = <LCD, screen, give, clear, picture,
picture, screen, blur> 

6 Empirical Evaluation 
This section evaluates the SC-EM algorithm and 
compares it with the main existing methods that 
can be applied to solve the problem.   

1  for each feature expression u ∈ U do
2 for each feature group Li ∈ L do
3 score(Li) ← 0; 
4 for each feature expression e ∈ Li do
5 if u is a single word expression then
6 if e is a single word expression then
7 if u and e are synonyms then
8 score(Li) ← score(Li) + 1; 
9 else if w ∈ e then  // e is a phrase 
10 score(Li) ← score(Li) + 1 
11 else  // u is a phrase 
12 if e is a single word expression then
13 if e ∈ u then  // u is a phrase 
14 score(Li) ← score(Li) + 1 
15 else
16 s ← e ∩ u;
17 score(Li) ← score(Li) + |s|
18 u is added to SLj s.t.

Figure 2. Generating the soft-labeled set SL
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6.1 Review Data Sets and Gold Standards 
To demonstrate the generality of the proposed 
method, experiments were conducted using re-
views from five domains: Hometheater, Insur-
ance, Mattress, Car and Vacuum. All the data 
sets and the gold standard feature expressions 
and groups were from a company that provides 
opinion mining services. The details of the data 
sets and the gold standards are given in Table 1.  

Hometheater Insurance Mattress Car Vacuum

#Sentences 6355 12446 12107 9731 8785
#Reviews 587 2802 933 1486 551
#Feature  
expressions 237 148 333 317 266 
#Feature 
groups 15 8 15 16 28 

Table 1. Data sets and gold standards 

6.2 Evaluation Measures 

Since SC-EM is based on semi-supervised learn-
ing, we can use classification accuracy to eva-
luate it. We can also see it as clustering with ini-
tial seeds. Thus we also use clustering evaluation 
methods. Given gold standards, two popular 
clustering evaluation measures are Entropy and 
Purity (Liu, 2006). As accuracy is fairly standard, 
we will not discuss it further. Below, we briefly 
describe entropy and purity. 

Given a data set DS, its gold partition is G =
{ ,…, ,…, }, where k is the known number 
of clusters. The groups partition DS into k dis-
joint subsets, DS1,…, DSi, …, DSk.

Entropy: For each resulting cluster, we can 
measure its entropy using Equation 4, where 
Pi( ) is the proportion of  data points in DSi.
The total entropy of the clustering (considering 
all clusters) is calculated by Equation 5. 

(4)

(5)

Purity: Purity measures the extent that a clus-
ter contains only data from one gold-partition. 
Each cluster’s purity is computed by Equation 6, 
and the total purity of the whole clustering is 
computed with Equation 7. 

(6)

(7)

In testing, the unlabeled set U is also our test 

set. This is justified because our purpose is to 
assign unlabeled data to appropriate groups.  

6.3 Baseline Methods and Settings 

The proposed SC-EM method is compared with 
a set of existing methods, which can be catego-
rized into unsupervised and semi-supervised me-
thods. We list the unsupervised methods first.  

LDA: LDA is a popular topic modeling me-
thod (see Section 2). Given a set of documents, it 
outputs groups of terms of different topics. In our 
case, each feature expression is a term, and the 
documents refer to the distributional contexts of 
each feature expressions (see Section 5).  

mLSA: This is a state-of-the-art unsupervised 
method for solving the problem. It is based on 
LDA, and has been discussed in related work. 

Kmeans: This is the k-means clustering me-
thod (MacQueen, 1966) based on distributional 
similarity with cosine as the similarity measure. 

In the semi-supervised category, the methods 
are further classified into un-constrained, hard-
constrained, and soft-constrained methods. 

For the un-constrained subclass (no con-
straints are used), we have the following: 

LDA(L, H): This method is based on LDA,
but the labeled examples L are used as seeds for 
each group/topic. All examples in L will always 
stay in the same topic. We call this hard initiali-
zation (H). L is handled similarly below. 

