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Abstract

The detailed analyses of sentence struc-
ture provided by parsers have been applied
to address several information extraction
tasks. In a recent bio-molecular event ex-
traction task, state-of-the-art performance
was achieved by systems building specif-
ically on dependency representations of
parser output. While intrinsic evalua-
tions have shown significant advances in
both general and domain-specific pars-
ing, the question of how these translate
into practical advantage is seldom con-
sidered. In this paper, we analyze how
event extraction performance is affected
by parser and dependency representation,
further considering the relation between
intrinsic evaluation and performance at
the extraction task. We find that good
intrinsic evaluation results do not always
imply good extraction performance, and
that the types and structures of differ-
ent dependency representations have spe-
cific advantages and disadvantages for the
event extraction task.

Introduction

}@is.s.u-tokyo.ac.jp

et al., 2009). The automatic extraction of bio-
molecular events from text is important for a num-
ber of advanced domain applications such as path-
way construction, and event extraction thus a key
task in Biomedical Natural Language Processing
(BioNLP).

Methods building feature representations and
extraction rules around dependency representa-
tions of sentence syntax have been successfully
applied to a number of tasks in BioNLP. Several
parsers and representations have been applied in
high-performing methods both in domain studies
in general and in the BioNLP’09 shared task in
particular, but no direct comparison of parsers or
representations has been performed. Likewise,
a number of evaluation of parser outputs against
gold standard corpora have been performed in the
domain, but the broader implications of the results
of such intrinsic evaluations are rarely considered.
The BioNLP’09 shared task involved documents
contained also in the GENIA treebank (Tateisi et
al., 2005), creating an opportunity for direct study
of intrinsic and task-oriented evaluation results.
As the treebank can be converted into various de-
pendency formats using existing format conver-
sion methods, evaluation can further be extended
to cover the effects of different representations.

In this this paper, we consider three types of de-

Advanced syntactic parsing methods have begrendency representation and six parsers, evaluat-
shown to effective for many information extrac-ing their performance from two different aspects:
tion tasks. The BioNLP 2009 Shared Task, a redependency-based intrinsic evaluation, and effec-
cent bio-molecular event extraction task, is onéiveness for bio-molecular event extraction with a
such task: analysis showed that the application atate-of-the-art event extraction system. Compar-
a parser correlated with high rank in the task (Kimson of intrinsic and task-oriented evaluation re-
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.. In this study we hypothesized that the phosphorylation of TRAF2 inhibits guments Corresponding to locations and sites con-
binding to the CD40 cytoplasmic domain. ... . .
sidered in Task 2.

2.1 Event Extraction System

i Phospholylation |Hhosphorylation | i

I Theme |

Figure 1: Event Extraction.

For evaluation, we apply the system of Miwa et al.
(2010b). The system was originally developed for
finding core events (Task 1) using the native out-
put of the Enju and GDep parsers. The system
consists of three supervised classification-based
modules: a trigger detector, an event edge detec-
sults shows that performance against gold stamer, and a complex event detector. The trigger
dard annotations is not always correlated witkietector classifies each word into the appropriate
event extraction performance. We further findevent types, the event edge detector classifies each
that the dependency types and overall structuregige between an event and a candidate participant
employed by the different dependency representinto an argument type, and the complex event de-
tions have specific advantages and disadvantagestor classifies event candidates constructed by

for the event extraction task. all edge combinations, deciding between event
_ _ and non-event. The system uses one-vs-all sup-
2 Bio-molecular Event Extraction port vector machines (SVMs) for classification.

