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Abstract

Adaptor grammars are a framework for
expressing and performing inference over
a variety of non-parametric linguistic
models. These models currently provide
state-of-the-art performance on unsuper-
vised word segmentation from phonemic
representations of child-directed unseg-
mented English utterances. This paper in-
vestigates the applicability of these mod-
els to unsupervised word segmentation of
Mandarin. We investigate a wide vari-
ety of different segmentation models, and
show that the best segmentation accuracy
is obtained frommodels that capture inter-
word “collocational” dependencies. Sur-
prisingly, enhancing the models to exploit
syllable structure regularities and to cap-
ture tone information does improve over-
all word segmentation accuracy, perhaps
because the information these elements
convey is redundant when compared to the
inter-word dependencies.

1 Introduction and previous work

The word-segmentation task is an abstraction of
part of the problem facing a child learning its na-
tive language. Fluent speech, even the speech di-
rected at children, doesn’t come with silence or
pauses delineating acoustic words the way that
spaces separate orthographic words in writing sys-
tems like that of English. Instead, as most people
listening to a language they don’t understand can
attest, words in fluent speech “run together”, and a
language user needs to learn how to segment utter-
ances of the language they are learning into words.

This kind of word segmentation is presumably an
important first step in acquiring a language. It is
scientifically interesting to know what informa-
tion might be useful for word segmentation, and
just how this information might be used. These
scientific questions have motivated a body of re-
search on computational models of word segmen-
tation. Since as far as we can tell any child can
learn any human language, our goal is to develop
a single model that can learn to perform accurate
word segmentation given input from any human
language, rather than a model that specialised to
perform well on a single language. This paper
extends the previous work on word segmentation
by investigating whether one class of models that
work very well with English input also work with
Chinese input. These models will permit us to
study the role that syllable structure constraints
and tone in Chinese might play in word segmenta-
tion.

While learners and fluent speakers undoubt-
edly use a wide variety of cues to perform word
segmentation, computational models since El-
man (1990) have tended to focus on the use
of phonotactic constraints (e.g., syllable-structure
constrains) and distributional information. Brent
and Cartwright (1996) introduced the standard
form of theword segmentation task still studied to-
day. They extracted the orthographic representa-
tions of child-directed speech from the Bernstein-
Ratner corpus (Bernstein-Ratner, 1987) and “pho-
nologised” them by looking up each word in a
pronouncing dictionary. For example, the or-
thographic utterance you want to see the book
is mapped to the sequence of pronunciations yu
want tu si D6 bUk, (the pronunciations are in an
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ASCII encoding of the International Phonetic Al-
phabet representation of English phonemes). The
input to the learner is obtained by concatenating
together the phonemic representations of each ut-
terance’s words. The learner’s task is to identify
the locations of the word boundaries in this se-
quence, and hence identify the words (up to ho-
mophony). Brent and Cartwright (1996) pointed
out the importance of both distributional informa-
tion and phonotactic (e.g., syllable-structure) con-
straints for word segmentation (see also Swingley
(2005) and Fleck (2008)).
Recently there has been considerable interest in

applying Bayesian inference techniques for non-
parametric models to this problem. Here the term
“non-parametric” does not mean that the models
have no parameters, rather, it is used to distinguish
these models from the usual “parametric models”
that have a fixed finite vector of parameters.
Goldwater et al. (2006) introduced two non-

parametric Bayesian models of word segmenta-
tion, which are discussed in more detail in (Gold-
water et al., 2009). The unigram model, which as-
sumes that each word is generated independently
to form a sentence, turned out to be equivalent
to a model originally proposed by Brent (1999).
The bigram model improves word segmentation
accuracy by modelling bigram inter-word contex-
tual dependencies, “explaining away” inter-word
dependencies that would otherwise cause the uni-
gram model to under-segment. Mochihashi et al.
(2009) showed that segmentation accuracy could
be improved by using a more sophisticated “base
distribution” and a dynamic programming sam-
pling algorithm very similar to the one used with
the adaptor grammars below. They also applied
their algorithm to Japanese and Chinese word seg-
mentation, albeit from orthographic rather than
phonemic forms, so unfortunately their results are
not comparable with ours.
Johnson et al. (2007) introduced adaptor gram-

