
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 537–545,
Beijing, August 2010

Data-Driven Parsing with Probabilistic Linear Context-Free Rewriting
Systems

Laura Kallmeyer and Wolfgang Maier
SFB 833, University of Tübingen

{lk,wmaier}@sfs.uni-tuebingen.de

Abstract

This paper presents a first efficient imple-
mentation of a weighted deductive CYK
parser for Probabilistic Linear Context-
Free Rewriting Systems (PLCFRS), to-
gether with context-summary estimates
for parse items used to speed up pars-
ing. LCFRS, an extension of CFG, can de-
scribe discontinuities both in constituency
and dependency structures in a straight-
forward way and is therefore a natural
candidate to be used for data-driven pars-
ing. We evaluate our parser with a gram-
mar extracted from the German NeGra
treebank. Our experiments show that data-
driven LCFRS parsing is feasible with
a reasonable speed and yields output of
competitive quality.

1 Introduction

Data-driven parsing has largely been dominated
by Probabilistic Context-Free Grammar (PCFG).
The use of PCFG is tied to the annotation princi-
ples of popular treebanks, such as the Penn Tree-
bank (PTB) (Marcus et al., 1994), which are used
as a data source for grammar extraction. Their an-
notation generally relies on the use of trees with-
out crossing branches, augmented with a mech-
anism that accounts for non-local dependencies.
In the PTB, e.g., labeling conventions and trace
nodes are used which establish additional implicit
edges in the tree beyond the overt phrase struc-
ture. In contrast, some other treebanks, such as the
German NeGra and TIGER treebanks allow anno-
tation with crossing branches (Skut et al., 1997).

Non-local dependencies can then be expressed di-
rectly by grouping all dependent elements under a
single node.

However, given the expressivity restrictions of
PCFG, work on data-driven parsing has mostly
excluded non-local dependencies. When us-
ing treebanks with PTB-like annotation, label-
ing conventions and trace nodes are often dis-
carded, while in NeGra, resp. TIGER, tree trans-
formations are applied which resolve the crossing
branches (Kübler, 2005; Boyd, 2007, e.g.). Espe-
cially for these treebanks, such a transformation is
questionable, since it is non-reversible and implies
information loss.

Some research has gone into incorporating non-
local information into data-driven parsing. Levy
and Manning (2004) distinguish three approaches:
1. Non-local information can be incorporated di-
rectly into the PCFG model (Collins, 1999), or
can be reconstructed in a post-processing step af-
ter PCFG parsing (Johnson, 2002; Levy and Man-
ning, 2004). 2. Non-local information can be
incorporated into complex labels (Hockenmaier,
2003). 3. A formalism can be used which accom-
modates the direct encoding of non-local informa-
tion (Plaehn, 2004). This paper pursues the third
approach.

Our work is motivated by the following re-
cent developments: Linear Context-Free Rewrit-
ing Systems (LCFRS) (Vijay-Shanker et al., 1987)
have been established as a candidate for mod-
eling both discontinuous constituents and non-
projective dependency trees as they occur in tree-
banks (Kuhlmann and Satta, 2009; Maier and
Lichte, 2009). LCFRS extend CFG such that
non-terminals can span tuples of possibly non-

537

CFG:

A

γ

LCFRS: •
A

• •
γ1 γ2 γ3

Figure 1: Different domains of locality

adjacent strings (see Fig. 1). PCFG techniques,
such as Best-First Parsing (Charniak and Cara-
ballo, 1998), Weighted Deductive Parsing (Neder-
hof, 2003) and A∗ parsing (Klein and Manning,
2003a), can be transferred to LCFRS. Finally,
German has attracted the interest of the parsing
community due to the challenges arising from its
frequent discontinuous constituents (Kübler and
Penn, 2008).

We bring together these developments by pre-
senting a parser for probabilistic LCFRS. While
parsers for subclasses of PLCFRS have been pre-
sented before (Kato et al., 2006), to our knowl-
edge, our parser is the first for the entire class of
PLCFRS. We have already presented an applica-
tion of the parser on constituency and dependency
treebanks together with an extensive evaluation
(Maier, 2010; Maier and Kallmeyer, 2010). This
article is mainly dedicated to the presentation of
several methods for context summary estimation
of parse items, and to an experimental evaluation
of their usefulness. The estimates either act as
figures-of-merit in a best-first parsing context or
as estimates for A∗ parsing. Our evaluation shows
that while our parser achieves a reasonable speed
already without estimates, the estimates lead to a
great reduction of the number of produced items,
all while preserving the output quality.

Sect. 2 and 3 of the paper introduce probabilis-
tic LCFRS and the parsing algorithm. Sect. 4
presents different context summary estimates. In
Sect. 5, the implementation and evaluation of the
work is discussed.