In this study, we adopt the event extraction task |N€ SyStém operates on one sentence at a time,
defined in the BioNLP 2009 Shared Task (Kim epuilding features for classification based on the
al., 2009) as a model information extraction taskSyntactic analyses for the sentence provided by
Figure 1 shows an example illustrating the task'® tWo parsers as well as the sequence of the
of event extraction from a sentence. The shareffords in the sentence, including the target candi-
task provided common and consistent task defflate. The features include the constituents/words
nitions, data sets for training and evaluation, anground entities (triggers and proteins), the depen-
evaluation criteria. The shared task defined fivdencies, and the shortest paths among the enti-
simple events (Gene expression, Transcriptioﬁ',es' Thefeature generation |s_format—|_ndependent
Protein catabolism, Phosphorylation, and Local€darding the shared properties of different for-
ization) that take one core argument, a multimats, but makes use also of format-specific infor-

participant binding event (Binding), and three reg_mati_on when available for extracting feature;, in-
ulation events (Regulation, Positive regulation¢!uding the dependency tags, word-related infor-

and Negative regulation) used to capture both bation (e.g. a lexical entry in Enju format), and
ological regulation and general causation. ThE'€ constituents and their head information.
participants of simple and Binding events were Y€ apply here a variant of the base system in-
specified to be of the general Protein type, whil§0rPorating a number of modifications. The ap-
regulation-type events could also take other evenfli€d System performs feature selection removing
as arguments, creating complex event structuredW0 classes of features that were found not to be
We consider two subtasks, Task 1 and Task Qeneflual for extraction performance, and applies
out of the three defined in the shared task. Task@ refinement of the trigger expressions of events.
focuses on core event extraction, and Task Phe system is further extended to find also sec-
involves augmenting extracted events with se@ndary arguments (Task 2). For a detailed descrip-
ondary arguments (Kim et al., 2009). Events aron of these improvements, we refer to Miwa et

represented with a textual trigger, type, and a@!- (20102).

guments, where the trigger is a span of text th% Parsers and Representations
states the event in text. In Task 1 the event argu-
ments that need to be extracted are restricted to t&& publicly available parsers and three depen-
core Theme and Cause roles, with secondary aftency formats are considered in this paper. The
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A prep pobj cc

NFAT/AP-1 complex formed only with P and P2

A R A McClosky-

bj d ' .
nsubl P conl Charniak

Figure 2: Stanford basic dependency tree

ROOT VMOD PMOD COORD

root NFAT/AP-1 complex formed only with P and P2 Figure 5: Format conversion dependencies in six

NMOD  VMOD }w'o/o %ij parsers. Formats adopted for the evaluation are

shown in solid boxes. SD: Stanford Dependency

Figure 3: CoNLL-X dependency tree format, CCG: Combinatory Categorial Grammar
output format, PTB: Penn Treebank format, and

noun_arg1 prep_argl2 prep_argl2 PAS: Predicate Argument Structure in Enju for-

AN NS mat.
NFAT/AP-1 complex formed only with P and P2
—~ A

verb_argl adj_argl coord_argl2 coord_argl2
argl argl argl arg2

Figure 4: Predicate Argument Structure  are phrase-structure parsers trained on Penn Tree-
bank format (PTB) style treebanks, and they pro-

duce PTB trees. C&C is a deep parser based on

parsers are GDep (Sagae and Tsuijii, 2007), th€smpinatory Categorial Grammar (CCG), and its
Bikel parser (Bikel) (Bikel, 2004), the Stanford native output is in a CCG-specific format. The

parser with two probabilistic context-free 9ram-g,iput of C&C can be converted into SD by a
mar (PCFG) modets(Wall Street Journal (WSJ) rule-based conversion script (Rimell and Clark,
model (Stanford WSJ) and "augmented English2009)  Enju is deep parser based on Head-driven
model (Stanford eng)) (Klein and Manning,pprase Structure Grammar (HPSG) and produces
2003), the Charniak-Johnson reranking parseg format containing predicate argument structures

using David McClosky's self-trained biomedi- 35ng with a phrase structure tree in Enju format,
cal parsing model (MC) (McClosky, 2009), theyhich can be converted into PTB format (Miyao
C&C CCG parser, adapted to biomedical texgi g1 2009).

