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Abstract

This paper presents a first efficient imple-

mentation of a weighted deductive CYK

parser for Probabilistic Linear Context-

Free Rewriting Systems (PLCFRS), to-

gether with context-summary estimates
for parse items used to speed up pars-
ing. LCFRS, an extension of CFG, can de-
scribe discontinuities both in constituency

and dependency structures in a straight-
forward way and is therefore a natural

candidate to be used for data-driven pars-
ing. We evaluate our parser with a gram-
mar extracted from the German NeGra
treebank. Our experiments show that data-
driven LCFRS parsing is feasible with

a reasonable speed and vyields output of
competitive quality.

I ntroduction

Non-local dependencies can then be expressed di-
rectly by grouping all dependent elements under a
single node.

However, given the expressivity restrictions of
PCFG, work on data-driven parsing has mostly
excluded non-local dependencies. When us-
ing treebanks with PTB-like annotation, label-
ing conventions and trace nodes are often dis-
carded, while in NeGra, resp. TIGER, tree trans-
formations are applied which resolve the crossing
branches (Kubler, 2005; Boyd, 2007, e.g.). Espe-
cially for these treebanks, such a transformation is
questionable, since itis non-reversible and implies
information loss.

Some research has gone into incorporating non-
local information into data-driven parsing. Levy
and Manning (2004) distinguish three approaches:
1. Non-local information can be incorporated di-
rectly into the PCFG model (Collins, 1999), or
can be reconstructed in a post-processing step af-
ter PCFG parsing (Johnson, 2002; Levy and Man-

Data-driven parsing has largely been dominate@ind, 2004). 2. Non-local information can be
by Probabilistic Context-Free Grammar (PCFG)ncorporated into complex labels (Hockenmaier,
The use of PCFG is tied to the annotation princi2003)- 3. A formalism can be used which accom-

ples of popular treebanks, such as the Penn Tré@odates the direct encoding of non-local informa-

bank (PTB) (Marcus et al., 1994), which are usedion (Plaehn, 2004). This paper pursues the third
as a data source for grammar extraction. Their afPProach.

notation generally relies on the use of trees with- Our work is motivated by the following re-
out crossing branches, augmented with a meckent developments: Linear Context-Free Rewrit-
anism that accounts for non-local dependenciemg Systems (LCFRS) (Vijay-Shanker et al., 1987)
In the PTB, e.g., labeling conventions and tracéave been established as a candidate for mod-
nodes are used which establish additional impliciéling both discontinuous constituents and non-
edges in the tree beyond the overt phrase struprojective dependency trees as they occur in tree-
ture. In contrast, some other treebanks, such as thanks (Kuhlmann and Satta, 2009; Maier and
German NeGra and TIGER treebanks allow annd-ichte, 2009). LCFRS extend CFG such that
tation with crossing branches (Skut et al., 1997non-terminals can span tuples of possibly non-
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LCFRS: . that is equivalent to LCFRS.

CFG:

A/ . .

A LCFRS (Vijay-Shanker et al., 1987) is a tu-

/A\ // & ple (N,T,V, P,S) where a)N is a finite set of

I\ o /'\ - /'\ % non-terminals with a functiostim: N — N that
P [\ [\ determines th&an-outof eachA € N; b) T andV

are disjoint finite sets of terminals and variables;

c) S € N is the start symbol witldim (S) = 1; d)

P is afinite set of rules

adjacent strings (see Fig. 1). PCFG techniques, A(ai,...,aam) = A1(X{V,. X5 4 0)

such as Best-First Parsing (Charniak and Cara- e A (XX )

ballo, 1998), Weighted Deductive Parsing (Neder- 4, .., > 0Owhered, A,,..., A, € N, xW ¢

hof, 2003) and A parsing (Klein and Manning, 1 for 1 < i< ml < j < dim(4;) and

2003a), can be transferred to LCFRS. Finallyai e (TUV) forl < i < dim(A). For all

German has attracted the interest of the parsing P, it holds that every variabl& occurring in

community due to the challenges arising from it§. qccyrs exactly once in the left-hand side (LHS)

frequent discontinuous constituents (Kubler andg exactly once in the right-hand side (RHS).