mars as a grammar-based framework for express-
ing a variety of non-parametric models, and pro-
vided a dynamic programming Markov Chain
Monte Carlo (MCMC) sampling algorithm for
performing Bayesian inference on these models.
For example, the unigram model can be expressed
as a simple adaptor grammar as shown below, and

the generic adaptor grammar inference procedure
provides a dynamic programming sampling algo-
rithm for this model. Johnson (2008b) showed
how a variety of different word segmentation
models can be expressed as adaptor grammars, and
Johnson and Goldwater (2009) described a num-
ber of extensions and specialisations to the adaptor
grammar framework that improve inference speed
and accuracy (we use these techniques in our work
below).
Previous work on unsupervised word segmen-

tation from phonemic input has tended to concen-
trate on English. However, presumably children
the world over segment their first language input
in the same (innately-specified) way, so a correct
procedure should work for all possible human lan-
guages. However, as far as we are aware there has
been relatively little work on word segmentation
from phonemic input except on English. Johnson
(2008a) investigated whether the adaptor gram-
mars models that do very well on English also ap-
ply to Sesotho (a Bantu language spoken in south-
ern Africa with rich agglutinating morphology).
He found that the models in general do very poorly
(presumably because the adaptor grammars used
cannot model the complex morphology found in
Sesotho) and that the best segmentation accuracy
was considerably worse than that obtained for En-
glish, even when that model incorporated some
Bantu-specific information about morphology. Of
course it may also be that the Sesotho and English
corpora are not really comparable: the Bernstein-
Ratner corpus that Brent and other researchers
have used for English was spoken to pre-linguistic
1-year olds, whilemost non-English corpora are of
child-directed speech to older children who are ca-
pable of talking back, and hence these corpora are
presumably more complex. We discuss this issue
in more detail in section 4 below.

2 A Chinese word segmentation corpus

Our goal here is to prepare a Chinese corpus of
child-directed speech that parallels the English
one used by Brent and other researchers. That
corpus was in broad phonemic form, obtained by
looking each word up in a pronouncing dictio-
nary. Here instead we make use of a corpus in
Pinyin format, which we translate into a broad
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phonemic IPA format using the freely-available
Pinyin-to-IPA translation program “Pinyin to
IPA Conversion Tools” version 2.1 available on
http://sourceforge.net/projects/py2ipa.
We used the “Beijing” corpus (Tardif, 1993)

available from the publicly-distributed Childes
collection of corpora (MacWhinney and Snow,
1985). We are interested in child-directed speech
(rather than children’s speech), so we removed all
utterances from participants with an Id containing
“Child”. (Tardif (1993) points out that Chinese-
speaking children typically have a much richer
social environment involving multiple adult care-
givers than middle-class English-speaking chil-
dren do, so we cannot simply collect only the
mother’s utterances, as was done for the English
corpus). We also ignored all utterances with codes
$INTERJ, $UNINT, $VOC and $PRMPT, as these are
not always linguistic utterances. In addition, we
deleted all words that could not be analysed as a
sequence of syllables, such as “xxx” and “hmm”,
and also deleted “cluck”. The first few utterances
of the corpus in Pinyin format are:

zen3me gei3 ta1 bei1 shang4 lai2 (1.) ?
ta1: (.) a1yi2 gei3 de (.) ta1 gei3 de .
hen3 jian3dan1 .
We then fed these into the Pinyin-to-IPA trans-

lation program, producing output of the following
format:

tsən214mɤ kei214 tʰa55 pei55 ʂɑŋ51 lai35
tʰa55 a55i35 kei214 tɤ tʰa55 kei214 tɤ
xən214 tɕiɛn214tan55

In the IPA format, the superscript indices in-
dicate the tone patterns associated with syllables;
these appear at the end of each syllable, as is stan-
dard. While we believe there are good linguistic
reasons to analyse tones as associated with syl-
lables, we moved all the tones so they immedi-
ately followed the final vowel in each syllable.
We did this because we thought that locating tones
after the syllable-final consonant might give our
models a strong cue as to the location of sylla-
ble boundaries, and since words often end at syl-
lable boundaries, this would make the word seg-
mentation problem artificially easier. (Our models
take a sequence of symbols as input, so the tones

must be located somewhere in the sequence. How-
ever, the linguistically “correct” solution would
probably be to extend the models so they could
process input in an auto-segmental format (Gold-
smith, 1990) where tones would be on a separate
tier and unordered with respect to the segments
within a syllable.)
In order to evaluate the importance of tone