(C&C) (Rimell and Clark, 2009), and the Enju
gggsgir WllgnethfirrigtzlIgrgmscizlnfg\rﬂéy?e;;nzg _ For direct comparison and for the study of con-
cies (éD) (Figure 2), the CONLL-X dependencyr/ltribu“on of the formats in which the six parsers
n ) output their analyses to task performance, we ap-
format (CoNLL) (Figure 3) and the predlcate—ply a number of conversions between the out-
argument structure (PAS) format used by Enju

; . . uts, shown in Figure 5. The Enju PAS output is
(Figure 4). With the exception of Stanford andggnverted into PTB using the method introduced

Enju, the analyses of these parsers were provid% . .
. . Miyao et al., 2009). SD is generated from
by the BioNLP 2009 Shared Task organizers, P¥FIE(§ b);/ the Stanford t)ools (de Ig\]/larneffe et al.

The six parsers operate in a number of differerEOOG) and CoNLL generated from PTB by us-
framgworks, reflected in their analyses. GDep ith Tr’eebank Converter (Johansson and Nugues,
a native dependency_parser that produces C_ON_LéO07). With the exception of GDep, all CoNLL
?eg}ender}cg tlr\lefLs 2\(’)\/(';;] dBe_EeIn(;(tenc?/ t)épes dSII\r/InCIi%tpUtS are generated by the conversion and thus
0 those ofto - PIKel, stanford, an share dependency types. We note that all of these

*Experiments showed no benefit from using the Iexical-conv_erSIonS can introduce some errors in the con-
ized models with the Stanford parser. VErsion process.
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4 Evaluation Setting The parser outputs in SD and CoNLL can be
assumed to be trees, so each node in the tree have
only one parent node. However, in the converted
Event extraction performance is evaluated usinggee nodes can have more than one parent. We
the evaluation script provided by the BioNLP’09cannot simply apply accuracy, or (un)labeled at-
shared task organizers for the development datachment scofe Word-based normalization is
set, and the online evaluation system of the tagkerformed to avoid negative impact by the word
for the test data sét Results are reported undersegmentations by parsers. When (a) and (d) in
the official evaluation criterion of the task, i.e. theFigure 6 are compared, the counts of correct re-
“Approximate Span Matching/Approximate Re-lations will be 1.0 (0.5 for upper NMOD and 0.5
cursive Matching” criterion. for lower NMOD in Figure 6 (d)) for the parser
The event extraction system described in Se¢precision), and the counts of correct relations will
tion 2.1 is used with the default settings given irbe 1.0 (for NMOD in Figure 6 (a)) for the gold
(Miwa et al., 2010b). The C-values of SVMs are(recall). This F-score is a good approximation of
set to 1.0, but the positive and negative examplesccuracy.
are balanced by placing more weight on the posi- _
tive examples. The examples predicted with corft-3  GENIA treebank processing
fidence greater than 0.5, as well as the exampl&»r comparison and evaluation, the texts in the
with the most confident labels, are extracted. TasSBENIA treebank (Tateisi et al., 2005) are con-
1 and Task 2 are solved at once for the evaluationerted to the various formats as follows. To create
Some of the parse results do not include wor@AS, the treebank is converted with Enju, and for
base forms or part-of-speech (POS) tags, whidhnees that fail conversion, parse results are used in-
are required by the event extraction system. Tstead. The GENIA treebank is also converted into
apply these parsers, the GENIA Tagger (Tsuruok@TB*, and then converted into SD and CoNLL as
et al., 2005) output is adopted to add this informadescribed in Section 3. While based on manually
tion to the results. annotated gold data, the converted treebanks are
not always correct due to conversion errors.