2 Probabilistic LCFRS

LCFRS are an extension of CFG where the non-
terminals can span not only single strings but, in-
stead, tuples of strings. We will notate LCFRS
with the syntax ofsimple Range Concatenation
Grammars(SRCG) (Boullier, 1998), a formalism

that is equivalent to LCFRS.
A LCFRS (Vijay-Shanker et al., 1987) is a tu-

ple 〈N,T, V, P, S〉 where a)N is a finite set of
non-terminals with a functiondim: N → N that
determines thefan-outof eachA ∈ N ; b)T andV
are disjoint finite sets of terminals and variables;
c)S ∈ N is the start symbol withdim(S) = 1; d)
P is a finite set of rules

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . ,X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . ,X

(m)
dim(Am))

for m ≥ 0 whereA,A1, . . . , Am ∈ N , X(i)
j ∈

V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) and
αi ∈ (T ∪ V)∗ for 1 ≤ i ≤ dim(A). For all
r ∈ P , it holds that every variableX occurring in
r occurs exactly once in the left-hand side (LHS)
and exactly once in the right-hand side (RHS).

A rewriting rule describes how the yield of
the LHS non-terminal can be computed from
the yields of the RHS non-terminals. The rules
A(ab, cd) → ε andA(aXb, cY d) → A(X,Y)
for instance specify that 1.〈ab, cd〉 is in the yield
of A and 2. one can compute a new tuple in the
yield of A from an already existing one by wrap-
pinga andb around the first component andc and
d around the second.

For everyA ∈ N in a LCFRSG, we define the
yield ofA, yield(A) as follows:
a) For everyA(~α) → ε, ~α ∈ yield(A);
b) For every rule

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . ,X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . ,X

(m)

dim(Am)
)

and all ~τi ∈ yield(Ai) for 1 ≤ i ≤ m,
〈f(α1), . . . , f(αdim(A))〉 ∈ yield(A) wheref
is defined as follows: (i)f(t) = t for all t ∈ T ,

(ii) f(X
(i)
j) = ~τi(j) for all 1 ≤ i ≤ m, 1 ≤

j ≤ dim(Ai) and (iii) f(xy) = f(x)f(y) for
all x, y ∈ (T ∪V)+. f is thecomposition func-
tion of the rule.

c) Nothing else is inyield(A).
The language is then{w | 〈w〉 ∈ yield(S)}.
Thefan-outof an LCFRSG is the maximal fan-

out of all non-terminals inG. Furthermore, the
RHS length of a rewriting rulesr ∈ P is called the
rank of r and the maximal rank of all rules inP
is called therank of G. We call a LCFRSordered
if for every r ∈ P and every RHS non-terminalA
in r and each pairX1, X2 of arguments ofA in

538

the RHS ofr, X1 precedesX2 in the RHS iffX1

precedesX2 in the LHS.
A probabilistic LCFRS(PLCFRS) (Kato et

al., 2006) is a tuple〈N,T, V, P, S, p〉 such that
〈N,T, V, P, S〉 is a LCFRS andp : P →
[0..1] a function such that for allA ∈ N :
ΣA(~x)→~Φ∈Pp(A(~x) → ~Φ) = 1.

3 The CYK Parser

We use a probabilistic version of the CYK parser
from (Seki et al., 1991), applying techniques of
weighted deductive parsing (Nederhof, 2003).

LCFRS can be binarized (Gómez-Rodrı́guez et
al., 2009) andε-components in the LHS of rules
can be removed (Boullier, 1998). We can there-
fore assume that all rules are of rank2 and do not
containε components in their LHS. Furthermore,
we assume POS tagging to be done before pars-
ing. POS tags are non-terminals of fan-out1. The
rules are then either of the formA(a) → ε with A
a POS tag anda ∈ T or of the formA(~α) → B(~x)
or A(~α) → B(~x)C(~y) where~α ∈ (V +)dim(A),
i.e., only the rules for POS tags contain terminals
in their LHSs.

For everyw ∈ T ∗, wherew = w1 . . . wn with
wi ∈ T for 1 ≤ i ≤ n, we define:Pos(w) :=
{0, . . . , n}. A pair 〈l, r〉 ∈ Pos(w) × Pos(w)
with l ≤ r is a range in w. Its yield 〈l, r〉(w) is
the stringwl+1 . . . wr. The yield~ρ(w) of a vec-
tor of ranges~ρ is the vector of the yields of the
single ranges. For two rangesρ1 = 〈l1, r1〉, ρ2 =
〈l2, r2〉: if r1 = l2, thenρ1 · ρ2 = 〈l1, r2〉; other-
wiseρ1 · ρ2 is undefined.