Penn, 2(_)08)' A rewriting rule describes how the yield of
We bring together these developments by P'She LHS non-terminal can be computed from

senting a parser for probabilistic LCFRS. VVh”ethe yields of the RHS non-terminals. The rules
parsers for subclasses of PLCFRS have been prg(ab cd) — ¢ and A(aXb,cYd) — A(X,Y)
sented before (Kato et al., 2006), to our knowIT r instance specify that Lab, cd) is in the yield

edge, our parser is the first for the entire class f A and 2. one can compute a new tuple in the
PLCFRS. We have already presented an applic% '

Figure 1: Different domains of locality

, : ield of A from an already existing one by wrap-

tion of the parser on cqnstltuency an_d depende_n nga andb around the first component anénd

treepanks togeth_ezr with an extensive evaluat_lo around the second.

(Mf';uer,_2010_, Maier _and Kallmeyer, 2010). .Thls For everyA € N in a LCFRSG, we define the

article is mainly dedicated to the presentation of. , ]

several methods for context summary estimatio leld of 4, yleldEA) as f(i”OWS,'

of parse items, and to an experimental evaluatiod 7°" everyA(d) — ¢, a € yield(A);

of their usefulness. The estimates either act 49 For every rule

figures-of-merit in a best-first parsing context or  A(@1.--- @aima) = A1(X{V, L XD )

as estimates for Aparsing. Our evaluation shows - An(X™, ,Xéﬁimm)

that while our parser achieves a reasonable speed and all 7; € yield(A;) for 1 < i < m,

already without estimates, the estimates lead to a (f(1), -, f(dim(a))) € yield(A) where f

great reduction of the number of produced items, is defined as follows: (if (¢) = tforallt € T,

all while preserving the output quality. (i) f(X]@) =T7(j)foralll <i<m,1<
Sect. 2 and 3 of the paper introduce probabilis- j < dim(A;) and (iii) f(xy) = f(z)f(y) for

tic LCFRS and the parsing algorithm. Sect. 4 allz,y € (TUV)™. fisthecomposition func-

presents different context summary estimates. In tion of the rule.

Sect. 5, the implementation and evaluation of the) Nothing else is injield(A).

work is discussed. The language is thefw | (w) € yield(S)}.

2 Probabilistic LCERS Thefan-outof an I._CFR_SG is the maximal fan-

out of all non-terminals inG. Furthermore, the

LCFRS are an extension of CFG where the norRHS length of a rewriting rules € P is called the

terminals can span not only single strings but, inFank of » and the maximal rank of all rules iR

stead, tuples of strings. We will notate LCFRSs called theank of G. We call a LCFRSrdered

with the syntax ofsimple Range Concatenationif for everyr € P and every RHS non-terminal

Grammars(SRCG) (Boullier, 1998), a formalism in » and each paitX;, X, of arguments of4 in
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the RHS ofr, X; precedesXs in the RHS iff X
precedesXs in the LHS.

A probabilistic LCFRS(PLCFRS) (Kato et
al., 2006) is a tuplegN,T,V, P, S,p) such that
(N,T,V,P,S) is a LCFRS andp P —
[0..1] a function such that for alld € N:
EA(qugepp(A(f) — @) = 1.

3 TheCYK Parser

Scan: A POS tag ofw;+1

0:[A,{((i,a+1))]
. in: B, p] o .
Unary: — o S p A@) » B@) € P
Binary: ing : [B, pBl,inc : [C, p&]

inp +inc +log(p) : [A, pa]
wherep : A(pa) — B(ps)C(p¢) is an instantiated rule.