for our word-segmentation models we also con-
structed a version of our corpus in which all tones
were removed. We present results for all of our
models on two versions of the corpus, one that
contains tones following the vowels, and another
that contains no tones at all. These two cor-
pora constitute the “gold standard” against which
our word segmentation models will be evaluated.
These corpora contain 50,118 utterances, consist-
ing of 187,533 word tokens.
The training data provided to the word segmen-

tation models is obtained by segmenting the gold
data at all possible boundary locations. Conso-
nant clusters, diphthongs and tones (if present) are
treated as single units, so the training data appears
as follows:

ts ə 214 n m ɤ k e i 214 tʰ a 55 p e i 55 ʂ ɑ 51 ŋ l ai 35
tʰ a 55 a 55 i 35 k e i 214 t ɤ tʰ a 55 k e i 214 t ɤ
x ə 214 n tɕ iɛ 214 n t a 55 n
The task of a word-segmentation model is

to identify which of these possible bound-
ary locations correspond to actual word bound-
aries. The training corpus without tones contains
531,384 segments, while the training corpus with
tones contains 712,318 segments.

3 Adaptor grammars for word
segmentation

Adaptor grammars were first introduced by John-
son et al. (2007) as a grammar-based frame-
work for specifying hierarchical non-parametric
Bayesian models, and Johnson and Goldwater
(2009) describes a number of implementation de-
tails that significantly improve performance; the
interested reader should consult those papers for a
full technical introduction. Johnson (2008b) pro-
posed a number of adaptor grammars for English
word segmentation, which we review and mini-
mally modify here so they can perform Chinese
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word segmentation as well. In section 4 we evalu-
ate these adaptor grammars on the Chinese corpus
just described.
The grammars vary along two orthogonal di-

mensions, which correspond to the kinds of gen-
eralisations that the model can learn. The sim-
plest grammar is the unigram adaptor grammar,
which generates an utterance as an i.i.d. sequences
of words, where each word is a sequence of
phonemes. The collocation adaptor grammars
capture dependencies above the word level by
generating collocations, or groups of words, as
memoized units. The syllable adaptor grammars
capture dependencies below the word level by
generating words as sequences of syllables rather
than phonemes.

3.1 Unigram adaptor grammars
In order to motivate adaptor grammars as an ex-
tension to Probabilistic Context-Free Grammars
(PCFGs), consider an attempt to perform unsuper-
vised word segmentation with a PCFG containing
the following rules (ignore the underlining of the
Word non-terminal for now).

Words → Words Word
Words → Word
Word → Phons
Phons → Phon
Phons → Phons Phon
Phons → Phons Tone
Phon → ai | o | … | ʂ | tʂʰ | …
Tone → 35 | 55 | 214 | …

(1)

In this grammar, Phon expands to all the
phonemes appearing in the phonemic training
data, and Tone expands to all of the tone patterns.
(In this and all of the other grammars in this paper,
the start symbol is the non-terminal symbol of the
first rule in the grammar. This grammar, like all
others in this paper, is crafted so that a Word sub-
tree can never begin with a Tone, so the presence
of tones does not make the segmentation problem
harder).
The trees generated by this grammar are suffi-

ciently expressive to represent any possible seg-
mentation of any sequence of phonemes into
words (including the true segmentation); a typi-
cal segmentation is shown in Figure 1. However,
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Phon
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Phon
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Word
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Figure 1: A parse tree generated by the unigram
grammar, where adapted and non-adapted non-
terminals are shown. It depicts a possible segmen-
tation of p u 35 kʰ a 51 n.

it should also be clear that no matter how we vary
the probabilities on the rules of this grammar, the
grammar itself cannot encode the subset of trees
that correspond to words of the language. In or-
der to do this, a model would need to memorise the
probabilities of entire Word subtrees, since these
are the units that correspond to individual words,
but this PCFG simply is not expressive enough to
do this.
Adaptor grammars learn the probabilities of

subtrees in just this way. An adaptor grammar is
specified via a set of rules or productions, just like
a CFG, and the set of trees that an adaptor gram-
mar generates is exactly the same as the CFG with
those rules.
However, an adaptor grammar defines proba-