For a given rulep : A(α1, . . . , αdim(A)) →
B(X1, . . . ,Xdim(B))C(Y1, . . . ,Xdim(C)) we
now extend the composition functionf to ranges,
given an inputw: for all range vectors~ρB and
~ρC of dimensionsdim(B) and dim(C) respec-
tively, fr(~ρB , ~ρC) = 〈g(α1), . . . , g(αdim(A))〉
is defined as follows:g(Xi) = ~ρB(i) for all
1 ≤ i ≤ dim(B), g(Yi) = ~ρC(i) for all
1 ≤ i ≤ dim(C) andg(xy) = g(x) · g(y) for all
x, y ∈ V +. p : A(fr(~ρB , ~ρC)) → B(~ρB)C(~ρC)
is then called aninstantiated rule.

For a given inputw, our items have the
form [A, ~ρ] where A ∈ N , ~ρ ∈ (Pos(w) ×
Pos(w))dim(A). The vector~ρ characterizes the
span ofA. We specify the set of weighted parse

Scan:
0 : [A, 〈〈i, i+ 1〉〉] A POS tag ofwi+1

Unary:
in : [B, ~ρ]

in+ |log(p)| : [A, ~ρ]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC]
inB + inC + log(p) : [A, ~ρA]

wherep : A(~ρA) → B(~ρB)C(~ρC) is an instantiated rule.

Goal: [S, 〈〈0, n〉〉]

Figure 2: Weighted CYK deduction system

add SCAN results toA
while A 6= ∅

remove best itemx : I from A
addx : I to C
if I goal item
then stop and output true
else

for all y : I ′ deduced fromx : I and items inC:
if there is noz with z : I ′ ∈ C ∪ A
then addy : I ′ toA
else if z : I ′ ∈ A for somez

then update weight ofI ′ in A tomax (y, z)

Figure 3: Weighted deductive parsing

items via the deduction rules in Fig. 2. Our parser
performs a weighted deductive parsing (Nederhof,
2003), based on this deduction system. We use a
chartC and an agendaA, both initially empty, and
we proceed as in Fig. 3.

4 Outside Estimates

In order to speed up parsing, we add an estimate of
the log of the outside probabilities of the items to
their weights in the agenda. All our outside esti-
mates areadmissible(Klein and Manning, 2003a)
which means that they never underestimate the ac-
tual outside probability of an item. However, most
of them are not monotonic. In other words, it can
happen that we deduce an itemI2 from an itemI1
where the weight ofI2 is greater than the weight
of I1. The parser can therefore end up in a local
maximum that is not the global maximum we are
searching for. In other words, our outside weights
are onlyfigures of merit(FOM). Only for the full
SX estimate, the monotonicity is guaranteed and
we can do true A∗ parsing as described in (Klein
and Manning, 2003a) that always finds the best
parse.

All outside estimates are computed for a certain
maximal sentence lengthlenmax.

539

POS tags:
0 : [A, 〈1〉] A a POS tag

Unary:
in : [B,~l]

in+ log(p) : [A,~l]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B,~lB], inC : [C,~lC]

inB + inC + log(p) : [A,~lA]
wherep : A(~αA) → B(~αB)C(~αC) ∈ P and the follow-
ing holds: we defineB(i) as{1 ≤ j ≤ dim(B) | ~αB(j)
occurs in ~αA(i)} andC(i) as{1 ≤ j ≤ dim(C) | ~αC(j)
occurs in ~αA(i)}. Then for all i, 1 ≤ i ≤ dim(A):
~lA(i) = Σj∈B(i)

~lB(j) + Σj∈C(i)~lC(j).

Figure 4: Inside estimate

4.1 Full SX estimate

The full SX estimate, for a given sentence length
n, is supposed to give the minimal costs (maxi-
mal probability) of completing a categoryX with
a spanρ into anS with span〈〈0, n〉〉.

For the computation, we need an estimate of
the inside probability of a categoryC with a span
ρ, regardless of the actual terminals in our in-
put. This inside estimate is computed as shown
in Fig. 4. Here, we do not need to consider the
number of terminals outside the span ofC (to
the left or right or in the gaps), they are not rel-
evant for the inside probability. Therefore the
items have the form[A, 〈l1, . . . , ldim(A)〉], where
A is a non-terminal andli gives the length of its
ith component. It holds thatΣ1≤i≤dim(A)li ≤
lenmax − dim(A) + 1.

A straight-forward extension of the CFG algo-
rithm from (Klein and Manning, 2003a) for com-
puting the SX estimate is given in Fig. 5. For a
given range vectorρ = 〈〈l1, r1〉, . . . , 〈lk, rk〉〉 and
a sentence lengthn, we define itsinside length
vector lin(ρ) as 〈r1 − l1, . . . , rk − lk〉 and its
outside length vectorlout(ρ) as〈l1, r1 − l1, l2 −
r1, . . . , lk − rk−1, rk − lk, n− rk〉.