4.1 Event Extraction Evaluation

4.2 Dependency Representation Evaluation

The parsers are evaluated with precision, recaf Evaluation

and F-score for each dependency type. We noigjs section presents evaluation results. Intrinsic
that the parsers may produce more fine-graingd,ajyation is first performed in Section 5.1. Sec-
word segmentations than that of the gold standarglg, 5.2 considers the effect of different SD vari-

for example, two words “p70(S6)-kinase activaypts, Section 5.3 presents the results of experi-
tion” in the gold standard tree (Figure 6 () iSments with different parsers. Section 5.4 shows
segmented into five words by Enju (Figure 6 (b))the performance of different parsers. Finally, the
In the evaluation the word segmentations in thgerformance of the event extraction system is dis-

gold tree are used, and dependency transfer apflssed in context of other proposed methods for
word-based normalization are performed to matclhe task in Section 5.5.

parser outputs to these. Dependencies related to
the segmentations are transferred to the enclosigl Intrinsic Evaluation

word as follows. If one word is segmented intowe injtially briefly consider the results of an in-

several segments by a parser, all the dependenciggsic evaluation comparing parser outputs to ref-
between the segments are removed (Figure 6 (@}ence data automatically derived from the gold
and the dependency between another word arghndard treebank. Table 1 shows results for the

the segments is converted into the dependency Bgarsers whose outputs could be converted into the
tween the two words (Figure 6 (d)).

Shttp://nextens.uvt.nl/ ~conll/
2http:/www-tsuijii.is.s.u-tokyo.ac.jp/ “http://categorizer.tmit.ome.hu/
GENIA/SharedTask/ ~illes/genia _ptb/
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P NMOD NMOD NMOD

p70(S6)-kinase activation p70 ( S6 ) -kinase activation p70 ( S6 ) ~kinase activation p70(S6)-kinase activation
NMOD PRN P NMOD NMOD NMOD

(a) Gold Word Segmen-  (b) Parser Word Seg- (c) Inner Dependency (d) Dependency Trans-
tations mentations Removal fer

Figure 6: Example of Word Segmentations of the words by gold and Enju and Dependency Transfer.

Typed Untyped
SD CoNLL SD CoNLL
P R F P R F P R F P R F
Bikel 70.31 70.37 70.34 7781 7756 77.69 80.54 80.60 80.57 8243 8218 82.31
SPWSJ| 7411 7394 74.03 81.41 8147 8144 81.36 81.16 81.26 84.05 84.05 84.05
SPeng | 79.08 78.89 78.99 84.92 84.82 84.87 84.16 83.96 84.0§ 86.54 86.47 86.51
C&C 80.31 78.04 79.16 - 8491 8228 83.57 -
MC 79.56 79.63 79.60 88.13 87.87 88.00 87.43 87.50 87.47 89.81 89.42 89.62
Enju 85.59 85.62 85.60 8859 89.51 89.05 88.28 88.30 88.29 90.24 90.77 90.50

Table 1: Comparison of precision, recall, and F-score results with five parsers (two models for Stanford)
in two different formats on the development data set (SP abbreviates for Stanford Parser). Results
shown separately for evaluation including dependency types and one eliminating them. Parser/model
combinations above the line do not use in-domain data, others do.

SD and CoNLL dependency representations us- | BD | CD_| CDP | CTD
. Task 1| 55.60 | 54.35 | 54.50 | 54.42
ing the Stanford tools and Treebank Converter, re- Task 2 | 53.94 | 52.65 | 52.88 | 52.76

spectively. For Stanford, both the Penn Treebank

WSJ section and “augmented English” (eng) modlable 2: Comparison of the F-score results with
els were tested; the latter includes biomedical ddlifferent SD variants on the development data set
main data. The Enju results for PAS are 91.4#ith the MC parser. The best score in each task is
with types and 93.39 without in F-score. GDepshown in bold.

not shown as its output is not compatible with that

of Treebank Converter. noted that as the parsers make use of annotated
Despite numerical differences, the two repredomain training data to different extents, this eval-

sentations and two criteria (typed/untyped) alliation does not provide a sound basis for direct

produce largely the same ranking of the parSerscomparison of the parsers themselves.

