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Abstract

Active learning has been applied to dif-
ferent NLP tasks, with the aim of limit-
ing the amount of time and cost for human
annotation. Most studies on active learn-
ing have only simulated the annotation
scenario, using prelabelled gold standard
data. We present the first active learning
experiment for Word Sense Disambigua-
tion with human annotators in a realistic
environment, using fine-grained sense dis-
tinctions, and investigate whether AL can
reduce annotation cost and boost classifier
performance when applied to a real-world
task.

1 Introduction
Active learning has recently attracted attention as
having the potential to overcome the knowledge
acquisition bottleneck by limiting the amount of
human annotation needed to create training data
for statistical classifiers. Active learning has been
shown, for a number of different NLP tasks, to re-
duce the number of manually annotated instances
needed for obtaining a consistent classifier perfor-
mance (Hwa, 2004; Chen et al., 2006; Tomanek et
al., 2007; Reichart et al., 2008).

The majority of such results have been achieved
by simulating the annotation scenario using prela-
belled gold standard annotations as a stand-in for
real-time human annotation. Simulating annota-
tion allows one to test different parameter set-
tings without incurring the cost of human anno-
tation. There is, however, a major drawback: we

do not know whether the results of experiments
performed using hand-corrected data carry over to
real-world scenarios in which individual human
annotators produce noisy annotations. In addi-
tion, we do not know to what extent error-prone
annotations mislead the learning process. A sys-
tematic study of the impact of erroneous annota-
tion on classifier performance in an active learn-
ing (AL) setting is overdue. We need to know a)
whether the AL approach can really improve clas-
sifier performance and save annotation time when
applied in a real-world scenario with noisy data,
and b) whether AL works for classification tasks
with fine-grained or complex annotation schemes
and a low inter-annotator agreement.

In this paper we bring active learning to life in
the context of frame semantic annotation of Ger-
man texts within the SALSA project (Burchardt
et al., 2006). Specifically, we apply AL methods
for learning to assign semantic frames to predi-
cates, following Erk (2005) in treating frame as-
signment as a Word Sense Disambiguation task.
Under our fine-grained annotation scheme, anno-
tators have to deal with a high level of ambigu-
ity, resulting in low inter-annotator agreement for
some word senses. This fact, along with the po-
tential for wrong annotation decisions or possi-
ble biases from individual annotators, results in
an annotation environment in which we get noisy
data which might mislead the classifier. A sec-
ond characteristic of our scenario is that there is no
gold standard for the newly annotated data, which
means that evaluation is not straightforward. Fi-
nally, we have multiple annotators whose deci-
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sions on particular instances may diverge, raising
the question of which annotations should be used
to guide the AL process. This paper thus investi-
gates whether active learning can be successfully
applied in a real-world scenario with the particular
challenges described above.

Section 2 of the paper gives a short overview
of the AL paradigm and some related work, and
Section 3 discusses the multi-annotator scenario.
In Section 4 we present our experimental design
and describe the data we use. Section 5 presents
results, and Section 6 concludes.

2 Active Learning

The active learning approach aims to reduce the
amount of manual annotation needed to create
training data sufficient for developing a classifier
with a given performance. At each iteration of
the AL cycle, the actual knowledge state of the
learner guides the learning process by determin-
ing which instances are chosen next for annota-
tion. The main goal is to advance the learning
process by selecting instances which provide im-
portant information for the machine learner.

In a typical active learning scenario, a small set
of manually labelled seed data serves as the ini-
tial training set for the classifier (learner). Based
on the predictions of the classifier, a large pool
of unannotated instances is queried for the next
instance (or batch of instances) to be presented
to the human annotator (sometimes called the or-
acle). The underlying active learning algorithm
controlling the learning process tries to select the
most informative instances in order to get a strong
boost in classifier performance. Different meth-
ods can be used for determining informativity of
instances. We use uncertainty sampling (Cohn et
al., 1995) in which “most informative” instances
are those for which the classifier has the lowest
confidence in its label predictions. The rough in-
tuition behind this selection method is that it iden-
tifies instance types which have yet to be encoun-
tered by the classifier. The learning process pro-
ceeds by presenting the selected instances to the
human annotator, who assigns the correct label.
The newly-annotated instances are added to the
seed data and the classifier is re-trained on the new
data set. The newly trained classifier now picks

the next instances, based on its updated knowl-
edge, and the process repeats. If the learning pro-
cess can provide precisely that information which
the classifier still needs to learn, a smaller number
of instances should suffice to achieve the same ac-
curacy as on a larger training set of randomly se-
lected training examples.