This algorithm has two major problems: Since
it proceeds top-down, in theBinary rules, we must
compute all splits of the antecedentX span into
the spans ofA andB which is very expensive.
Furthermore, for a categoryA with a certain num-
ber of terminals in the components and the gaps,
we compute the lower part of the outside estimate
several times, namely for every combination of
number of terminals to the left and to the right
(first and last element in the outside length vec-

Axiom :
0 : [S, 〈0, len, 0〉] 1 ≤ len ≤ lenmax

Unary:
w : [A,~l]

w + log(p) : [B,~l]
p : A(~α) → B(~α) ∈ P

Binary-right:
w : [X,~lX]

w + in(A,~l′A) + log(p) : [B,~lB]
Binary-left:

w : [X,~lX]

w + in(B,~l′B) + log(p) : [A,~lA]
where, for both rules, there is an instantiated rulep :

X(~ρ) → A(~ρA)B(~ρB) such that~lX = lout(ρ), ~lA =

lout(ρA),~l
′
A = lin(ρA),~lB = lout(ρB,~lB = lin(ρB.

Figure 5: Full SX estimate top-down

tor). In order to avoid these problems, we now
abstract away from the lengths of the part to the
left and the right, modifying our items such as to
allow a bottom-up strategy.

The idea is to compute the weights of items rep-
resenting the derivations from a certain lowerC
up to someA (C is a kind of “gap” in the yield of
A) while summing up the inside costs of off-spine
nodes and thelog of the probabilities of the corre-
sponding rules. We use items[A,C, ρA, ρC , shift]
whereA,C ∈ N andρA, ρC are range vectors,
both with a first component starting at position0.
The integershift ≤ lenmax tells us how many po-
sitions to the right theC span is shifted, compared
to the starting position of theA. ρA andρC repre-
sent the spans ofC andA while disregarding the
number of terminals to the left the right. I.e., only
the lengths of the components and of the gaps are
encoded. This means in particular that the length
n of the sentence does not play a role here. The
right boundary of the last range in the vectors is
limited to lenmax. For anyi, 0 ≤ i ≤ lenmax,
and any range vectorρ, we defineshift(ρ, i) as the
range vector one obtains from addingi to all range
boundaries inρ andshift(ρ,−i) as the range vec-
tor one obtains from subtractingi from all bound-
aries inρ.

The weight of [A,C, ρA, ρC , i] estimates the
costs for completing aC tree with yieldρC into
anA tree with yieldρA such that, if the span ofA
starts at positionj, the span ofC starts at position
i + j. Fig. 6 gives the computation. The value of
in(A,~l) is the inside estimate of[A,~l].

The SX-estimate for some predicateC with

540

POS tags:
0 : [C,C, 〈0, 1〉, 〈0, 1〉, 0] C a POS tag

Unary:
0 : [B,B, ρB, ρB, 0]

log(p) : [A,B, ρB, ρB, 0]
p : A(~α) → B(~α) ∈ P

Binary-right:
0 : [A,A, ρA, ρA, 0], 0 : [B,B, ρB, ρB , 0]
in(A, l(ρA)) + log(p) : [X,B, ρX , ρB, i]

Binary-left:
0 : [A,A, ρA, ρA, 0], 0 : [B,B, ρB, ρB, 0]
in(B, l(ρB)) + log(p) : [X,A, ρX , ρA, 0]

wherei is such that forshift(ρB, i) = ρ′B p : X(ρX) →
A(ρA)B(ρ′B) is an instantiated rule.
Starting sub-trees with larger gaps:
w : [B,C, ρB, ρC , i]
0 : [B,B, ρB, ρB, 0]

Transitive closure of sub-tree combination:
w1 : [A,B, ρA, ρB, i], w2 : [B,C, ρB, ρC , j]

w1 + w2 : [A,C, ρA, ρC , i+ j]

Figure 6: Full SX estimate bottom-up

span ρ where i is the left boundary of the
first component ofρ and with sentence length
n is then given by the maximal weight of
[S,C, 〈0, n〉, shift (−i, ρ), i]. Among our esti-
mates, the full SX estimate is the only one that
is monotonic and that allows for true A∗ parsing.