DF-LDA(L, H). DF-LDA is the LDA method 
(Andrzejewski et al., 2009) that takes must-links 
and cannot-links. Our L set can be expressed as a 
combination of must-links and cannot-links. Un-
fortunately, only must-links can be used because 
the number of cannot-links is huge and crashes 
the system. For example, for the car data, the 
number of cannot-links is 194,400 for 10% la-
beled data (see Section 6.4) and for 20% it is 
466,560,000. DF-LDA also has a parameter η
controlling the link strength, which is set very 
high (=1000) to reflect the hard initialization. We 
did not use DF-LDA in the unsupervised subclass 
above as without constraints it reduces to LDA.

Kmeans(L, H): This method is based on 
Kmeans, but the clusters of the labeled seeds are 
fixed at the initiation and remain unchanged. 

EM(L, H): This is the original EM for semi-
supervised learning. Only the labeled examples 
are used as the initial seeds.  

For the hard-constrained (H) subclass (our 
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two constraints are applied and cannot be vi-
olated), we have the following methods (LC is L
plus SL produced by the constraints (C): 

Rand(LC, H): This is an important baseline. It 
shows whether the constraints alone are suffi-
cient to produce good results. That is, the final 
result is the expanded seeds SL plus the rest of U
assigned randomly to different groups.

LDA(LC, H): It is similar to LDA(L,H), but 
both the initial seeds L and the expanded seeds 
SL are considered as labeled examples. They also 
stay in the same topics/groups in the process. 
Note that although SL is called a set of soft-
labeled examples (seeds) in the proposed algo-
rithm, they are treated as hard-labeled examples 
here just for experimental comparison.  

DF-LDA(LC, H): This is DF-LDA with both 
L and SL expressed as must-links. Again, a large 
η (= 1000) is used to make sure that must-links 
for L and SL will not be violated.  

Kmeans(LC,H): It is similar to Kmeans(L,H), 
but both L and SL stay in their assigned clusters.  

EM(LC, H): It is similar to SC-EM, but SL is 
added to the labeled set L, and their classes are 
not allowed to change in the EM iterations.  

For the soft-constrained (S) subclass, our two 
constraints can be violated. Initially, both the 
initial seeds L and the expanded seeds SL are 
considered as labeled data, but subsequently, on-
ly L is taken as the labeled data (i.e., staying in 
the same classes). The algorithm will re-estimate 
the label of each feature expression in SL. This 
subclass has the following methods: 

LDA(LC, S): This is in contrast to LDA(LC, 
H). It allows the SL set to change topics/groups. 

Kmeans(LC, S): This is in contrast to 
Kmeans(LC, H).

A soft DF-LDA is not included here because 
different η values give different results, and they 
are generally worse than DF-LDA(LC, H).

For all LDA based methods, the topic model-
ing parameters were set to their default values. 
The number of iteration is 1000. We used the 
LDA in MALLET2, and modified it to suit differ-
ent LDA-based methods except DF-LDA, which 
was downloaded from its authors’ website3. We 
implemented mLSA, Kmeans and changed EM4

to take soft seeds. For all Kmeans based methods, 
the distance function is the cosine similarity. 

2 http://mallet.cs.umass.edu/ 
3 http://pages.cs.wisc.edu/~andrzeje/research/df_lda.html 
4 http://alias-i.com/lingpipe/ 

6.4 Evaluation Results 
We now compare the results of SC-EM and the 
14 baseline methods. To see the effects of differ-
ent numbers of labeled examples (seeds), we ex-
perimented with 10%, 20%, 30%, 40%, and 50% 
of the feature expressions from the gold standard 
data as the labeled set L, and the rest as the unla-
beled set U. All labeled data were selected ran-
domly. For each setting, we run the algorithms 
30 times and report the average results. Due to 
space limitations, we can only show the detailed 
purity (Pur), entropy (Ent) and accuracy (Acc) 
results for 30% as the labeled data (70% as unla-
beled) in Table 2. For the other proportions of 
labeled data, we summarize them in Table 3. 
Each result in Table 3 is thus the average of the 5 
data sets. All the results were obtained from the 
unlabeled set U, which was our test set. For en-
tropy, the smaller the value is the better, but for 
purity and accuracy, the larger the better. For 
these experiments, we used the window size t = 5. 
Section 6.5 studies the effects of window sizes.  

