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Abstract To alleviate this problem, an obvious solu-

tion is to offer more alternatives. Recent studies
We propose a structure calleépendency have shown that SMT systems can benefit from
forest for statistical machine translation.  widening the annotation pipeline: using packed
A dependency forest compactly represents  forests instead of 1-best trees (Mi and Huang,
multiple dependency trees. We develop  2008), word lattices instead of 1-best segmenta-
new algorithms for extracting string-to-  tions (Dyer et al., 2008), and weighted alignment
dependency rules and training depen- matrices instead of 1-best alignments (Liu et al.,
dency language models. Our forest-based 2009).
string-to-dependency system obtains sig-  Along the same direction, we propose a struc-
nificant improvements ranging from 1.36  ture calleddependency foresivhich encodes ex-
to 1.46 BLEU points over the tree-based  ponentially many dependency trees compactly, for
baseline on the NIST 2004/2005/2006 dependency-based translation systems. In this pa-
Chinese-English test sets. per, we develop two new algorithms for extracting
string-to-dependency rules and for training depen-
dency language models, respectively. We show

Dependency grammars have become increasingh@t using the rules and dependency language
popular in syntax-based statistical machine tran§t'0dels learned from dependency forests leads to
lation (SMT). One important advantage of depengons!stent and significant improvements over that
dency grammars is that they directly capture thaf using 1-bes_t trees on the NIST 2004/2005/2006
dependencies between words, which are key to r&hinese-English test sets.
solving most parsing ambiguities. As a result, in-
corporating dependency trees proves to be effec-
tive in improving statistical machine translationFigure 1 shows a dependency tree of an English
(Quirk et al., 2005; Ding and Palmer, 2005; Shemsentencene saw a boy with a telescapérrows
et al., 2008). point from the child to the parent, which is often
However, most dependency-based translatiareferred to as the head of the child. For example,
systems suffer from a major drawback: they onlyn Figure 1,sawis the head ohe A dependency
use 1-best dependency trees for rule extractioriree is more compact than its constituent counter-
dependency language model training, and decogart because there is no need to build a large su-
ing, which potentially introduces translation mis-perstructure over a sentence.
takes due to the propagation of parsing errors Shen et al. (2008) propose a novel string-to-
(Quirk and Corston-Oliver, 2006). While thedependency translation model that features two
treelet system (Quirk et al., 2005) takes a demportant advantages. First, they define that
pendency tree as input, the string-to-dependeney string-to-dependency rule must havewall-
system (Shen et al., 2008) decodes on a sourdermed dependency structure on the target side,
language string. However, as we will show, thevhich makes efficient dynamic programming pos-
string-to-dependency system still commits to ussible and manages to retain most useful non-
ing degenerate rules and dependency languagenstituent rules. A well-formed structure can be
models learned from noisy 1-best trees. either fixed or floating . A fixed structure is a

1 Introduction

Background
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L L : Figure 2: Well-formed dependency structures cor-
he  saw a boy - with & telﬁs,cope responding to Figure 1. (a) and (b) are fixed and
K R S SN (c) is floating.

ta kan/dao yiée dai wangyﬁanjing de 1\1;1ﬁhai . .
and the word alignments between them. To facil-

Figure 1: A training example for tree-based ruldtate identifying the correspondence between the

extraction. English and Chinese words, we also gives the En-
glish sentence. Extracting string-to-dependency

dependency tree with all the children completerUIes from aligned string-dependency pairs is sim-

Floating structures consist of sibling nodes of isr © extracjt:jng S;CFG I(Chlang, 2|(|)Of7) exc(:jept that
common head, but the head itself is unspecifiet target side of a rule Is a well-formed struc-

or floating. For example, Figure 2(a) and Figuréure' For example, we can first extract a string-to-
' dependency rule that is consistent with the word

2(b) are two fixed structures while Figure 2(c)is a . _
floating one. alignment (Och and Ney, 2004):

Formally, for a given sentenee;; = w; ... wy, with ((a) telescopp — dai wangyuanjing de
dy ...d; represent the parent word IDs for each

word. If w; is a root, we defind; = 0. Then a smaller rule

Definition 1. A dependency structurg ; is fixed (a) telescope— wangyuanjing
on headh, where h¢ [i, j], or fixed for short, if
and only if it meets the following conditions

can be subtracted to obtain a rule with one non-
terminal:

o dy & [i,]] with (X;) — dai X; de

o Vk € [i,j]andk # h,di € [i, ]] whereX is a non-terminal and the subscript indi-
o Vk & [i,j], dr = hordy ¢ [i, j] cates the correspondence between non-terminals