Active learning has been applied to a num-
ber of natural language processing tasks like
POS tagging (Ringger et al., 2007), NER (Laws
and Schütze, 2008; Tomanek and Hahn, 2009),
syntactic parsing (Osborne and Baldridge, 2004;
Hwa, 2004), Word Sense Disambiguation (Chen
et al., 2006; Chan and Ng, 2007; Zhu and Hovy,
2007; Zhu et al., 2008) and morpheme gloss-
ing for language documentation (Baldridge and
Palmer, 2009). While most of these studies suc-
cessfully show that the same classification accu-
racy can be achieved with a substantially smaller
data set, these findings are mostly based on simu-
lations using gold standard data.

For our task of Word Sense Disambiguation
(WSD), mixed results have been achieved. AL
seems to improve results in a WSD task with
coarse-grained sense distinctions (Chan and Ng,
2007), but the results of (Dang, 2004) raise doubts
as to whether AL can successfully be applied to
a fine-grained annotation scheme, where Inter-
Annotator Agreement (IAA) is low and thus the
consistency of the human annotations decreases.
In general, AL has been shown to reduce the cost
of annotation when applied to classification tasks
where a single human annotator predicts labels for
new data points with a reasonable consistency and
accuracy. It is not clear whether the same settings
can be applied to a multi-annotator environment
where IAA is low.

3 Active Learning in a realistic task
including multiple annotators

Another possible difference between active learn-
ing simulations and real-world scenarios is the
multi-annotator environment. In such a setting,
two or more annotators assign labels to the same
instances, which are then merged to check for con-
flicting decisions from different annotators. This
is standard practise in many annotation projects
doing fine-grained semantic annotation with a
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high level of ambiguity, and it necessitates that all
annotators work on the same data set.

Replicating an active learning simulation on
hand-corrected data, starting with a fixed set of
seed data and fixed parameter settings, using the
same algorithm, will always result in the same
training set selected from the pool. Human anno-
tators, however, will assign different labels to the
same instances, thus influencing the selection of
the next instance from the pool. This means that
individual annotators might end up with very dif-
ferent sets of annotated data, depending on factors
like their interpretation of the annotation guide-
lines, an implicit bias towards a particular label,
or simply errors made during annotation.

There is not much work addressing this prob-
lem. (Donmez and Carbonell, 2008) consider
modifications of active learning to accommodate
variability of annotators. (Baldridge and Palmer,
2009) present a real-world study with human an-
notators in the context of language documenta-
tion. The task consists of producing interlin-
ear glossed text, including morphological and
grammatical analysis, and can be described as
a sequence labelling task. Annotation cost is
measured as the actual time needed for annota-
tion. Among other settings, the authors compare
the performance of two annotators with different
grades of expertise. The classifier trained on the
data set created by the expert annotator in an ac-
tive learning setting does obtain a higher accuracy
on the gold standard. For the non-expert annota-
tor, however, the active learning setting resulted
in a lower accuracy than for a classifier trained on
a randomly selected data set. This finding sug-
gests that the quality of annotation needs to be
high enough for active learning to actually work,
and that annotation noise is a problem for AL.

There are two problems arising from this:

1. It is not clear whether active learning will
work when applied to noisy data

2. It is not straightforward to apply active learn-
ing to a real-world scenario, where low IAA
asks for multiple annotators

In our experiment we address these questions
by systematically investigating the impact of an-
notation noise on classifier performance and on

the composition of the training set. The next sec-
tion presents the experimental design and the data
used in our experiment.

4 Experimental Design
In the experiment we annotated 8 German cau-
sation nouns, namelyAusgang, Anlass, Ergeb-
nis, Resultat, Grund, Konsequenz, Motiv, Quelle
(outcome, occasion, effect, result, reason, con-
sequence, motive, source of experience). These
nouns were chosen because they exhibit a range
of difficulty in terms of the number of senses they
have in our annotation scheme. They all encode
subtle distinctions between different word senses,
but some of them are clearly easier to disam-
biguate than others. For instance, althoughAus-
gang has 9 senses, they are easier to distinguish
for humans than the 4 senses ofKonsequenz.