Tables 2 and 3 clearly show that the proposed 
algorithm (SC-EM) outperforms all 14 baseline 
methods by a large margin on every dataset. In 
detail, we observe the following:  
• LDA, mLSA and Kmeans with no seeds (la-

beled data) perform the worst. Seeds help to 
improve the results, which is intuitive. With-
out seeds, DF-LDA is the same as LDA.

• LDA based methods seems to be the weakest. 
Kmeans based methods are slightly better, but 
EM based methods are the best. This clearly 
indicates that classification (EM) performs 
better than clustering. Comparing DF-LDA
and Kmeans, their results are similar.  

• For LDA, and Kmeans, hard-constrained me-
thods (i.e., LDA(L, H), and Kmeans(L, H))
perform better than soft-constrained methods 
(i.e., LDA(LC, S) and Kmeans(LC, S)). This 
indicates that soft-constrained versions may 
change some correctly constrained expres-
sions into wrong groups. However, for the 
EM based methods, the soft-constrained me-
thod (SC-EM) performs markedly better than 
the hard-constrained version (EM(LC, H)). 
This indicates that Bayesian classifier used in 
EM can take advantage of the soft constraints 
and correct some wrong assignments made by 
constraints. Much weaker results of Rand(LC,
H) than SC-EM in different settings show that 
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constraints alone (i.e., synonyms and sharing 
of words) are far from sufficient. EM can im-
prove it considerably.  

• Comparing EM based methods, we can see 
that soft seeds in SL make a big difference for 
all data sets. SC-EM is clearly the best.  

• As the number of labeled examples increases 
(from 10% to 50%), the results improve for 
every method (except those for DF-LDA,
which does not change much).  

6.5 Varying the Context Window Size 
We varied the text window size t from 1 to 10 to 
see how it impacts on the performance of SC-EM.
The results are given in Figure 4 (they are aver-
ages of the 5 datasets). Again for purity and ac-
curacy, the greater the value the better, while for 
entropy it is the opposite. It is clear that the win-
dow sizes of 2~6 produce similar good results. 
All evaluations reported above used t = 5. 

7 Conclusion
This paper proposed the task of feature grouping 
in a semi-supervised setting. It argued that some 
form of supervision is needed for the problem 
because its solution depends on the user applica-
tion needs. The paper then proposed to use the 
EM algorithm to solve the problem, which was 
improved by considering two soft constraints. 
Empirical evaluations using 5 real-life data sets 
show that the proposed method is superior to 14 
baselines. In our future work, we will focus on 
further improving the accuracy.  

Methods Hometheater Insurance Mattress Car Vacuum 
Acc Pur Ent Acc Pur Ent Acc Pur Ent Acc Pur Ent Acc Pur Ent 

LDA 0.06 0.31 2.54 0.11 0.36 2.24 0.05 0.32 2.57 0.06 0.37 2.39 0.03 0.36 2.09
mLSA 0.06 0.31 2.53 0.14 0.38 2.19 0.06 0.34 2.55 0.09 0.37 2.40 0.03 0.37 2.11
Kmeans 0.21 0.42 2.14 0.25 0.45 1.90 0.15 0.39 2.32 0.25 0.44 2.16 0.24 0.47 1.78
LDA(L, H) 0.10 0.32 2.50 0.16 0.37 2.22 0.10 0.34 2.57 0.19 0.39 2.36 0.10 0.39 2.09
DF-LDA(L, H) 0.27 0.37 2.32 0.25 0.41 2.00 0.19 0.39 2.35 0.28 0.45 2.15 0.31 0.40 1.98
Kmeans(L, H) 0.20 0.42 2.12 0.25 0.43 1.92 0.17 0.42 2.26 0.27 0.48 2.04 0.20 0.48 1.76
EM(L, H) 0.48 0.50 1.93 0.50 0.53 1.69 0.52 0.56 1.87 0.56 0.58 1.80 0.49 0.52 1.79
Rand(CL, H) 0.41 0.46 2.07 0.40 0.46 1.94 0.40 0.47 2.07 0.34 0.41 2.31 0.39 0.52 1.59
LDA(CL, H) 0.44 0.50 1.96 0.42 0.48 1.89 0.42 0.49 1.97 0.44 0.52 1.87 0.43 0.55 1.48
DF-LDA(CL, H) 0.35 0.49 1.86 0.33 0.49 1.71 0.23 0.39 2.26 0.34 0.51 1.88 0.37 0.52 1.58
Kmeans(CL, H) 0.49 0.55 1.70 0.48 0.55 1.62 0.44 0.51 1.91 0.47 0.54 1.80 0.44 0.58 1.42
EM(CL, H) 0.59 0.60 1.62 0.58 0.60 1.46 0.56 0.59 1.74 0.62 0.64 1.54 0.55 0.60 1.44
LDA(CL, S) 0.24 0.35 2.44 0.27 0.40 2.14 0.23 0.37 2.44 0.27 0.41 2.33 0.23 0.41 2.01
Kmeans(CL, S) 0.33 0.46 2.04 0.34 0.45 1.90 0.25 0.43 2.20 0.29 0.47 2.07 0.37 0.50 1.68
SC-EM 0.67 0.68 1.30 0.66 0.68 1.18 0.68 0.70 1.27 0.70 0.71 1.24 0.67 0.68 1.18