I . on the source and target sides.
Definition 2. A dependency structure; ; is g

floating with children C, for a non-empty set C

. . . . =~ 2.2 Tree-based Dependency Language Model
C {i,...,7}, or floating for short, if and only if it

meets the following conditions As dependency relations directly model the se-
mantics structure of a sentence, Shen et al. (2008)
o Ih ¢ [i,j],s.tVk € C.dp =h introduce dependency language model better
o Vk € [i,j] andk ¢ C,dy, € [i, j] account for the generation of target sentences.
. . Compared with the conventionatgram language
o Vk ¢ [i, 5], di ¢ [i. 7] models, dependency language model excels at
A dependency structure isell-formed if and capturing non-local dependencies between words
only if it is eitherfixed or floating. (e.g.,saw ... within Figure 1). Given a depen-
_ dency tree, its dependency language model prob-
2.1 Tree-based Rule Extraction ability is a product of three sub-models defined

Figure 1 shows a training example consisting of abhetween headwords and their dependants. For ex-
English dependency tree, its Chinese translatioample, the probability of the tree in Figure 1 can
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Figure 3: (a) the dependency tree in Figure 1, (b) anotheertigncy tree for the same sentence, and
(c) a dependency forest compactly represents the two trees.

be calculated as: the firstais (2,3) because it is the third word in
the sentence. As the fourth wolsby dominates
Prob = Pr(saw) the nodeay 3, it can be referred to @y, ,. Note
x Pr,(he|saw-as-headl that the position oboyitself is taken into consid-
x Pg(boy|saw-as-headl eration. Similarly, the worthoyin Figure 3(b) can
X Pr(with|boy, saw-as-headl be representgd ADY, 7.
The nodes in a dependency forest are connected
x Pr(alboy-as-head by hyperedges While an edge in a dependency
x Pr(telescope|with-as-head tree only points from a dependent to its head, a
X Pr,(altelescope-as-head hyperedge groups all the dependants that have a

common head. For example, in Figure 3(c), the
where Pr(z) is the probability of wordz being  hyperedge

the root of a dependency tre€;, and Py are the _
generative probabilities of left and right sides re- e1: ((hey,1, b0y, 4, Withy 7), saw,7)
spectively. denotes thahe ;, boy, 4, andwithy 7 are depen-
As the string-to-tree system relies on 1-besiants (from left to right) obaw 7.
trees for parameter estimation, the quality of rule More formally, adependency foress a pair
table and dependency language model might t(e;/; E), where V is a set of nodes, andZ
affected by parsing errors and therefore ultimatelys a set of hyperedges. For a given sentence
results in translation mistakes. wy; = wi...w;, each nodew € V is in the
form of w; ;, which denotes thatv dominates
the substring from positiong through j (i.e.,
We propose to encode multiple dependency trees 11 ...w;). Each hyperedge < E is a pair
in a compact representation called dependendyails(e), head(e)), wherehead(e) € V is the
forest, which offers an elegant solution to théhead andails(e) € V are its dependants.
problem of parsing error propagation. A dependency forest has a structure ohya
Figures 3(a) and 3(b) show two dependencpergraphsuch as packed forest (Klein and Man-
trees for the example English sentence in Figuneing, 2001; Huang and Chiang, 2005). However,
1. The prepositional phraséth a telescopeould while each hyperedge in a packed forest naturally
either depend orsaw or boy. Figure 3(c) is a treats the corresponding PCFG rule probability as
dependency forest compactly represents the twits weight, it is challenging to make dependency
trees by sharing common nodes and edges. forest to be a weighted hypergraph because depen-
Eachnode in a dependency forest is a word.dency parsers usually only output a score, which
To distinguish among nodes, we attachpganto can be either positive or negative, for each edge
each node. For example, in Figure 1, the span afi a dependency tree rather than a hyperedge in a

3 Dependency Forest
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Algorithm 1 Forest-based Initial Phrase Extrac-
tion
Input: a source sentenag, a forestF’, an alignment,
andk
Output: minimal initial phrase seR
1: for each node € V in a bottom-up ordedo
2 for each hyperedge € E andhead(e) = v do
3 W+ 0
4 fixs «+— EnumFixedv, modi fiers(e))
5: floatings<— EnumFloatingmodi fiers(e))
as g 6: add structurefixs floatingsto W
: 7.
8
9

telescopes 7

for eachw € W do
if w is consistent withy then

he saw a  boy with a  telescope generate a rule
1 u el 10: R.append()
! e TN 11: keepk-best dependency structures for
| -