bility distributions over trees in a completely dif-
ferent fashion to a PCFG: for simplicity we fo-
cus here on the sampling or predictive distribu-
tion, which defines the probability of generating
an entire corpus of trees. In a PCFG, the prob-
ability of each non-terminal expanding using a
given rule is determined by the probability of that
rule, and is independent of the expansions of the
other non-terminals in the tree. In an adaptor
grammar a subset of the non-terminals are des-
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ignated as adapted. We indicate adapted non-
terminals by underlining them, so Word is the
only adapted non-terminal in (1). Unadapted non-
terminals expand just as in a PCFG: a produc-
tion is chosen according to the production prob-
abilities. An adapted non-terminal can expand
in two different ways. With probability propor-
tional to n(t)− aA an adapted non-terminal A ex-
pands to a tree t rooted in A that has been pre-
viously generated, while with probability propor-
tional to m(A)aA + bA the adapted non-terminal
A expands using some grammar rule, just as in a
PCFG. Here n(t) is the number of times tree t has
been previously generated,m(A) is the number of
trees rooted in A that have been previously gener-
ated using grammar rules, and 0 ≤ aA ≤ 1 and
bA > 0 are adjustable parameters associated with
the adapted non-terminal A.
Technically, this is known as a Pitman-Yor Pro-

cess (PYP) with concentration parameters aA and
bA, where the PCFG rules define the base distri-
bution of the process. (The PYP is a generalisa-
tion of the Chinese Restaurant Process (CRP); a
CRP is a PYP with parameter a = 0). Rather
than setting the concentration parameters by hand
(there are two for each adapted non-terminal in
the grammar) we follow Johnson and Goldwater
(2009) and put uniform Beta and vague Gamma
priors on each of these parameters, and use sam-
pling to explore their posterior values.
Because the probability of selecting a tree t is

proportional to n(t), an adaptor grammar is a kind
of “rich-get-richer” process that generates power-
law distributions. Depending on the values of aA
and bA, most of the probability mass can wind
up concentrated on just a few trees. An adaptor
grammar is a kind of “cache” model, in which
previously generated subtrees are stored and more
likely to be reused in later sentences. That is, while
an adapted non-terminal A can expand to any tree
rooted inA that can be constructed with the gram-
mar rules, in practice it is increasingly likely to
reuse the same trees over and over again. It can
be viewed as a kind of tree substitution grammar
(Joshi, 2003), but where the tree fragments (as
well as their probabilities) are learnt from the data.
The unigram grammar is the simplest of the

word segmentation models we investigate in this

paper (it is equivalent to the unigram model inves-
tigated in Goldwater et al. (2009)). Because the
grammars we present below rapidly become long
and complicated to read if each grammar rule is
explicitly stated, we adopt the following conven-
tions. We use regular expressions to abbreviate
our grammars, with the understanding that the reg-
ular expressions are always expanded produce a
left-recursive structure. For example, the unigram
grammar in (1) is abbreviated as:

Words → Word+
Word → Phon (Phon | Tone)⋆

Phon → ai | o | … | ʂ | tʂʰ | …
Tone → 35 | 55 | 214 | …

(2)

3.2 Collocation adaptor grammars
Goldwater et al. (2006) and Goldwater et al.
(2009) demonstrated the importance of contex-
tual dependencies for word segmentation, and pro-
posed a bigram model in order to capture some
of these. It turns out that while the bigram model
cannot be expressed as an adaptor grammar, a col-
location model, which captures similar kinds of
contextual dependencies, can be expressed as an
adaptor grammar (Johnson et al., 2007). In a col-
location grammar there are two different adapted
non-terminals; Word and Colloc; Word expands
exactly as in the unigram grammar (2), so it is not
repeated here.

Collocs → Colloc+
Colloc → Words
Words → Word+

(3)

A collocation adaptor grammar caches both
words and collocations (which are sequences of
words). An utterance is generated by generating
one or more collocations. The PYP associated
with collocations either regenerates a previously
generated collocation or else generates a “fresh”
collocation by generating a sequence of words ac-
cording to the PYP model explained above.
The idea of aggregating words into collocations

can be reapplied at a more abstract level by ag-
gregating collocations into “super-collocations”,
which are sequences of collocations. This in-
volves adding the following additional rules to the
grammar in (3):
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Colloc2s → Colloc2+
Colloc2 → Collocs+ (4)

There are three PYPs in a grammar with 2 lev-
els of collocations, arranged in a strict Bayesian
hierarchy. It should be clear that this process can
be repeated indefinitely; we investigate grammars
with up to three levels of collocations below. (It
should be possible to use Bayesian techniques to
learn the appropriate number of levels in the hier-
archy, but we leave this for future work).