The evaluations also largely agree on the magni-

tude of the reduction in error afforded through thé.2 Stanford Dependency Setting

use of in-domain training data for the Stanfordsn have four different variants: basic depen-
parser, with all estimates falling in the 15-19%jencies (BD), collapsed dependencies (CD), col-
range. Similarly, all show substantial differenceg,pseq dependencies with propagation of conjunct
between t'he_ parsers, indicating e.qg. that the eM@&pendencies (CDP), and collapsed tree depen-
rate of Enju is 50% or less of that of Blkel'. dencies (CTD) (de Marneffe and Manning, 2008).
These results serve as a reference point for egxcept for BD, these variants do not necessarily
trinsic evaluation results. However, it should b&onnect all the words in the sentence, and CD and
CDP do not necessarily form a tree structure. Ta-

°One larger divergence is between typed and untyped SBle 2 shows the comparison results with the MC
results for MC. Analysis suggest one cause is frequent errors

in tagging hyphenated noun-modifiers suctiN&skappaBas parser. Dependencies are generalized _by remov-
adjectives. ing expressions after™ of the dependencies (e.g.
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“_with” in prep_with) for better performance. We 5.4 Effects of Dependency Representation

find that basic dependencies give the best perfofiinsic evaluation results (Section 5.1) cannot
mance to event extraction, with little differencepg 15eq directly for comparing the parsers, since
between the other variants. This result is sUrprissome of the parsers contain models trained on the
ing, as variants other than basic have features suglfen A treebank. To investigate the effects of the
as the resolution of conjunctions that are specifsya|yation results to the event extraction, we per-
ically designed for practical applications. HOw-formed event extraction with eliminating the de-
ever, basic dependencies were found to conSigengency types. Table 4 summarizes the results
tently provide be_st performar_lce also for_the othefith the dependency structures (without the de-
par;er@. Thus, in the following evaluation, the endency types) on the development data set. In-
basic dependencies are adopted for all SD resul restingly, we find the performance increases in
_ . Bikel and Stanford by eliminating the dependency
5.3 Parser Comparison on Event Extraction  types. This implies that the inaccurate depen-

Results with different parsers and different ford€Ncy types shown in Table 1 confused the event

mats on the development data set are summariz&§iraction system. SD and PAS drops more than

in Table 3. Baseline results are produced by reC-:ONLL’ and Enju with CoNLL structures perform

moving dependency information from the pars@€St in total when the dependency types are re-
results. The baseline results differ between th@0Ved. This result shows that the formats have
representations as the word base forms and A" own strengths in finding events, and CONLL
tags produced by the GENIA tagger for use wittptructure with SD or PAS types can be a good rep-
SD and CoNLL are different from PAS, and be-fesentation for the event extraction.

cause head word information in the Enju formatis BY comparing Table 3, Table 1, and Table 4,
used. The evaluation finds best results for bot/f® found that the better dependency performance

tasks with Enju, using its native output format d0€s not always produce better event extraction

However as discussed in Section 2.1. the treaf€rformance especially when the difference of the

ment of PAS and the other two formats are slightifiéPendency performance is small. MC and Enju
different, this result does not necessarily indicatEeSults show that performance in dependency is

that PAS is the best alternative for event extradMpPortant for event extraction. SD can be better
than CoNLL for the event extraction (shown with

. . the gold treebank data in Table 3), but the types
The Bikel and Stanford WSJ parsers, IaCkIn%md relations of CoNLL were well predicted, and

models adapted to the biomedical domain, pe'i\_/IC and Enju performed better for CoNLL than
forms mostly worse than the other parsers. Th

other parsers, even though trained on the treebarﬁz,r SDin total
do not provide performance as high as that fo§ 5 performance of Event Extraction System

using the GENIA treebank, but, with the excelo_Several systems are compared by the extraction
tion of Stanford eng with CoNLL, results with the y P y

g . rE)erformance on the shared task test data in Ta-
parsers are only slightly worse than results wit

the treebank. The results with the data derivegIe 5. GDep and Enju with PAS are used for the