Six annotators participated in the experiment.
While all annotators were trained, having at least
one year experience in frame-semantic annota-
tion, one of the annotators is an expert with several
years of training and working experience in the
Berkeley FrameNet Project. This annotator also
defined the frames (word senses) used in our ex-
periment.

Prior to the experiment, all annotators were
given 100 randomly chosen sentences. After
annotating the training data, problematic cases
were discussed to make sure that the annotators
were familiar with the fine-grained distinctions
between word senses in the annotation scheme.
The data sets used for training were adjudicated
by two of the annotators (one of them being the
expert) and then used as a gold standard to test
classifier performance in the active learning pro-
cess.

4.1 Data and Setup
For each lemma we extracted sentences from the
Wahrig corpus1 containing this particular lemma.
The annotators had to assign word senses to 300
instances for each target word, split into 6 pack-
ages of 50 sentences each. This resulted in 2,400
annotated instances per annotator (14,400 anno-
tated instances in total). The annotation was done

1The Wahrig corpus includes more than 113 mio. sen-
tences from German newspapers and magazines covering
topics such as politics, science, fashion, and others.
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Anlass Motiv Konsequenz Quelle Ergebnis / Resultat Ausgang Grund
Occasion (37) Motif (47) Causation (32) Relationalnat feat.(3) Causation (4/10) Outcome (67) Causation (24)
Reason (63) Reason(53) Level of det.(6) Sourceof getting (14) Competitivescore(12/36) Have leave (4) Reason (58)

Response (61) Sourceof exp. (14) Decision (11/6) Portal (21) Death (1)
MWE1 (1) Sourceof info. (56) Efficacy (2/3) Outgoinggoods (4) Part orientation. (0)

Well (6) Finding out (24/23) Ostomy (0) Localeby owner(3)
Emissionssource (7) Mathematics (1/0) Origin (5) Surfaceearth (0)

Operatingresult (36/5) Techoutput (7) Bottom layer (0)
Outcome (10/17) Processend (2) Soil (1)

Departing (1) CXN1 (0)
CXN2 (0)
MWE1 (0)
MWE2 (10)
MWE3 (0)
MWE4 (3)
MWE5 (0)
MWE6 (0)

Fleiss’ kappa for the 6 annotators for the 150 instances annotated in the random setting
0.67 0.79 0.55 0.77 0.63 / 0.59 0.82 0.43

Table 1: 8 causation nouns and their word senses (numbers in brackets give the distribution of word
senses in the gold standard (100 sentences); CXN: constructions, MWE: multi-word expressions; note
that Ergebnis and Resultat are synonyms and therefore sharethe same set of frames.)

using a Graphical User Interface where the sen-
tence was presented to the annotator, who could
choose between all possible word senses listed in
the GUI. The annotators could either select the
frame by mouse click or use keyboard shortcuts.
For each instance we recorded the time it took
the annotator to assign an appropriate label. To
ease the reading process the target word was high-
lighted.

As we want to compare time requirements
needed for annotating random samples and sen-
tences selected by active learning, we had to con-
trol for training effects which might speed up the
annotation. Therefore we changed the annotation
setting after each package, meaning that the first
annotator started with 50 sentences randomly se-
lected from the pool, then annotated 50 sentences
selected by AL, followed by another 50 randomly
chosen sentences, and so on. We divided the an-
notators into two groups of three annotators each.
The first group started annotating in the random
setting, the second group in the AL setting. The
composition of the groups was changed for each
lemma, so that each annotator experienced all dif-
ferent settings during the annotation process. The
annotators were not aware of which setting they
were in.

Pool data For the random setting we randomly
selected three sets of sentences from the Wahrig
corpus which were presented for annotation to all
six annotators. This allows us to compare annota-
tion time and inter-annotator agreement between

the annotators. For the active learning setting we
randomly selected three sets of 2000 sentences
each, from which the classifier could pick new in-
stances during the annotation process. This means
that for each trial the algorithm could select 50 in-
stances out of a pool of 2000 sentences. On any
given AL trial each annotator uses the same pool
as all the other annotators. In an AL simulation
with fixed settings and gold standard labels this
would result in the same subset of sentences se-
lected by the classifier. For our human annotators,
however, due to different annotation decisions the
resulting set of sentences is expected to differ.