3.3 Syllable structure adaptor grammars

Brent and Cartwright (1996) and others emphasise
the role that syllable-structure and other phono-
tactic constraints might play in word segmenta-
tion. Johnson (2008b) pointed out that adaptor
grammars can learn at least some of these kinds
of generalisations. It’s not unreasonable to as-
sume that language learners can learn to group
phonemes into syllables, and that they can exploit
this syllabic structure to perform word segmenta-
tion. The syllable-structure grammars we describe
below assume that word boundaries are always
aligned with syllable boundaries; this is not uni-
versally true, but it is reliable enough to dramati-
cally improve unsupervised word segmentation in
English.
There is considerable cross-linguistic varia-

tion in the syllable-structure and phonotactic con-
straints operative in the languages of the world, so
we’d like to avoid “building in” language-specific
constraints into our model. We therefore make the
relatively conservative assumption that the child
can distinguish vowels from consonants, and that
the child knows that syllables consist of Onsets,
Nuclei and Codas, that Onsets and Codas consist
of arbitrary sequences of consonants while Nuclei
are arbitrary sequences of vowels and tones, and
that Onsets and Codas are optional. Notice that
syllable structure in both English and Chinese is
considerably more constrained than this; we use
this simple model here because it has proved suc-
cessful for English word segmentation.
The syllable-structure adaptor grammars re-

place the rules expanding Words with the follow-
ing rules:

Word → Syll
Word → Syll Syll
Word → Syll Syll Syll
Word → Syll Syll Syll Syll
Syll → (Onset)? Rhy
Onset → C+

Rhy → Nucleus (Coda)?
Nucleus → V (V | Tone)⋆

Coda → C+

C → ʂ | tʂʰ | …
V → ai | o | …

(5)

In these rules the superscript “?” indicates op-
tionality. We used the relatively cumbersome
mechanism of enumerating each possible number
of syllables per word (we permit words to consist
of from 1 to 4 syllables, although ideally this num-
ber would not be hard-wired into the grammar)
because a relatively trivial modification of this
grammar can distinguish word-initial and word-
final consonant clusters from word-internal clus-
ters. Johnson (2008b) demonstrated that this sig-
nificantly improves English word segmentation
accuracy. We do not expect this to improve Chi-
nese word segmentation because Chinese clusters
do not vary depending on their location within the
word, but it will be interesting to see if the addi-
tional cluster flexibility that is useful for English
segmentation hurts Chinese segmentation.
In this version of the syllable-structure gram-

mar, we replace the Word rules in the syllable
adaptor grammar with the following:

Word → SyllIF
Word → SyllI SyllF
Word → SyllI Syll SyllF
Word → SyllI Syll Syll SyllF

(6)

and add the following rules expanding the new
kinds of syllables to the rules in (5).

SyllIF → (OnsetI)? RhyF
SyllI → (OnsetI)? Rhy
SyllF → (OnsetI)? RhyF
Syll → (Onset)? Rhy
OnsetI → C+

RhyF → Nucleus (CodaF)?

CodaF → C+

(7)
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Syllables
None General Specialised

Unigram 0.57 0.50 0.50
Colloc 0.69 0.67 0.67
Colloc2 0.72 0.75 0.75
Colloc3 0.64 0.77 0.77

Table 1: F-score accuracies of word segmenta-
tions produced by the adaptor grammar models on
the Chinese corpus with tones.

Syllables
None General Specialised

Unigram 0.56 0.46 0.46
Colloc 0.70 0.65 0.65
Colloc2 0.74 0.74 0.73
Colloc3 0.75 0.76 0.77

Table 2: F-score accuracies of word segmenta-
tions produced by the adaptor grammar models on
the Chinese corpus without tones.

These rules distinguish syllable onsets in word-
initial position and syllable codas in word-final
position; the standard adaptor grammarmachinery
will then learn distributions over onsets and codas
in these positions that possibly differ from those
in word-internal positions.