. evaluation, which is the same evaluation setting
from the GENIA treebank can be considered a\?Vith the original system by Miwa et al. (2010b).

upper bounds for the parsers and formats at thﬁ : :
PP P e performance of the best systems in the orig-
task, although conversion errors are expected to

lower these bounds to some extent. The resul Nal shared task is shown for reference {{@je

suggest that there is relative little remaining bené al., 2009) in Task 1 and (Riedel et al., 2009)

efit to be gained from improving parser perfor-" Task 2). The event extraction system performs
mance J P gp P significantly better than the best systems in the

shared task, further outperforming the original
®Collapsed tree dependencies are not evaluated on tRystem. 'Th's shows thf'ﬂ the comparison of the
C&C parser since the conversion is not provided. parsers is performed with a state-of-the-art sys-
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Task 1 Task 2
SD CoNLL PAS SD CoNLL PAS

Baseline 51.05 - 50.42 | 49.17 - 48.88
Bikel 53.29| 53.22 - 51.40| 51.27 -
Stanford WSJ| 53.51 | 54.38 - 52.02 | 52.04 -
Stanford eng | 55.02 | 53.66 - 53.41| 52.74 -
GDep - 55.70 - - 54.37 -
MC 55.60 | 56.01 - 53.94 | 54.51 -
C&C 56.09 - - 54.27 - -

Enju 55.48 | 55.74 | 56.57 | 54.06 | 54.37 | 55.31

GENIA 56.34| 56.09 | 57.94 | 55.04 | 54.57 | 56.40

Table 3. Comparison of F-score results with six parsers in three different formats on the development
data set. Results without dependency information are shown as baselines. The results with the GENIA
treebank (converted into PTB and PAS) are shown for comparison. The best score in each task is shown
in bold, and the best score in each task and format is underlined.

Task 1 Task 2
SD CoNLL PAS SD CoNLL PAS

Bikel 53.41 (+0.12)| 53.92 (+0.70) - 51.59 (+0.19)| 52.21 (+0.94) -

Stanford WSJ| 53.03 (-0.48) | 54.52 (+0.14) - 51.43 (-0.59) | 52.60 (-0.14) -

Stanford eng | 54.48 (-0.54) | 54.02 (+0.36) - 52.88 (-0.53) | 52.28 (+0.24) -

GDep - 54.97 (-0.73) - - 53.71 (-0.66) -

MC 54.22 (-1.38) | 55.24 (-0.77) - 52.73 (-1.21) | 53.42 (-1.09) -

C&C 54.64(-1.45) - - 52.98 (-1.29) - -
Enju 53.74 (-1.74) | 55.66(-0.08) | 55.23(-1.34) | 52.29 (-1.77)| 53.97(-0.40) | 53.69(-1.62)
GENIA 55.79 (-0.55) | 55.64 (-0.45) | 56.42 (-1.52)| 54.17 (-0.87)| 53.83 (-0.74) | 55.34 (-1.06)

Table 4: Comparison of F-score results with six parsers in three different dependency structures (with-
out the dependency types) on the development data set. The changes from Table 3 are shown.

| Simple | Binding | Regulation | All
Task 1
Ours 66.84/78.22/ 72.08 | 48.70/52.65/50.60 38.48/55.06/45.30 | 50.13/ 64.16/ 56.28
Miwa 65.31/76.44/70.44 52.16/53.08/52.62 | 35.93/46.66/40.60 48.62/58.96 /53.29
Bjorne | 64.21/77.45/70.21 40.06/49.82/44.41 35.63/45.87/40.11 46.73/58.48/51.95
Riedel N/A 23.05/48.19/31.19 26.32/41.81/32.3Q 36.90/55.59/44.35
Baseline| 62.94/68.38/65.55 48.41/34.50/40.29 29.40/40.00/33.89 43.93/50.11/46.82
Task 2
Ours 65.43/ 75.56/ 70.13 | 46.42/50.31/48.29 | 38.18/54.45/ 44.89 | 49.20/ 62.57/ 55.09
Riedel N/A 22.35/46.99/30.29 25.75/40.75/31.56 35.86/54.08/43.12
Baseline| 60.88/63.78/62.30 44.99/31.78/37.25 29.07/39.52/33.50 42.62/47.84/45.08