Sampling method Uncertainty sampling is a
standard sampling method for AL where new in-
stances are selected based on the confidence of the
classifier for predicting the appropriate label. Dur-
ing early stages of the learning process when the
classifier is trained on a very small seed data set,
it is not beneficial to add the instances with the
lowest classifier confidence. Instead, we use a dy-
namic version of uncertainty sampling (Rehbein
and Ruppenhofer, 2010), based on the confidence
of a maximum entropy classifier2, taking into ac-
count how much the classifier has learned so far.
In each iteration one new instance is selected from
the pool and presented to the oracle. After anno-
tation the classifier is retrained on the new data
set. The modified uncertainty sampling results in
a more robust classifier performance during early
stages of the learning process.

2http://maxent.sourceforge.net
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Anlass Motiv Konsequenz Quelle Ergebnis Resultat Ausgang Grund
R U R U R U R U R U R U R U R U

A1 8.6 9.6 5.9 6.6 10.7 10.5 6.0 4.8 10.5 7.4 10.1 9.6 6.4 10.0 10.2 11.1
A2 4.4 5.7 4.8 5.9 8.2 9.2 4.9 4.9 6.4 4.4 11.7 8.5 5.1 7.7 9.0 9.3
A3 9.9 9.2 6.8 6.7 6.8 8.3 7.4 6.1 9.4 7.6 9.0 12.3 7.5 8.5 11.7 10.2
A4 5.8 4.9 3.6 3.6 9.9 11.3 4.8 3.5 7.9 7.1 9.7 11.1 3.6 4.1 9.9 9.4
A5 3.0 3.5 3.0 2.6 4.8 4.9 3.8 3.0 6.8 4.8 6.7 6.1 3.1 3.5 6.3 6.0
A6 5.4 6.3 5.3 4.7 6.7 8.6 5.4 4.6 7.8 6.1 8.7 9.0 6.9 6.6 9.3 8.5
ø 6.2 6.5 4.9 5.0 7.8 8.8 5.4 4.5 8.1 6.2 9.3 9.4 5.4 6.7 9.4 9.1
sl 25.8 27.8 27.8 26.0 24.2 25.8 24.9 26.5 25.7 25.2 29.0 35.9 25.5 27.9 26.8 29.7

Table 2: Annotation time (sec/instance) per target/annotator/setting and average sentence length (sl)

5 Results

The basic idea behind active learning is to se-
lect the most informative instances for annotation.
The intuition behind “more informative” is that
these instances support the learning process, so we
might need fewer annotated instances to achieve
a comparable classifier performance, which could
decrease the cost of annotation. On the other
hand, “more informative” also means that these
instances might be more difficult to annotate, so it
is only fair to assume that they might need more
time for annotation, which increases annotation
cost. To answer the question of whether AL re-
duces annotation cost or not we have to check a)
how long it took the annotators to assign labels
to the AL samples compared to the randomly se-
lected instances, and b) how many instances we
need to achieve the best (or a sufficient) perfor-
mance in each setting. Furthermore, we want to
investigate the impact of active learning on the
distribution of the resulting training sets and study
the correlation between the performance of the
classifier trained on the annotated data and these
factors: the difficulty of the annotation task (as-
sessed by IAA), expertise and individual proper-
ties of the annotators.

5.1 Does AL speed up the annotation process
when working with noisy data?

Table 2 reports annotation times for each annota-
tor and target for random sampling (R) and uncer-
tainty sampling (U). For 5 out of 8 targets the time
needed for annotating in the AL setting (averaged
over all annotators) was higher than for annotat-
ing the random samples. To investigate whether
this might be due to the length of the sentences
in the samples, Table 2 shows the average sen-
tence length for random samples and AL samples

for each target lemma. Overall, the sentences se-
lected by the classifier during AL are longer (26.2
vs. 28.1 token per sentence), and thus may take
the annotators more time to read.3 However, we
could not find a significant correlation (Spearman
rank correlation test) between sentence length and
annotation time, nor between sentence length and
classifier confidence.