Goal: [S, {{0,n))]

Figure 2: Weighted CYK deduction system

We use a probabilistic version of the CYK parsetdd an results tad
from (Seki et al., 1991), applying techniques ofvhile A # 0

weighted deductive parsing (Nederhof, 2003).

remove best itent : I from A
addx : I toC

LCFRS can be binarized (Gomez-Rodriguez etif I goal item
al., 2009) and:-components in the LHS of rules th:: stop and output true
can be removed (Boullier, 1998). We can there- "ty 41y - 1’ deduced from: : T and items irC:

fore assume that all rules are of rahknd do not

containe components in their LHS. Furthermore,
we assume POS tagging to be done before pars-

ing. POS tags are non-terminals of fan-auirhe
rules are then either of the fora(a) — ¢ with A
aPOStagand € T or of the formA(d) — B(Z)
or A(@) — B(Z)C() wherea € (V+)dm(A),

i.e., only the rules for POS tags contain terminal

in their LHSs.

For everyw € T*, wherew = wy ... w, with
w; € Tfor1l < i < n, we define: Pos(w)
{0,...,n}. Apair (l,r) € Pos(w) x Pos(w)
with | < ris arangein w. Itsyield (I,7)(w) is
the stringw; 11 ... w,. The yieldp(w) of a vec-
tor of rangesy is the vector of the yields of the
single ranges. For two ranges = (l1,71), p2 =
<l2,?”2>: if r1 = lg, thenp1 - p2 = <l1,7“2>; other-
wise p; - p2 is undefined.

For a given rulep : A(ai, ..., Qgima)) —
B(Xla""Xdim(B))C(Ylv""Xdim(C)) we
now extend the composition functighto ranges,
given an inputw: for all range vectorgp and
p¢ of dimensionsdim(B) and dim(C') respec-
tively, fr(p_é7 p_é) <g(041), s 7g(adim(A))>
is defined as follows:g(X;) = pp(i) for all
1 < i < dim(B), g(Y3) pc (i) for all
1 <i < dim(C)andg(zy) = g(x) - g(y) for all
z,y € V. p: A(fr(pB, p0)) — Blpp)C(pe)
is then called amstantiated rule

For a given inputw, our items have the
form [A,p] where A € N, § € (Pos(w) x
Pos(w))®™4), The vectorj characterizes the

if thereisnazwithz: I' e CU A
thenaddy : I’ to A
eseif 2 : I’ € Afor somez

then update weight of " in A to maz(y, 2)

Figure 3: Weighted deductive parsing

items via the deduction rules in Fig. 2. Our parser
f)erforms a weighted deductive parsing (Nederhof,
2003), based on this deduction system. We use a
chartC and an agendd, both initially empty, and

we proceed as in Fig. 3.

4 Qutside Estimates

In order to speed up parsing, we add an estimate of
the log of the outside probabilities of the items to
their weights in the agenda. All our outside esti-
mates aradmissiblgKlein and Manning, 2003a)
which means that they never underestimate the ac-
tual outside probability of an item. However, most
of them are not monotonic. In other words, it can
happen that we deduce an itdgfrom an itemi;
where the weight of; is greater than the weight
of I;. The parser can therefore end up in a local
maximum that is not the global maximum we are
searching for. In other words, our outside weights
are onlyfigures of meri{FOM). Only for the full
SX estimate, the monotonicity is guaranteed and
we can do true Aparsing as described in (Klein
and Manning, 2003a) that always finds the best
parse.

All outside estimates are computed for a certain

span ofA. We specify the set of weighted parsemaximal sentence lengtlan,,,q,.
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POS tags: 0 A aPOS tag Axiom : 1 <len < lenmaz

[A, (1] 0:[S, (0, len, 0)]

. in: [B,1] - - . w: [A,l] - -
Unary: = CA — B epP Unary: = CA B epP
Y in +log(p) : [A,1] p: A @ _ Y w+ log(p) : [B,]] p:A(@) = B@)

ing : [B,lg],inc : [C,lc] Binary-right:

Binary: = . 7
y ing +inc + log(p) : [A,la] w: [X,lx]

wherep : A(as) — B(ak)C(aw) € P and the follow- w + in(A,T4) + log(p) : [B, Is]
ing holds: we definé3(i) as{1 < j < dim(B)|ap(j) Binary-left: B
occurs inaza (i)} andC(i) as{l < j < dim(C)|d&(j) w: [X,Ix]
1<
J)-

occurs inaa(é)}. Then for all i, i < dim(A): w + in(B, 1) + log(p) : [A, 4]
1a(i) = Zjepmy!B(d) + Zjecilol where, for both rules, there is an instantiated rple:
X(7) — A(pa)B(ps) such thatlx = loui(p), [a =

Figure 4: Inside estimate Lout(pa), T = Lin(p4)s I = Lot (pi, I = Lin (p5.

_ Figure 5: Full SX estimate top-down
4.1 Full SX estimate

The full SX estimate, for a given sentence Iengtlgor)_

_ _ = : In order to avoid these problems, we now
n, IS supposed to give the minimal costs (maxi

> _ . abstract away from the lengths of the part to the
mal probability) of completing a category with |t and the right, modifying our items such as to

a spary into anS with span{(0, n)). allow a bottom-up strategy.
For the computation, we need an estimate of The jdea is to compute the weights of items rep-
the inside probability of a categoy with a span  resenting the derivations from a certain lowegr
p, regardless of the actual terminals in our in1Jp to someA (C is a kind of “gap” in the yield of
put. This inside estimate is computed as shown) while summing up the inside costs of off-spine
in Fig. 4. Here, we do not need to consider the,gdes and théng of the probabilities of the corre-
number of terminals outside the span @f (to sponding rules. We use iterhd, C, p4, pc, shift]
the left or right or in the gaps), they are not re'whereA, C € N andpa, pc are range vectors,
evant for the inside probability. Therefore thepoth with a first component starting at position
items have the formiA, (l1, ..., laim(a))], Where  The integershift < lenmaqs tells us how many po-
A is a non-terminal and; gives the length of its sitions to the right th€” span is shifted, compared
ith component. It holds thafi<;<aim(a)li < to the starting position of the. p4 andp¢ repre-
lenmaz — dim(A) + 1. sent the spans af and A while disregarding the
A straight-forward extension of the CFG algo-number of terminals to the left the right. I.e., only
rithm from (Klein and Manning, 2003a) for com- the lengths of the components and of the gaps are
puting the SX estimate is given in Fig. 5. For aencoded. This means in particular that the length
given range vectop = ((I1,71), ..., (lx, 7)) @nd n of the sentence does not play a role here. The
a sentence length, we define itsinside length right boundary of the last range in the vectors is
vector li(p) as (r1 — ly,...,rx — lp) and its limited to len,q,. FoOr anyi,0 < i < lenmaz,
outside length vectot,,;(p) as(l1,r1 —l1,lo — and any range vecter, we defineshift(p, i) as the
Tlyeeoslp — Th—1,Tk — lg,m — Tg). range vector one obtains from addiig all range
This algorithm has two major problems: Sinceboundaries irp and shift(p, —i) as the range vec-
it proceeds top-down, in tiginary rules, we must tor one obtains from subtractirigrom all bound-
compute all splits of the antecedekt span into aries inp.
the spans ofA and B which is very expensive.  The weight of[A,C, pa, pc,i] estimates the
Furthermore, for a category with a certain num- costs for completing &' tree with yield pc into
ber of terminals in the components and the gapan A tree with yieldp 4 such that, if the span ot
we compute the lower part of the outside estimatstarts at positiorj, the span of” starts at position
several times, namely for every combination of + j. Fig. 6 gives the computation. The value of
number of terminals to the left and to the rightin(A, ) is the inside estimate df1, [].
(first and last element in the outside length vec- The SX-estimate for some predicafe with
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POS tags: C'aPOS tag Axiom : 1 <len < lenmaxz

0:[C,C,(0,1),(0,1),0]
0: [B7BapBapB70]

0:15,len,0,0,0]
w: [X,len,l,r, g]