Table 5: Comparison of Recall / Precision / F-score results on the test data set. Results on simple,
binding, regulation, and all events are shown. GDep and Enju with PAS are used. Results by Miwa et
al. (2010b), Bprne et al. (2009), Riedel et al. (2009), and Baseline for Task 1 and Task 2 are shown for
comparison. Baseline results are produced by removing dependency information from the parse results

of GDep and Enju. The best score in each result is shown in bold.

tem.

6 Related Work

tasks such as unbounded dependencies (Rimell
et al., 2009) and textual entailmer@®iider Eker,
2009Y. Among them, application-oriented parser

comparison across several formats was first intro-

Many approaches for parser comparison h"’“’(ﬁ?uced by Miyao et al. (2009), who compared eight
been proposed, and most comparisons have usﬁgrsers and five formats for the protein-protein in-

gold treebanks with intermediate formats (Cleggeraction (PPI) extraction task. PPI extraction, the
and Shepherd, 2007; Pyysalo et al., 2007). Parser

comparison has also been proposed on specific “http://pete.yuret.com/
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recognition of binary relations of between proformats, further adding information provided by
teins, is one of the most basic information exother formats, such as the lexical entries of the
traction tasks in the BioNLP field. Our findingsEnju format, from external resources. The results
do not conflict with those of Miyao et al. Eventof this paper are expected to be useful as a guide
extraction can be viewed as an additional extrinaot only for parser selection for biomedical infor-
sic evaluation task for syntactic parsers, providingnation extraction but also for the development of
more reliable and evaluation and a broader peevent extraction systems.

spective into parser performance. An additional The comparison in the present evaluation is
advantage of application-oriented evaluation ofimited to the dependency representation. As fu-
BioNLP shared task data is the availability of aure work, it would be informative to extend the
manually annotated gold standard treebank, tr@mparison to other syntactic representation, such
GENIA treebank, that covers the same set of alas the PTB format. Finally, the evaluation showed
stracts as the task data. This allows the gold treéhat the system fails to recover approximately
bank to be considered as an evaluation standa®{)% of events even when provided with manually
in addition to comparison of performance in theannotated treebank data, showing that other meth-

primary task. ods and resources need to be adopted to further
_ improve bio-molecular event extraction systems.
7 Conclusion Such improvement is left as future work.

We compared six parsers gnd three fprmats Onﬁcknowledgments
bio-molecular event extraction task with a state-
of-the-art event extraction system from two dif-This work was partially supported by Grant-in-
ferent aspects: dependency-based intrinsic evad for Specially Promoted Research (MEXT,
uation and task-based extrinsic evaluation. Théapan), Genome Network Project (MEXT, Japan),
specific task considered was the BioNLP sharednd Scientific Research (C) (General) (MEXT,
task, allowing the use of the GENIA treebank agapan).
a gold standard parse reference. Five of the six
considered parsers were applied using biomedi-
cal models trained on the GENIA treebank, and
they were found to produce similar performance.
The comparison of the parsers from two aspects
showed slightly different results, and and the
dependency representations have advantages and
disadvantages for the event extraction task.
The contributions of this paper are 1) the com-
parison of intrinsic and extrinsic evaluation on
several commonly used parsers with a state-of-
the-art system, and 2) demonstration of the lim-
itation and possibility of the parser and system
improvement on the task. One limitation of this
study is that the comparison between the parsers
is not perfect, as the parsers are used with the pro-
vided models, the format conversions miss some
information from the original formats, and results
with different formats depend on the ability of
the event extraction system to take advantage of
their strengths. To maximize comparability, the
system was designed to extract features identi-
cally from similar parts of the dependency-based
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