4.2 SX with Left, Gaps, Right, Length

A problem of the previous estimate is that with
a large number of non-terminals the computation
of the estimate requires too much space. Our ex-
periments have shown that for treebank parsing
where we have, after binarization and markoviza-
tion, appr. 12,000 non-terminals, its computation
is not feasible. We therefore turn to simpler es-
timates with only a single non-terminal per item.
We now estimate the outside probability of a non-
terminal A with a span of a lengthlength (the
sum of the lengths of all the components of the
span), withleft terminals to the left of the first
component,right terminals to the right of the
last component andgaps terminals in between the
components of theA span, i.e., filling the gaps.
Our items have the form[X, len , left , right , gaps]
with X ∈ N , len+ left+right+gaps ≤ lenmax,
len ≥ dim(X), gaps ≥ dim(X) − 1.

Let us assume that, in the ruleX(~α) →
A(~αA)B(~αB), when looking at the vector~α, we
haveleftA variables forA-components preceding
the first variable of aB component,rightA vari-
ables forA-components following the last vari-

Axiom :
0 : [S, len, 0, 0, 0]

1 ≤ len ≤ lenmax

Unary:
w : [X, len, l, r, g]

w + log(p) : [A, len, l, r, g]
wherep : X(~α) → A(~α) ∈ P .
Binary-right:

w : [X, len, l, r, g]
w + in(A, len − lenB) + log(p) : [B, lenB , lB, rB, gB]

Binary-left:
w : [X, len, l, r, g]

w + in(B, len − lenA) + log(p) : [A, lenA, lA, rA, gA]
where, for both rules,p : X(~α) → A(~αA)B(~αB) ∈ P .

Figure 7: SX with length, left, right, gaps

POS tags:
0 : [A, 1]

A a POS tag

Unary:
in : [B, l]

in+ log(p) : [A, l]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B, lB], inC : [C, lC]

inB + inC + log(p) : [A, lB + lC]
where eitherp : A(~αA) → B(~αB)C(~αC) ∈ P or p :
A(~αA) → C(~αC)B(~αB) ∈ P .

Figure 8: Inside estimate with total span length

able of aB component andrightB variables for
B-components following the last variable of aA
component. (In our grammars, the first LHS argu-
ment always starts with the first variable fromA.)
Furthermore,gapsA = dim(A)−leftA−rightA,
gapsB = dim(B)− rightB .

Fig. 7 gives the computation of the estimate.
The following side conditions must hold: For
Binary-right to apply, the following constraints
must be satisfied: a)len + l + r + g = lenB +
lB+rB+gB , b) lB ≥ l+ leftA, c) if rightA > 0,
thenrB ≥ r+rightA, else (rightA = 0), rB = r,
d) gB ≥ gapsA. Similarly, for Binary-left to ap-
ply, the following constraints must be satisfied: a)
len+ l+ r+ g = lenA+ lA+ rA+ gA, b) lA = l,
c) if rightB > 0, thenrA ≥ r + rightB , else
(rightB = 0), rA = r d) gA ≥ gapsB.

The valuein(X, l) for a non-terminalX and a
length l, 0 ≤ l ≤ lenmax is an estimate of the
probability of anX category with a span of length
l. Its computation is specified in Fig. 8.

The SX-estimate for a sentence lengthn and
for some predicateC with a range characterized
by ~ρ = 〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where

len = Σ
dim(C)
i=1 (ri − li) and r = n − rdim(C)

is then given by the maximal weight of the item
[C, len , l1, r, n − len− l1 − r].

541

Axiom :
0 : [S, len, 0, 0]

1 ≤ len ≤ lenmax

Unary:
w : [X, len, lr , g]

w + log(p) : [A, len, lr , g]
wherep : X(~α) → A(~α) ∈ P .
Binary-right:

w : [X, len, lr , g]
w + in(A, len − lenB) + log(p) : [B, lenB, lrB, gB]

Binary-left:
w : [X, len, lr , g]

w + in(B, len − lenA) + log(p) : [A, lenA, lrA, gA]
where, for both rules,p : X(~α) → A(~αA)B(~αB) ∈ P .

Figure 9: SX estimate with length, LR, gaps

4.3 SX with LR, Gaps, Length

In order to further decrease the space complex-
ity, we can simplify the previous estimate by sub-
suming the two lengthsleft and right in a sin-
gle lengthlr . I.e., the items now have the form
[X, len , lr , gaps] with X ∈ N , len+ lr +gaps ≤
lenmax, len ≥ dim(X), gaps ≥ dim(X) − 1.

The computation is given in Fig. 9. Again, we
defineleftA, gapsA, rightA andgapsB , rightB
for a ruleX(~α) → A(~αA)B(~αB) as above. The
side conditions are as follows: ForBinary-right to
apply, the following constraints must be satisfied:
a) len + lr + g = lenB + lrB + gB , b) lr < lrB,
and c)gB ≥ gapsA. ForBinary-left to apply, the
following must hold: a)len + lr + g = lenA +
lrA + gA, b) if rightB = 0 then lr = lrA, else
lr < lrA and c)gA ≥ gapsB.