Table 2. Comparison results (L = 30% of the gold standard data) 

Methods Acc Pur Ent
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

LDA 0.07 0.07 0.06 0.06 0.08 0.33 0.33 0.34 0.35 0.38 2.50 2.44 2.37 2.28 2.11
mLSA 0.07 0.07 0.08 0.07 0.07 0.34 0.35 0.35 0.37 0.38 2.48 2.42 2.36 2.26 2.12
Kmeans 0.22 0.23 0.22 0.22 0.22 0.42 0.43 0.44 0.44 0.46 2.16 2.11 2.06 1.98 1.86
LDA(L, H) 0.10 0.10 0.13 0.14 0.15 0.34 0.34 0.36 0.37 0.39 2.48 2.43 2.35 2.25 2.11
DF-LDA(L, H) 0.23 0.25 0.26 0.27 0.30 0.41 0.40 0.41 0.41 0.44 2.23 2.23 2.16 2.10 1.94
Kmeans(L, H) 0.13 0.16 0.22 0.24 0.28 0.42 0.43 0.45 0.45 0.48 2.15 2.11 2.02 1.95 1.79
EM(L, H) 0.35 0.44 0.51 0.55 0.58 0.43 0.49 0.54 0.57 0.61 2.22 1.99 1.81 1.65 1.49
Rand(CL, H) 0.28 0.35 0.39 0.42 0.45 0.39 0.43 0.47 0.50 0.54 2.33 2.15 2.00 1.82 1.63
LDA(CL, H) 0.31 0.38 0.43 0.46 0.49 0.43 0.47 0.51 0.54 0.58 2.16 1.99 1.83 1.69 1.49
DF-LDA(CL, H) 0.32 0.33 0.33 0.34 0.36 0.49 0.50 0.48 0.48 0.48 1.90 1.85 1.86 1.83 1.82
Kmeans(CL, H) 0.33 0.41 0.46 0.49 0.52 0.47 0.51 0.55 0.57 0.61 1.98 1.82 1.69 1.56 1.42
EM(CL, H) 0.44 0.54 0.58 0.61 0.64 0.49 0.57 0.61 0.64 0.67 1.98 1.72 1.56 1.40 1.25
LDA(CL, S) 0.17 0.21 0.25 0.30 0.34 0.34 0.36 0.39 0.42 0.46 2.47 2.37 2.27 2.09 1.87
Kmeans(CL, S) 0.23 0.28 0.32 0.36 0.42 0.43 0.44 0.46 0.48 0.51 2.15 2.08 1.98 1.86 1.70
SC-EM 0.45 0.58 0.68 0.75 0.81 0.50 0.61 0.69 0.76 0.82 1.95 1.56 1.24 0.94 0.69

Table 3. Influence of the seeds’ proportion (which reflects the size of the labeled set L)

Figure 4. Influence of context window size 
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