The three target lemmas which took longer to
annotate in the random setting areErgebnis (re-
sult), Grund (reason) andQuelle (source of expe-
rience). This observation cannot be explained by
sentence length. While sentence length forErgeb-
nis is nearly the same in both settings, forGrund
and Quelle the sentences picked by the classi-
fier in the AL setting are significantly longer and
therefore should have taken more time to anno-
tate. To understand the underlying reason for this
we have to take a closer look at the distribution of
word senses in the data.

5.2 Distribution of word senses in the data
In the literature it has been stated that AL implic-
itly alleviates the class imbalance problem by ex-
tracting more balanced data sets, while random
sampling tends to preserve the sense distribution
present in the data (Ertekin et al., 2007). We could
not replicate this finding when using noisy data
to guide the learning process. Table 3 shows the
distribution of word senses for the target lemma
Ergebnis a) in the gold standard, b) in the random
samples, and c) in the AL samples.

The variance in the distribution of word senses
in the random samples and the gold standard can

3The correlation between sentence length and annotation
time is not obvious, as the annotators only have to label one
target in each sentence. For ambiguous sentences, however,
reading time may be longer, while for the clear cases we do
not expect a strong effect.
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Ergebnis
Frame gold (%) R (%) U (%)
Causation 4.0 4.8 3.7
Outcome 10.0 17.8 10.5
Finding out 24.0 26.2 8.2
Efficacy 2.0 0.8 0.1
Decision 11.0 5.1 3.2
Mathematics 1.0 1.6 0.4
Operatingresult 36.0 24.5 66.7
Competitivescore 12.0 19.2 7.2

Table 3: Distribution of frames (word senses) for
the lemmaErgebnis in the gold standard (100 sen-
tences), in the random samples (R) and AL sam-
ples (U) (150 sentences each)

be explained by low inter-annotator agreement
caused by the high level of ambiguity for the tar-
get lemmas. The frame distribution in the data
selected by uncertainty sampling, however, cru-
cially deviates from those of the gold standard
and the random samples. A disproportionately
high 66% of the instances selected by the classi-
fier have been assigned the label Operatingresult
by the human annotators. This is the more sur-
prising as this frame is fairly easy for humans to
distinguish.

The classifier, however, proved to have seri-
ous problems learning this particular word sense
and thus repeatedly selected more instances of this
frame for annotation. As a result, the distribution
of word senses in the training set for the uncer-
tainty samples is highly skewed, having a nega-
tive effect on the overall classifier performance.
The high percentage of instances of the “easy-to-
decide” frame Operatingresult explains why the
instances forErgebnis took less time to annotate
in the AL setting. Thus we can conclude that an-
notating the same number of instances on average
takes more time in the AL setting, and that this
effect is not due to sentence length.

5.3 What works, what doesn’t, and why

For half of the target lemmas(Motiv, Konsequenz,
Quelle, Ausgang), we did obtain best results in
the AL setting (Table 4). ForAusgang and Mo-
tiv AL gives a substantial boost in classifier per-
formance of 5% and 7% accuracy, while the gains
for Konsequenz andQuelle are somewhat smaller
with 2% and 1%, and forGrund the highest accu-
racy was reached on both the AL and the random

Random Uncertainty
50 100 150 50 100 150

Anlass 0.85 0.86 0.85 0.84 0.85 0.84
Motiv 0.57 0.62 0.63 0.64 0.67 0.70
Konseq. 0.55 0.59 0.60 0.61 0.62 0.62
Quelle 0.56 0.53 0.54 0.52 0.52 0.57
Ergebnis 0.39 0.42 0.41 0.39 0.37 0.38
Resultat 0.31 0.35 0.37 0.32 0.34 0.34
Ausgang 0.67 0.69 0.69 0.68 0.72 0.74
Grund 0.48 0.47 0.47 0.47 0.44 0.48

Table 4: Avg. classifier performance (acc.) over
all annotators for the 8 target lemmas when train-
ing on 50, 100 and 150 annotated instances for
random samples and uncertainty samples

sample.
Figure 1 (top row) shows the learning curves

for Resultat, our worst-performing lemma, for the
classifier trained on the manually annotated sam-
ples for each individual annotator. The solid black
line represents the majority baseline, obtained by
assigning the most frequent word sense in the gold
standard to all instances. For both random and AL
settings, results are only slightly above the base-
line. The curves for the AL setting show how erro-
neous decisions can mislead the classifier, result-
ing in classifier accuracy below the baseline for
two of the annotators, while the learning curves
for these two annotators on the random samples
show the same trend as for the other 4 annotators.