The SX-estimate for a sentence lengthn
and for some predicateC with a span~ρ =
〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where len =

Σ
dim(C)
i=1 (ri − li) andr = n − rdim(C) is then the

maximal weight of[C, len , l1+r, n−len−l1−r].

5 Evaluation

The goal of our evaluation of our parser is to
show that, firstly, reasonable parser speed can be
achieved and, secondly, the parser output is of
promising quality.

5.1 Data

Our data source is the German NeGra treebank
(Skut et al., 1997). In a preprocessing step,
following common practice (Kübler and Penn,
2008), we attach punctuation (not included in the
NeGra annotation) as follows: In a first pass, us-

ing heuristics, we attach punctuation as high as
possible while avoiding to introduce new crossing
branches. In a second pass, parentheses and quo-
tation marks preferably attach to the same node.
Grammatical function labels on the edges are dis-
carded.

We create data sets of different sizes in order
to see how the size of the training set relates to
the gain using context summary estimates and to
the output quality of the parser. The first set uses
the first 4000 sentences and the second one all
sentences of NeGra. Due to memory limitations,
in both sets, we limit ourselves to sentences of a
maximal length of 25 words. We use the first 90%
of both sets as training set and the remaining 10%
as test set. Tab. 1 shows the resulting sizes.

NeGra-small NeGra
training test training test

size 2839 316 14858 1651

Table 1: Test and training sets

5.2 Treebank Grammar Extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

Figure 10: A sample tree from NeGra

As already mentioned, in NeGra, discontinu-
ous phrases are annotated with crossing branches
(see Fig. 10 for an example with two discontin-
uous VPs). Such discontinuities can be straight-
forwardly modelled with LCFRS. We use the al-
gorithm from Maier and Søgaard (2008) to extract
LCFRS rules from NeGra and TIGER. It first cre-
ates rules of the formP (a) → ε for each pre-
terminal P dominating some terminala. Then
for all other nonterminalsA0 with the children
A1 · · ·Am, a clauseA0 → A1 · · ·Am is cre-
ated. The arguments of theA1 · · ·Am are sin-
gle variables where the number of arguments is
the number of discontinuous parts in the yield of
a predicate. The arguments ofA0 are concate-
nations of these variables that describe how the

542

discontinuous parts of the yield ofA0 are ob-
tained from the yields of its daughters. Differ-
ent occurrences of the same non-terminal, only
with different fan-outs, are distinguished by corre-
sponding subscripts. Note that this extraction al-
gorithm yields onlymonotoneLCFRS (equivalent
to ordered simple RCG). See Maier and Søgaard
(2008) for further details. For Fig. 10, we obtain
for instance the rules in Fig. 11.

PROAV(Darüber)→ ε VMFIN(muß)→ ε
VVPP(nachgedacht)→ ε VAINF(werden)→ ε
S1(X1X2X3) → VP2(X1, X3) VMFIN(X2)
VP2(X1, X2X3) → VP2(X1, X2) VAINF(X3)
VP2(X1, X2) → PROAV(X1) VVPP(X2)

Figure 11: LCFRS rules for the tree in Fig. 10

5.3 Binarization and Markovization

Before parsing, we binarize the extracted LCFRS.
For this we first apply Collins-style head rules,
based on the rules the Stanford parser (Klein and
Manning, 2003b) uses for NeGra, to mark the
resp. head daughters of all non-terminal nodes.
Then, we reorder the RHSs such that the sequence
γ of elements to the right of the head daughter is
reversed and moved to the beginning of the RHS.
We then perform a binarization that proceeds from
left to right. The binarization works like the trans-
formation into Chomsky Normal Form for CFGs
in the sense that for RHSs longer than2, we in-
troduce a new non-terminal that covers the RHS
without the first element. The rightmost new rule,
which covers the head daughter, is binarized to
unary. We do not use a unique new non-terminal
for every new rule. Instead, to the new symbols
introduced during the binarization (VPbin in the
example), a variable number of symbols from the
vertical and horizontal context of the original rule
is added in order to achievemarkovization. Fol-
lowing the literature, we call the respective quan-
tities v andh. For reasons of space we restrict
ourselves here to the example in Fig. 12. Refer to
Maier and Kallmeyer (2010) for a detailed presen-
tation of the binarization and markovization.

The probabilities are then computed based on
the rule frequencies in the transformed treebank,
using a Maximum Likelihood estimator.