Unary: — o o) TA B, g, pp. 0] P A(d) — B(d) € P Unary: — Flog(p) A len. L,7.g]
Binary-right: wherep : X (&) — A(d) € P.
0:[A, A, pa,pa,0],0:[B,B,pg,ps,0) Binary-right:
n(A,l(pa)) +log(p) : [X, B, px, p5, 1] w: [X, len, 1,7, g]
Binary-left: w + (A, len — leng) + log(p) : [B,lenp,lB, B, gB]
0:[A,A pa,pa,0],0:[B,B,pg,ps,0) Binary-left:
in(B,l(ps)) +log(p) : [X, A, px,pa,0] w: [X,len,l,r, g
wherei is such that forshift(pp,i) = pp p : X(px) =  w+in(B,len — lena) +log(p) : [A, lena,la, 74, ga]
A(pa)B(p) is an instantiated rule. where, for both rulegy : X (&) — A(aa)B(ap) € P.
Starting sub-trees with larger gaps:
w: [B,C, ps, pc, Figure 7: SX with length, left, right, gaps

0:[B,B,ps, p5,0]
Transitive closure of sub-tree combination:

ws [A7B7pA7pB7i]?w2 : [BacapBapCaj] POStagS: 0 [ AaPOStag

w1+ w2 : [A,C,pa,pc,i+ j] ﬁl]
: Unary: — 15 A& — B(@) € P
Figure 6: Full SX estimate bottom-up Y i T logp) - (AT P (@) — B(d)
Binary: ing : [B,lg],inc : [C,lc]

g +inc +log(p) : [A,ls + lc]
. here eitherp : A(a B(ap)C(ag) € Porp :
span p where i is the left boundary of the ﬁ(a});c&z)BEgg% P ()G lec) P

first component ofp and with sentence length
n is then given by the maximal weight of Figure 8: Inside estimate with total span length
[S,C,(0,n), shift(—i, p),i]. Among our esti-

mates, the full SX estimate is the only one thaéble of aB component andtight  variables for
is monotonic and that allows for true*Avarsing. B-components following the last variable ot
component. (In our grammars, the first LHS argu-
ment always starts with the first variable frofn)

A problem of the previous estimate is that withFurthermoregaps 4 = dim(A)—lefta—righta,

a large number of non-terminals the computationapss = dim(B) — rightp.

of the estimate requires too much space. Our ex- Fig. 7 gives the computation of the estimate.
periments have shown that for treebank parsinghe following side conditions must hold: For
where we have, after binarization and markovizaBinary-right to apply, the following constraints
tion, appr. 12,000 non-terminals, its computatiofinust be satisfied: agn + 1 +r + g = lenp +

is not feasible. We therefore turn to simpler estz +75+9p, b)lp > I+lefta, c)if right4 > 0,
timates with only a single non-terminal per itemthenrp > r+right 4, else ¢ight4 = 0),rp =,
We now estimate the outside probability of a nond) g5 > gapsa. Similarly, for Binary-leftto ap-
terminal A with a span of a lengthiength (the Ply, the following constraints must be satisfied: a)
sum of the lengths of all the components of théen +1+r+g=lena+la+ra+ga,b)la =1,
span), withleft terminals to the left of the first C) if righty > 0, thenra > r + rightp, else
component,right terminals to the right of the (rightp =0),ra =rd)ga > gapss.

last component angups terminals in between the ~ The valuein(X, 1) for a non-terminalX and a
components of thel span, i.e., filling the gaps. lengthl, 0 < I < len;,q, is an estimate of the
Our items have the forfiX, len, left, right, gaps] ~ Probability of anX category with a span of length
with X € N, len+ left + right + gaps < len,,q.., |- ItS computation is specified in Fig. 8.