4 Results on Chinese word segmentation

The previous section described two dimensions
along which adaptor grammars for word segmen-
tation can independently vary. Above the Word
level, there can be from zero to three levels of col-
locations, yielding four different values for this di-
mension. Below theWord level, phonemes can ei-
ther be treated as independent entities, or else they
can be grouped into onset, nuclei and coda clus-
ters, and these can vary depending on where they
appear within a word. Thus there are three dif-
ferent values for the syllable dimension, so there
are twelve different adaptor grammars overall. In
addition, we ran all of these grammars on two ver-
sions of the corpus, one with tones and one with-
out tones, so we report results for 24 different runs
here.
The adaptor grammar inference procedure we

used is the one described in Johnson and Goldwa-
ter (2009). We ran 1,000 iterations of 8 MCMC
chains for each run, and we discarded all but last
200 iterations in order to “burn-in” the sampler.
The segmentation we predict is the one that occurs
the most frequently in the samples that were not
discarded. As is standard, we evaluate the models
in terms of token f-score; the results are presented
in Tables 1 and 2.
In these tables, “None” indicates that the gram-

mar does not model syllable structure, “Gen-
eral” indicates that the grammar does not distin-
guish word-peripheral from word-internal clus-
ters, while “Specialised” indicates that it does.
“Unigram” indicates that the grammar does not
model collocational structure, otherwise the super-
script indicates the number of collocational levels
that the grammar captures.
Broadly speaking, the results are consistent with

the English word segmentation results using adap-
tor grammars presented by Johnson (2008b). The
unigram grammar segmentation accuracy is simi-
lar to that obtained for English, but the results for
the other models are lower than the results for the
corresponding adaptor grammars on English.
We see a general improvement in segmenta-

tion accuracy as the number of collocation levels
increases, just as for English. However, we do
not see any general improvements associated with
modelling syllables; indeed, it seems modelling
syllables causes accuracy to decrease unless collo-
cational structure is also modelled. This is some-
what surprising, as Chinese has a very regular syl-
labic structure. It is not surprising that distin-
guishing word-peripheral and word-medial clus-
ters does not improve segmentation accuracy, as
Chinese does not distinguish these kinds of clus-
ters. There is also no sign of the “synergies” when
modelling collocations and syllables together that
Johnson (2008b) reported.
It is also surprising that tones seem to make lit-

tle difference to the segmentation accuracy, since
they are crucial for disambiguating lexical items.
The segmentation accuracy of the models that cap-
ture little or no inter-word dependencies (e.g., Un-
igram, Colloc) improved slightly when the input
contains tones, but the best-performing models
that capture a more complex set of inter-word de-
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pendencies do equally well on the corpus without
tones as they do on the corpus with tones. Because
these models capture rich inter-word context (they
model three levels of collocational structure), it is
possible that this context provides sufficient infor-
mation to segment words even in the absence of
tone information, i.e., the tonal information is re-
dundant given the richer inter-word dependencies
that these models capture. It is also possible that
word segmentation may simply require less infor-
mation than lexical disambiguation.
One surprising result is the relatively poor per-

formance of the Colloc3 model without syllables
but with tones; we have no explanation for this.
However, all 8 of the MCMC chains in this run
produced lower f-scores, so it unlikely to be sim-
ply a random fluctuation produced by a single out-
lier.
Note that one should be cautious when compar-

ing the absolute f-scores from these experiments
with those of the English study, as the English and
Chinese corpora differ in many ways. As Tardif
(1993) (the creator of the Chinese corpus) empha-
sises, this corpus was collected in a much more
diverse linguistic environment with child-directed
speech from multiple caregivers. The children in-
volved in the Chinese corpus were also older than
the children in the English corpus, which may also
have affected the nature of the corpus.

5 Conclusion

This paper applied adaptor grammar models of
phonemic word segmentation originally devel-
oped for English to Chinese data. While the Chi-
nese data was prepared in a very different way
to the English data, the adaptor grammars used
to perform Chinese word segmentation were very
similar to those used for the English word seg-
mentation. They also achieved quite respectable
f-score accuracies, which suggests that the same
models can do well on both languages.
One puzzling result is that incorporating syl-

lable structure phonotactic constraints, which en-
hances English word segmentation accuracy con-
siderably, doesn’t seem to improve Chinese word
segmentation to a similar extent. This may reflect
the fact that the word segmentation adaptor gram-
mars were originally designed and tuned for En-

glish, and perhaps differently formulated syllable-
structure constraints would work well for Chinese.
But even if one can “tune” the adaptor grammars
to improve performance on Chinese, the challenge
is doing this in a way that improves performance
on all languages, rather than just one.
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