S

VP

PDS VMFIN PIS AD V VVINF
das muß man jetzt machen
that must one now do

“One has to do that now”

Tree after binarization:
S

Sbin

VP

VPbin

Sbin VPbin

PDS VMFIN PIS ADV VVINF

Figure 12: Sample binarization

5.4 Evaluation of Parsing Results

In order to assess the quality of the output of
our parser, we choose an EVALB-style metric,
i.e., we compare phrase boundaries. In the con-
text of LCFRS, we compare sets of items[A, ~ρ]
that characterize the span of a non-terminalA in
a derivation tree. One set is obtained from the
parser output, and one from the corresponding
treebank trees. Using these item sets, we compute
labeled and unlabeled recall (LR/UR), precision
(LP/UP), and theF1 measure (LF1/UF1). Note
that if k = 1, our metric is identical to its PCFG
equivalent.We are aware of the recent discussion
about the shortcomings of EVALB. A discussion
of this issue is presented in Maier (2010).

5.5 Experiments

In all experiments, we provide the parser with
gold part-of-speech tags. For the experi-
ments withNeGra-small, the parser is given the
markovization settingsv = 1 andh = 1. We com-
pare the parser performance without estimates
(OFF) with its performance with the estimates de-
scribed in 4.2 (SIMPLE) and 4.3 (LR). Tab. 2
shows the results. Fig. 13 shows the number of
items produced by the parser, indicating that the
estimates have the desired effect of preventing un-
necessary items from being produced. Note that it
is even the case that the parser produces less items
for the big set with LR than for the small set with-
out estimate.

We can see that the estimates lead to a slightly

543

OFF SIMPLE LR
UP/UR 72.29/72.40 70.49/71.81 72.10/72.60

UF1 72.35 71.14 72.35
LP/LR 68.31/68.41 64.93/66.14 67.35/66.14

LF1 68.36 65.53 65.53
Parsed 313 (99.05%) 313 (99.05%) 313 (99.05%)

Table 2: Experiments withNeGra-small

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 16 18 20 22 24

N
o.

 o
f i

te
m

s
(in

 1
00

0)

Sentence length

OFF (NeGra)
LR (NeGra)

OFF (NeGra-small)
SIMPLE (NeGra-small)

LR (NeGra-small)

Figure 13: Items produced by the parser

lower F-score. However, while the losses in terms
of F1 are small, the gains in parsing time are sub-
stantial, as Fig. 13 shows.

Tab. 3 shows the results of experiments with
NeGra, with the markovization settingsv = 2
andh = 1 which have proven to be successful
for PCFG parsing of NeGra (Rafferty and Man-
ning, 2008). Unfortunately, due to memory re-
strictions, we were not able to compute SIMPLE
for the large data set.1 Resp. LR, the findings
are comparable to the ones forNeGra-short. The
speedup is paid with a lowerF1.

OFF LR
UP/UR 76.89/77.35 75.22/75.99

UF1 77.12 75.60
LP/LR 73.03/73.46 70.98/71.70

LF1 73.25 71.33
Parsed 1642 (99.45%) 1642 (99.45%)

Table 3: Experiments withNeGra

Our results are not directly comparable with
PCFG parsing results, since LCFRS parsing is a

1SIMPLE also proved to be infeasible to compute for the
small set for the markovization settingsv = 2 andh = 1
due to the greatly increased label set with this settings.

harder task. However, since the EVALB met-
ric coincides for constituents without crossing
branches, in order to place our results in the con-
text of previous work on parsing NeGra, we cite
some of the results from the literature which were
obtained using PCFG parsers2: Kübler (2005)
(Tab. 1, plain PCFG) obtains 69.4, Dubey and
Keller (2003) (Tab. 5, sister-head PCFG model)
71.12, Rafferty and Manning (2008) (Tab. 2, Stan-
ford parser with markovizationv = 2 andh = 1)
77.2, and Petrov and Klein (2007) (Tab. 1, Berke-
ley parser) 80.1. Plaehn (2004) obtains 73.16 La-
beledF1 using Probabilistic Discontinuous Phrase
Structure Grammar (DPSG), albeit only on sen-
tences with a length of up to 15 words. On those
sentences, we obtain 81.27.

The comparison shows that our system deliv-
ers competitive results. Additionally, when com-
paring this to PCFG parsing results, one has
to keep in mind that LCFRS parse trees con-
tain non-context-free information about disconti-
nuities. Therefore, a correct parse with our gram-
mar is actually better than a correct CFG parse,
evaluated with respect to a transformation of Ne-
Gra into a context-free treebank where precisely
this information gets lost.

6 Conclusion

We have presented the first parser for unrestricted
Probabilistic Linear Context-Free Rewriting Sys-
tems (PLCFRS), implemented as a CYK parser
with weighted deductive parsing. To speed up
parsing, we use context summary estimates for
parse items. An evaluation on the NeGra treebank,
both in terms of output quality and speed, shows
that data-driven parsing using PLCFRS is feasi-
ble. Already in this first attempt with a straight-
forward binarization, we obtain results that are
comparable to state-of-the-art PCFG results in
terms ofF1, while yielding parse trees that are
richer than context-free trees since they describe
discontinuities. Therefore, our approach demon-
strates convincingly that PLCFRS is a natural and
tractable alternative for data-driven parsing which
takes non-local dependencies into consideration.