4.2 SX with Left, Gaps, Right, Length

len > dim(X), gaps > dim(X) — 1. The SX-estimate for a sentence lengthand
Let us assume that, in the rul& (@) — for some predicat€’ with a range characterized
A(a74)B(ak), when looking at the vectai, we bY 7 = 2(11(707“)1% <+ {laim(0): Taim(c))) Where

havele ft 4 variables forA-components preceding len = X2 (r; — I;) andr = n — T4 ()
the first variable of &8 componentyight 4 vari- is then given by the maximal weight of the item
ables for A-components following the last vari- [C, len,ly,r,n — len — 13 — 7].
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Axiom : —s—re——o5 5 Ten 0.0 1< len < lenmas ing heuristics, we attach punctuation as high as

: ) en> b - - . . . . . .

w: X, len, Ir, g] possible while avoiding to introduce new crossing
Unary: S Tog(p) (4, len, Ir, g] branches. In a second pass, parentheses and quo-

wherep : X(a@) — A(Q) € P.

, : tation marks preferably attach to the same node.
Binary-right:

Grammatical function labels on the edges are dis-
carded.

We create data sets of different sizes in order
to see how the size of the training set relates to
the gain using context summary estimates and to
the output quality of the parser. The first set uses
the first 4000 sentences and the second one all
sentences of NeGra. Due to memory limitations,
in both sets, we limit ourselves to sentences of a
maximal length of 25 words. We use the first 90%

!n order to f_urth_er decreas_e the space COMPIEXt hoth sets as training set and the remaining 10%
ity, we can simplify the previous estimate by Subq aqt set. Tab. 1 shows the resulting sizes.
suming the two lengthgeft and right in a sin-

w: [ X, len, lr, g]
w ~+ in(A, len — leng) + log(p) : [B, leng, Irs, gB]
Binary-left:

w: [X, len, lr, g]
w+ in(B,len — lena) + log(p) : [4, lena,lra, ga]
where, for both rulegy : X (&) — A(aa)B(aB) € P.

Figure 9: SX estimate with length, LR, gaps

4.3 SXwith LR, Gaps, Length

gle lengthir. l.e., the items now have the form tN?Gra'S”:a"t o NEGrat X
. raining es raining es
[X, len, Ir, gaps] with X € N, len+ Ir + gaps < Size| 2839 316| 14858 1651

lenmaz, len > dim(X), gaps > dim(X) — 1.

The computation is given in Fig. 9. Again, we
defineleft, gapsa, right 4 andgapsg, rightp
for arule X (@) — A(ax)B(ap) as above. The 5.2 Treebank Grammar Extraction
side conditions are as follows: FBinary-rightto
apply, the following constraints must be satisfied: \)P

VJPP

Table 1: Test and training sets

S

VP

a)len+ir+g=lenp+Ilrp+gp,b)lr <lIrg,
and c)gp > gapsa. ForBinary-leftto apply, the

PRl)AV VMFIN

following must hold: a)len + Ir + g = lena + VAINF
o _ _ dartuber mufid nachgedacht werden
Ira+ ga, b) if rightg = 0 thenlr = Ir4, else aboutit  must thought be

Ir <lIryandc)gs > gapsp.
The SX-estimate for a sentence length
and for some predicat€' with a spanp =

({1,m1), - (aim(c)s Taim(c))) Where len =

“It must be thought about it”

Figure 10: A sample tree from NeGra

5 As already mentioned, in NeGra, discontinu-
i=1

dm(C) (r, —1;) andr = n — Taim(c) IS then the
maximal weight of C, len, l; +r,n—len—1; —r].

5 Evaluation

ous phrases are annotated with crossing branches
(see Fig. 10 for an example with two discontin-
uous VPs). Such discontinuities can be straight-

forwardly modelled with LCFRS. We use the al-
The goal of our evaluation of our parser is togorithm from Maier and Sggaard (2008) to extract
show that, firstly, reasonable parser speed can bh€FRS rules from NeGra and TIGER. It first cre-
achieved and, secondly, the parser output is @ftes rules of the fornP(a) — ¢ for each pre-
promising quality. terminal P dominating some terminat. Then