“~

- - N

|

|

|

| -~

| | Al - 7. N T~ <
ta kandao yige dai wangyuanjing de nanhai

Forest-based Rule Extraction
Figure 4: A training example for forest-based rule

extraction. In tree-based rule extraction, one just needs to first
enumerate all bilingual phrases that are consis-
dependency forest. For example, in Figure 3(ajent with word alignment and then check whether
the scores for the edgé® — saw, boy — saw  the dependency structures over the target phrases
andwith — sawcould be 13, 22, and -12, respec-are well-formed. However, this algorithm fails to
tively. work in the forest scenario because there are usu-
To assign a probability to each hyperedge, welly exponentially many well-formed structures
can first obtain a positive number for a hyperedgever a target phrase.
using the scores of the corresponding edges: The GHKM algorithm (Galley et al., 2004),
Zvetails(e) s(v, head(e)) which is originally developed for extracting tree-
cle) = exp tails(e)] (1) to-string rules from 1-best trees, has been suc-
cessfully extended to packed forests recently (Mi

wherec(e) is the count of a hyperedge head(e) and Huang., 2008). The algorithm distinguishes
is a head{ails(e) is a set of dependants of thebetween minimal and composed rules. Although

head,v is one dependant, andv, head(e)) is the there are exponentially many composed rules, the
score of an edge fromto head(e). For example, number of minimal rules extracted from each node

the count of the hyperedgﬁ in Figure 3(0) is is rather limited (e.g., one or ZerO). Therefore, one
can obtain promising composed rules by combin-
1 22 — 12 i ini
oler) = eap 3+ (2) ing minimal rules. |
3 Unfortunately, the GHKM algorithm cannot be

Then, the probability of a hyperedge can be Obe_lpplied to extracting string-to-dependency rules
from dependency forests. This is because the

tained by normalizing the count among all hyper-

edges with the same head collected from a training <M algorithm requires a complete subtree to
corpus: exist in a rule while neither fixed nor floating de-
pendency structures ensure that all dependants of
ple) = c(e) (3) @ head are included. For example, the floating

Ze’:head(e’):head(e) c(¢) structure shown in Figure 2(c) actually contains

Therefore, we obtain a weighted dependenciVO rees. _
forest in which each hyperedge has a probability. Alternatively, our algorithm searches for well-
TR _ . formed structures for each node in a bottom-up
LIt is difficult to assign a probability to each hyperedge.

The current method is arbitrary, and we will improve itintheSter_' Algqrithm 1 shows the algorith_m for ex-
future. tracting initial phrases, that is, rules without non-

1095



terminals from dependency forests. The algorithrwhereT' O P denotes the root node of the forest.
maintainsk-best well-formed structures for each As a well-formed structure might be non-
node (line 11). The well-formed structures of aconstituent, we approximate the fractional count
head can be constructed from those of its depeby taking that of the minimal constituent tree frag-
dants. For example, in Figure 4, as the fixed strugnent that contains the well-formed structure. Fi-
ture rooted atelescopeg is nally, the fractional counts of well-formed struc-
(a) telescope tures can be used to compute the relative frequen-

we can obtain a fixed structure rooted for the nod(éIes of the rules having them on the target side (Mi

with, 7 by attaching the fixed structure of its de-anOI Huang, 2008):
pendant to the nod&€pumFixedn line 4). Figure B c(r)
- ¢(r|lhs(r)) =
2(b) shows the resulting fixed structure. 2 dhs(r)=ths(r) €'
Similarly, the floating structure for the node c(r)
saw 7 can be obtained by concatenating the fixed @(r|rhs(r)) = 5
structures of its dependantsoy, , and withy 7
(EnumFloatingin line 5). Figure 2(c) shows the  Often, our approach extracts a large amount of
resulting fixed structure. The algorithm is similarrules from training corpus as we usually retain ex-
to Wang et al. (2007), which binarize each conponentially many well-formed structures over a
stituent node to create some intermediate nodégrget phrase. To maintain a reasonable rule ta-
that correspond to the floating structures. ble size, we discard any rule that has a fractional
Therefore, we can find-best fixed and float- count lower that a threshold
ing stru_cture_s for a npde in a depende_ncy fore% Forest-based Dependency Language
by manipulating the fixed structures of its depen- Model Training
dants. Then we can extract string-to-dependency
rules if the dependency structures are consisteBiependency language model plays an important
with the word alignment. role in string-to-dependency system. Shen et
How to judge a well-formed structure extractedal. (2008) show that string-to-dependency system
from a node is better than others? We follow Miachieves 1.48 point improvement in BLEU along
and Huang (2008) to assigrfractional count to  with dependency language model, while no im-
each well-formed structure. Given a tree fragmengrovement without it. However, the string-to-
t, we use the inside-outside algorithm to computdependency system still commits to using depen-