2Note that these results were obtained on sentences with
a length of≤ 40 words and that those parser possibly would
deliver better results if tested on our test set.

544

References

Boullier, Pierre. 1998. A Proposal for a Natural Lan-
guage Processing Syntactic Backbone. Technical
Report 3342, INRIA.

Boyd, Adriane. 2007. Discontinuity revisited: An im-
proved conversion to context-free representations.
In The Linguistic Annotation Workshop at ACL
2007.

Charniak, Eugene and Sharon A. Caraballo. 1998.
New figures of merit for best-first probabilistic chart
parsing.Computational Linguistics, 24.

Collins, Michael. 1999.Head-driven statistical mod-
els for natural language parsing. Ph.D. thesis, Uni-
versity of Pennsylvania.

Dubey, Amit and Frank Keller. 2003. Probabilistic
parsing for German using sisterhead dependencies.
In Proceedings of ACL.

Gómez-Rodrı́guez, Carlos, Marco Kuhlmann, Giorgio
Satta, and David Weir. 2009. Optimal reduction of
rule length in linear context-free rewriting systems.
In Proceedings of NAACL-HLT.

Hockenmaier, Julia. 2003.Data and models for Statis-
tical Parsing with Combinatory Categorial Gram-
mar. Ph.D. thesis, University of Edinburgh.

Johnson, Mark. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. InProceedings of ACL.

Kato, Yuki, Hiroyuki Seki, and Tadao Kasami. 2006.
Stochastic multiple context-free grammar for rna
pseudoknot modeling. InProceedings of TAG+8.

Klein, Dan and Christopher D. Manning. 2003a. A*
Parsing: Fast Exact Viterbi Parse Selection. InPro-
ceedings of NAACL-HLT.

Klein, Dan and Christopher D. Manning. 2003b. Fast
exact inference with a factored model for natural
language parsing. InIn Advances in Neural Infor-
mation Processing Systems 15 (NIPS).

Kübler, Sandra and Gerald Penn, editors. 2008.Pro-
ceedings of the Workshop on Parsing German at
ACL 2008.

Kübler, Sandra. 2005. How do treebank annotation
schemes influence parsing results? Or how not to
compare apples and oranges. InProceedings of
RANLP 2005.

Kuhlmann, Marco and Giorgio Satta. 2009. Treebank
grammar techniques for non-projective dependency
parsing. InProceedings of EACL.

Levy, Roger and Christopher D. Manning. 2004. Deep
dependencies from context-free statistical parsers:
correcting the surface dependency approximation.
In Proceedings of ACL.

Maier, Wolfgang and Laura Kallmeyer. 2010. Discon-
tinuity and non-projectivity: Using mildly context-
sensitive formalisms for data-driven parsing. In
Proceedings of TAG+10.

Maier, Wolfgang and Timm Lichte. 2009. Charac-
terizing Discontinuity in Constituent Treebanks. In
Proceedings of Formal Grammar 2009.

Maier, Wolfgang and Anders Søgaard. 2008. Tree-
banks and mild context-sensitivity. InProceedings
of Formal Grammar 2008.

Maier, Wolfgang. 2010. Direct parsing of discontin-
uous constituents in german. InProceedings of the
SPMRL workshop at NAACL HLT 2010.

Marcus, Mitchell, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The Penn Treebank: Annotating
predicate argument structure. InProceedings of
HLT.

Nederhof, Mark-Jan. 2003. Weighted Deductive Pars-
ing and Knuth’s Algorithm. Computational Lin-
guistics, 29(1).

Petrov, Slav and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InProceedings of HLT-
NAACL 2007.

Plaehn, Oliver. 2004. Computing the most proba-
ble parse for a discontinuous phrase-structure gram-
mar. In New developments in parsing technology.
Kluwer.

Rafferty, Anna and Christopher D. Manning, 2008.
Parsing Three German Treebanks: Lexicalized and
Unlexicalized Baselines. In Kübler and Penn
(2008).

Seki, Hiroyuki, Takahashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-free
grammars.Theoretical Computer Science, 88(2).

Skut, Wojciech, Brigitte Krenn, Thorten Brants, and
Hans Uszkoreit. 1997. An Annotation Scheme
for Free Word Order Languages. InProceedings of
ANLP.

Vijay-Shanker, K., David J. Weir, and Aravind K.
Joshi. 1987. Characterizing structural descriptions
produced by various grammatical formalisms. In
Proceedings of ACL.

545