for all other nonterminalsd, with the children
51 Data Ay --- A, aclausedy, — A;---A,, is cre-
Our data source is the German NeGra treebardted. The arguments of thé; --- A,, are sin-
(Skut et al., 1997). In a preprocessing stepyle variables where the number of arguments is
following common practice (Kiubler and Pennthe number of discontinuous parts in the yield of
2008), we attach punctuation (not included in the predicate. The arguments df, are concate-
NeGra annotation) as follows: In a first pass, usaations of these variables that describe how the
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discontinuous parts of the yield oy are ob- \)

tained from the yields of its daughters. Differ- P

ent occurrences of the same non-terminal, onlypbs VMFIN PIS AILV V\JINF
with different fan-outs, are distinguished by corre- das mui3 man  jetzt  machen

that must one now do

sponding subscripts. Note that this extraction al- ~«5a has to do that now”

gorithm yields onlymonotond.CFRS (equivalent o
to ordered simple RCG). See Maier and Sggaarie® after binarization:

(2008) for further details. For Fig. 10, we obtain s,,r

for instance the rules in Fig. 11. Vo | IJ
PROAV (Dariiber)— ¢ VMFIN(MuR) — & ‘ v bmg
VVPP(nachgedacht)> ¢  VAINF(werden)— ¢ Stin VPyin
S1(X1 X2 X3) — VPo(X1, X3) VMFIN(X>) N]FIN Sis  aby V\)INF

VP2(X1, X2X3) = VP2 (X1, X2) VAINF(Xs) PDS v

VP2, Xa) = PROAVIX) VWPP(X:) Figure 12: Sample binarization

Figure 11: LCFRS rules for the tree in Fig. 10

5.4 Evaluation of Parsing Results

In order to assess the quality of the output of
our parser, we choose an EVALB-style metric,
Before parsing, we binarize the extracted LCFRS.e., we compare phrase boundaries. In the con-
For this we first apply Collins-style head rulestext of LCFRS, we compare sets of iteffy, /]
based on the rules the Stanford parser (Klein arntélat characterize the span of a non-termidain
Manning, 2003b) uses for NeGra, to mark thea derivation tree. One set is obtained from the
resp. head daughters of all non-terminal nodegarser output, and one from the corresponding
Then, we reorder the RHSs such that the sequentteebank trees. Using these item sets, we compute
~ of elements to the right of the head daughter ikabeled and unlabeled recall (LR/UR), precision
reversed and moved to the beginning of the RHLP/UP), and thef; measure (IF3/UF;). Note
We then perform a binarization that proceeds frornthat if & = 1, our metric is identical to its PCFG
left to right. The binarization works like the trans-equivalent.We are aware of the recent discussion
formation into Chomsky Normal Form for CFGsabout the shortcomings of EVALB. A discussion
in the sense that for RHSs longer thanwe in-  of this issue is presented in Maier (2010).
troduce a new non-terminal that covers the RHS .
without the first element. The rightmost new rule®-5 Experiments
which covers the head daughter, is binarized th all experiments, we provide the parser with
unary. We do not use a unique new non-terminajold part-of-speech tags. For the experi-
for every new rule. Instead, to the new symbolgnents withNeGra-small the parser is given the
introduced during the binarization (YR in the markovization settings = 1 andh = 1. We com-
example), a variable number of symbols from th@are the parser performance without estimates
vertical and horizontal context of the original rule(OFF) with its performance with the estimates de-
is added in order to achievearkovization Fol-  scribed in 4.2 (SIMPLE) and 4.3 (LR). Tab. 2
lowing the literature, we call the respective quanshows the results. Fig. 13 shows the number of
tities v and h. For reasons of space we restricitems produced by the parser, indicating that the
ourselves here to the example in Fig. 12. Refer testimates have the desired effect of preventing un-
Maier and Kallmeyer (2010) for a detailed presennecessary items from being produced. Note that it
tation of the binarization and markovization.  is even the case that the parser produces less items
The probabilities are then computed based ofor the big set with LR than for the small set with-
the rule frequencies in the transformed treebankut estimate.
using a Maximum Likelihood estimator. We can see that the estimates lead to a slightly