(7)

(8)

r:rhs(r’)=rhs(r) C(TJ)

its posterior probability: dency language model from noisy 1-best trees.
We now turn to dependency forest for it encodes
af(t) = afroot(t)) x Hp(e) multiple dependency trees.
cct To train a dependency language model from a
< [ B (4)  dependency forest, we need to collect all heads
vEleaves(t) and their dependants. This can be easily done by

enumerating all hyperedges. Similarly, we use the
inside-outside algorithm to compute the posterior
probability of each hyperedge

whereroot(t) is the root of the tree; is an edge,
leaves(t) is a set of leaves of the tree(-) is out-
side probability, angs(-) is inside probability.

For example, the subtree rootedaty, , in Fig- aBle) = alhead(e)) x ple)
ure 4 has the following posterior probability: " H 5(o) ©)
a(boy, 7) x p(es) x p(es) vEtailes(e)

xp(eg) x B(ags) x B(as6) (5) For example, the posterior probability of the hy-

. ) eredgee, in Figure 4 is calculated as
Now the fractional count of the subtreéés P 982 9

af(t) af(ez) = a(sawz) x p(ea)
V)= S5ToP) ©) xA(hay1) x A(boy, ;) (10)
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| Rule | DepLM | NIST 2004 | NIST 2005 | NIST 2006 time |

| tree | tree |33.97 | 30.21 | 30.73 | 19.6 |
tree | forest | 34.42 31.06 31.37 24.1
forest| tree | 34.60 31.16 31.45 21.7
forest| forest | 35.33* 31.57* 32.19* 28.5

Table 1. BLEU scores and average decoding time (secondfsm)t on the Chinese-English test sets.
The baseline system (row 2) used the rule table and dependemguage model learned both from

1-best dependency trees. We use “*” and “**” to denote a tteslietter than baseline significantly at

p < 0.05 andp < 0.01, respectively.

Then, we can obtain the fractional count of a Rules| Size | New Rules
hyperedge:, tree | 7.2M -
forest| 7.6M 16.86%

af(e)

cle) = aB(TOP) D

Table 2: Statistics of rules. The last column shows

N _ the ratio of rules extracted from non 1-best parses
Eachn-gram (e.g., boy-as-head”) isassigned ., ,seq in 1-best derivations.
the same fractional count of the hyperedge it be-

longs to.

We also tried training dependency languageetained the best well-formed structure for each
model as in (Shen et al., 2008), which meangode when extracting string-to-tree rules from de-
all hyperedges were on equal footing without rependency forests (i.ek = 1). We trained two
garding probabilities. However, the performancg-gram depLMs (one from trees and another from
is about 0.8 point lower in BLEU. One possbileforests) on English side of FBIS corpus plus 2M
reason is that hyperedges with probabilities couldentence pairs from other LDC corpus.

distinguish high quality structures better. After extracting rules and training depLMs, we
ran our replication of string-to-dependency sys-
tem (Shen et al., 2008) to translate the develop-
6.1 Results on the Chinese-English Task ment and test sets.

We used the FBIS corpus (6.9M Chinese words Table 1 shows the BLEU scores on the test
+ 8.9M English words) as our bilingual train-S€ts. The first column “Rule” indicates where
ing corpus. We ran GIZA++ (Och and Ney,the string-to-dependency rules are learned from:
2000) to obtain word alignments. We trained al-best dependency trees or dependency forests.
4-gram language model on the Xinhua portiorSimilarly, the second column “DepLM” also dis-
of GIGAWORD corpus using the SRI Languagetinguish between the two sources for training de-
Modeling Toolkit (Stolcke, 2002) with modi- pendency language models. The baseline sys-
fied Kneser-Ney smoothing (Kneser and Neytem used the rule table and dependency lan-
1995). We optimized feature weights using th@uage model both learned from 1-best depen-
minimum error rate training algorithm (Och anddency trees. We find that adding the rule table and
Ney, 2002) on the NIST 2002 test set. We evaludependency language models obtained from de-
ated the translation quality using case-insensitiveendency forests improves string-to-dependency
BLEU metric (Papineni et al., 2002) on the NISTtranslation consistently and significantly, ranging
2004/2005/2006 test sets. from +1.3 to +1.4 BLEU points. In addition, us-
To obtain dependency trees and forests, wi&g the rule table and dependency language model
parsed the English sentences of the FBIS corpiigtined from forest only increases decoding time
using a shift-reduce dependency parser that eifisignificantly.
ables beam search (Huang et al., 2009). We only How many rules extracted from non 1-best