For Konsequenz (Figure 1, middle), the classi-
fier trained on the AL samples yields results over
the baseline after around 25 iterations, while in
the random sampling setting it takes at least 100
iterations to beat the baseline. ForMotiv (Figure
1, bottom row), again we observe far higher re-
sults in the AL setting. A possible explanation for
why AL seems to work forAusgang, Motiv and
Quelle might be the higher IAA4 (κ 0.825, 0.789,
0.768) as compared to the other target lemmas.
This, however, does not explain the good results
achieved on the AL samples forKonsequenz, for
which IAA was quite low withκ 0.554.

Also startling is the fact that AL seems to work
particularly well for one of the annotators (A6,
Figure 1) but not for others. Different possible ex-
planations come to mind: (a) the accuracy of the
annotations for this particular annotator, (b) the

4IAA was computed on the random samples, as the AL
samples do not include the same instances.
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Konsequenz A1 A2 A3 A4 A5 A6
human 0.80 0.72 0.89 0.73 0.89 0.76
maxent 0.60 0.63 0.67 0.60 0.63 0.64

Table 5: Acc. for human annotators against the
adjudicated random samples and for the classifier

instances selected by the classifier based on the
annotation decisions of the individual annotators,
and (c) the distribution of frames in the annotated
training sets for the different annotators.

To test (a) we evaluated the annotated ran-
dom samples forKonsequenz for each annotator
against the adjudicated gold standard. Results
showed that there is no strong correlation between
the accuracy of the human annotations and the
performance of the classifier trained on these an-
notations. The annotator for whom AL worked
best had a medium score of 0.76 only, while the
annotator whose annotations were least helpful
for the classifier showed a good accuracy of 0.80
against the gold standard.

Next we tested (b) the impact of the particu-
lar instances in the AL samples for the individ-
ual annotators on classifier performance. We took
all instances in the AL data set fromA6, whose
annotations gave the greatest boost to the clas-
sifier, removed the frame labels and gave them
to the remaining annotators for re-annotation.
Then we trained the classifier on each of the re-
annotated samples and compared classifier perfor-
mance. Results for 3 of the remaining annotators
were in the same range or even higher than the
ones forA6 (Figure 2). For 2 annotators, however,
results remained far below the baseline.

This again shows that the AL effect is not di-
rectly dependent on the accuracy of the individual
annotators, but that particular instances are more
informative for the classifier than others. Another
crucial point is (c) the distribution of frames in
the samples. In the annotated samples forA1 and
A2 the majority frame forKonsequenz is Causa-
tion, while in the samples for the other annotators
Response was more frequent. In our test set Re-
sponse also is the most frequent frame, therefore it
is not surprising that the classifiers trained on the
samples ofA3 to A6 show a higher performance.
This means that high-quality annotations (identi-
fied by IAA) do not necessarily provide the in-
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Figure 2: Re-annotated instances for Konsequenz
(AL samples from annotatorA6)

formation from which the classifier benefits most,
and that in a realistic annotation task address-
ing the class imbalance problem (Zhu and Hovy,
2007) is crucial.

6 Conclusions

We presented the first experiment applying AL in
a real-world scenario by integrating the approach
in an ongoing annotation project. The task and
annotation environment pose specific challenges
to the AL paradigm. We showed that annotation
noise caused by biased annotators as well as erro-
neous annotations mislead the classifier and result
in skewed data sets, and that for this particular task
no time savings are to be expected when applied
to a realistic scenario. Under certain conditions,
however, classifier performance can improve over
the random sampling baseline even on noisy data
and thus yield higher accuracy in the active learn-
ing setting. Critical features which seem to influ-
cence the outcome of AL are the amount of noise
in the data as well as the distribution of frames
in training- and test sets. Therefore, addressing
the class imbalance problem is crucial for apply-
ing AL to a real annotation task.
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