5.3 Binarization and M arkovization
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OFF SIMPLE LR harder task. However, since the EVALB met-
UP/UR | 72.20/72.40  70.49/71.81  72.10/72.60

UF, 72 35 7114 7235 ric coincides for constituents without crossing
LP/LR | 68.31/68.41  64.93/66.14  67.35/66.14 branches, in order to place our results in the con-
LFy 68.36 65.53 65.53  text of previous work on parsing NeGra, we cite

Parsed| 313 (99.05%) 313 (99.05%) 313 (99.05% . .
( 0 ( ) ( 0 some of the results from the literature which were

Table 2: Experiments withleGra-small obtained using PCFG parsérsKibler (2005)
(Tab. 1, plain PCFG) obtains 69.4, Dubey and
Keller (2003) (Tab. 5, sister-head PCFG model)

500 r
OFF (NeGra)

450 - OFF (NGl o’ 71.12, Rafferty and Manning (2008) (Tab. 2, Stan-
i SMPLE Nearaomal ~~7 | ford parser with markovization = 2 andh = 1)

77.2, and Petrov and Klein (2007) (Tab. 1, Berke-
ley parser) 80.1. Plaehn (2004) obtains 73.16 La-
beledF} using Probabilistic Discontinuous Phrase
1 Structure Grammar (DPSG), albeit only on sen-
tences with a length of up to 15 words. On those
] sentences, we obtain 81.27.
‘ The comparison shows that our system deliv-
ers competitive results. Additionally, when com-
paring this to PCFG parsing results, one has
to keep in mind that LCFRS parse trees con-
tain non-context-free information about disconti-
nuities. Therefore, a correct parse with our gram-
mar is actually better than a correct CFG parse,
evaluated with respect to a transformation of Ne-
lower F-score. However, while the losses in term&ra into a context-free treebank where precisely
of I are small, the gains in parsing time are subhis information gets lost.
stantial, as Fig. 13 shows.

Tab. 3 shows the results of experiments wit Conclusion

NeGra with the markovization settings = 2 We have presented the first parser for unrestricted

?nd FiLCEGl which he;v[(\al p(;overllqtc% be Sucgel\ijUIProbabilistic Linear Context-Free Rewriting Sys-
or parsing of NeGra (Rafferty an aMNtems (PLCFRS), implemented as a CYK parser

ning, 2008). Unfortunately, due to memory "€ with weighted deductive parsing. To speed up
strictions, we were not able to compute SIMPL

tor the | q &t R LR the findi Eparsing, we use context summary estimates for
or the large data set. Resp. LR, the findings parse items. An evaluation on the NeGra treebank,

are comp_arab!e to_ t:e :)nes i¥eGra-short The both in terms of output quality and speed, shows
speedup is paid with a lowdt, that data-driven parsing using PLCFRS is feasi-

350

300

250

200

No. of items (in 1000)

150

100

50

Sentence length

Figure 13: Items produced by the parser

OFF LR ble. Already in this first attempt with a straight-
UP/UR| 76.89/77.35 75.22/75.99 forward binarization, we obtain results that are
LPL;LFé 73_673-/17%_ 46 70.795;/5?1.70 comparable to state-of-the-art PCFG results in
LEF, 73.25 71.33 terms of 7, while yielding parse trees that are
Parsed| 1642 (99.45%) 1642 (99.45%) richer than context-free trees since they describe
Table 3: Experiments withNeGra discontinuities. Therefore, our approach demon-

strates convincingly that PLCFRS is a natural and

Our results are not directly comparable withtractable alternative for data-driven parsing which
PCFG parsing results, since LCFRS parsing is t@kes non-local dependencies into consideration.
ISIMPLE also proved to be infeasible to compute for the  2Note that these results were obtained on sentences with

small set for the markovization settings= 2 andh = 1  alength of< 40 words and that those parser possibly would
due to the greatly increased label set with this settings. deliver better results if tested on our test set.
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