6 Experiments
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| Rule | DepLM | BLEU | 218 —T—T—T—T— T

T
[ tree [ tree [22.31 | el k=1,2,...,10 :
tree | forest | 22.73 a2 r ]
forest| tree | 22.80 e 213} -
forest| forest | 23.12* 5 2lar ]
D 210 .
Table 3: BLEU scores on the Korean-Chinese test @ 202 [ ]
set. 207 -
206 .
20.5 I I I I I I L]
parses are used by the decoder? Table 2 shows the 20‘%.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
number of rules filtered on the test set. We observe rule table size(M)

that the rule table size hardly increases. One pos-

sible reason is that we only keep the best depegigure 5: Effect ofk-best on rule table size and
dency structure for each node. The last row showganslation quality.

that 16.86% of the rules used in 1-best deriva-

tions are extracted from non 1-best parses in the 21.8 : : : : :
forests, indicating that some useful rules cannot %%Z; B =1.0,0.9....0.1 ]
be extracted from 1-best parses. 215 | i
o 214 .
- S 213 8
6.2 Results on the Korean-Chinese Task S 515 L ]
o 21
To examine the efficacy of our approach on differ- %%:(l) - ]
ent language pairs, we carried out an experiment @ %8'3 B ]
on Korean-Chinese translation. The training cor- 207 + -
pus contains about 8.2M Korean words and 7.3M 2081 i
Chinese words. The Chinese sentences were used  20.4 ' ' ' : '

098 1.00 1.02 1.04 106 1.08 1.10

to train a 5-gram language model as well as a 3- _
rule table size(M)

gram dependency language model. Both the de-

velopment and test sets consist of 1,006 sentences 6: Effect of ina threshold le tabl
with single reference. Table 3 shows the BLE \gure b: Enect of pruning threshold on rule table

scores on the test set. Again, our forest-based asf)'-z € and transiation quality.

proach achieves significant improvement over the
baseline ¢ < 0.01). the increase ok. However, this trend did not
hold within the range [4,10]. We conjecture that
6.3 Effect of K-best when retaining more dependency structures for
We investigated the effect of different-best each node, low quality structures would be intro-
structures for each node on translation qualitduced, resulting in much rules of low quality.
(BLEU scores on the NIST 2005 set) and the rule An interesting finding is that the rule table grew
table size (filtered for the tuning and test sets), agapidly whenk is in range [1,4], while gradually
shown in Figure 5. To save time, we extractedvithin the range [4,10]. One possible reason is
rules just from the first 30K sentence pairs of thehat there are limited different dependency struc-
FBIS corpus. We trained a language model antlires in the spans with a maximal length of 10,
depLMs on the English sentences. We used 1Which the target side of rules cover.
differentk: 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Ob- )
viously, the higher the is, the more rules are 6-4 Effect of Pruning Threshold
extracted. Whert=10, the number of rules usedFigure 6 shows the effect of pruning threshold on
on the tuning and test sets was 1,299,290 and timnslation quality and the rule table size. We
BLEU score was 20.88. Generally, both the numretained 10-best dependency structures for each
ber of rules and the BLEU score went up withnode in dependency forests. We used 10 different
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pruning thresholds: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.aroach improves translation quality significantly
0.8, 0.9 and 1.0. Intuitively, the higher the prun-over a state-of-the-art string-to-dependency sys-
ing threshold is, the less rules are extracted. Whdam on various language pairs and test sets. We
t=0.1, the number of rules used on the tuning anbdelieve that dependency forest can also be used to
test sets was 1,081,841 and the BLEU score wasiprove the dependency treelet system (Quirk et
20.68. al., 2005) that takes 1-best trees as input.

Lots of rules are pruned when the pruning
threshold increases from 0.0 to 0.3 (around 20%f\cknowledgement

Aft_er prunmg away_these rules, we achieved 0'@}“he authors were supported by SK Telecom C&l
point improvement in BLEU. However, when WeBusiness, and National Natural Science Founda-

filtered more rules, the BLEU score went down. 4inn of China, Contracts 60736014 and 60903138.
Figures 5 and 6 show that using tWo paramege thank the anonymous reviewers for their in-

ters that have to be hand-tuned achieves a Sm§|bhtfu| comments. We are also grateful to Wen-
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the best dependency structure for each node with-
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