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Abstract

Surface realisation with grammars inte-
grating flat semantics is known to be NP
complete. In this paper, we present a new
algorithm for surface realisation based on
Feature Based Tree Adjoining Grammar
(FTAG) which draws on the observation
that an FTAG can be translated into a Reg-
ular Tree Grammar describing its deriva-
tion trees. We carry out an extensive test-
ing of several variants of this algorithm
using an automatically produced testsuite
and compare the results obtained with
those obtained using Genl, another FTAG
based surface realiser.
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algorithm we present in this paper namely, RT-
GEN (Perez-Beltrachini, 2009)GENI's optimisa-
tion includes both a filtering process whose aim is
to reduce the initial search space and a two step,
“substitution before adjunction”, tree combination
phase whose effect is to delay modifier adjunc-
tion thereby reducing the number of intermediate
structures being built. In RT&\ on the other
hand, the initial FTAG is converted to a Regu-
lar Tree Grammar (RTG) describing its derivation
trees and an Earley algorithm, including sharing
and packing, is used to optimise tree combination.

We compareGENI with several variants of the
proposed RTE&N algorithm using an automati-
cally produced testsuite of 2 679 input formulae
and relate the RTE&N approach to existing work
on surface realisation optimisation.

The paper is structured as follows. We first
present the grammar used by batbBnl and RT-
'GEN, namely EMXTAG (Section 2). We then de-
'Scribe the two surface realisation algorithms (Sec-
In Section 4, we describe the empirical

proposed to help improve practical runtimes. l:Oévaluation carried out and present the results. Fi-

instance, (Kay, 1996) proposes to reduce the nurﬂé”y

Section 5 situates RTEMN with respect to

ber O_f copstltuents bwlt o!urmg regllsatlon b_y Onlyrelated work on surface realisation optimisation.
considering for combination constituents with non

overlapping semantics and compatible indices; SemXTag

(Kay, 1996; Carroll and Oepen, 2005; Gardent

and Kow, 2007) propose various techniques to réfhe grammar (8MXTAG) used byGENI and
strict the combinatorics induced by intersective(RTGEN is a Feature-Based Lexicalised Tree
modifiers all applying to the same structure. Andddjoining Grammar (FTAG) augmented with a
(Koller and Striegnitz, 2002; Gardent and Kowunification-based semantics as described in (Gar-
2007) describe two alternative techniques for redent and Kallmeyer, 2003). We briefly introduce
ducing the initial search space.
In this paper, we focus on the optimisationmar coverage. We then show how this FTAG can
mechanisms of two TAG based surface realisefse converted to an RTG describing its derivation
namely, GENI (Gardent and Kow, 2007) and thetrees.

each of these components and describe the gram-
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21 FTAG. Each elementary tree is associated with a flat

A Feature-based TAG (Vijay-Shanker and Joshls’,emantic representation. For instance, in Fig-

1 -
1988) consists of a set of (auxiliary or initial) el-" L;-the trees fodohn, runsandoftenare asso

ementary trees and of two tree-composition opeﬁ'ateOI with the semanticsame(j,john) run(a,s)

ations: substitution and adjunction. Initial treesanOI often(x)respectively. Importantly, the argu-

are trees whose leaves are labeled with substit{RE1S of a semantic functor are represented by

tion nodes (marked with a downarrow) or t(_:‘rmi_unlflcatlon variables which occur both in the se-

nal categories. Auxiliary trees are distinguishetﬁn antic representation of this functor and on some

by a foot node (marked with a star) whose cateiodes of the associated syntactic tree. For in-

gory must be the same as that of the root nodg_.tance in Figure 1, the semantic indexoccur-

Substitution inserts a tree onto a substitution noa‘réng in the semantic representation rwins also

of some other tree while adjunction inserts an aux2 oo > " the subject substitution node of the as
ociated elementary tree. The value of semantic

iliary tree into a tree. In an FTAG, the tree nodes ts is determined by th ificati
are furthermore decorated with two feature strucqr?tgmefn s 1S d'e er;nme q y bet.tjr;.' \ca ||c:Jns_ re-
tures (calledtop and bottom) which are unified suiting from adjunction and substiution. For in-

during derivation as follows. On substitution, thestance, the semantic indexn the tree forrunsis

top of the substitution node is unified with the topggglfsbgﬁirr:ggts : t;z’i;ttu::gg ewgfhtrt]r;etrsee em%z::?] n-

of the root node of the tree being substituted in . .
On adjunction, the top of the root of the auxiliaryAS a rgsglt, the semarltlcs dohn often runss
tree is unified with the top of the node where adi"@™( 1 ohn), run(a, j), often(a) }.
junction takes place; and the bottom features q_?) SemXTAG.

the foot node are unified with the bottom features

of this node. At the end of a derivation, the top>EMXTAG is an FTAG for English augmented
and bottom of all nodes in the derived tree ar&vith a unification based compositional semantics
unified. Finally, each sentence derivation in a®f the type described above. Its syntactic cover-
FTAG is associated with bothderived tree rep- 29€ approaches that of XTAG, the FTAG devel-
resenting the phrase structure of the sentence afged for English by the XTAG group (The XTAG
aderivation tree recording how the correspond- Research Group, 2001). Like this grammar, it
ing elementary trees were combined to form th€°ontains around 1300 elementary trees and cov-
derived tree. Nodes in a derivation tree are Ia€'S auxiliaries, copula, raising and small clause
belled with the name of a TAG elementary treeConstructions, topicalization, relative clauses, in-
Edges are labelled with a description of the operaﬂnitives’_ gerunds, passiv_es, adjuncts, ditransitives
tion used to combine the TAG trees whose name¥d datives, ergatives, it-clefts, wh-clefts, PRO

label the edge vertices. constructions, noun-noun modification, extraposi-
tion, sentential adjuncts, imperatives and resulta-
2.2 FTAG with semantics. tives.

To associate semantic representations with natg- Converting SemXTAG to RTG
ral language expressions, the FTAG is modified ag

proposed in (Gardent and Kallmeyer, 2003). S shown in (Schmitz and Le Roux, 2008), an

FTAG can be converted to a Regular Tree Gram-

S, o . . .
» mar describing its derivation tree. In this section,
® N'ii‘ VP Vp? we briefly sketch this conversion process. For a
] VE U fen VP more precise description of this FTAG to RTG
John ~- s - often(x) conversion, the reader is referred to (Schmitz and
name(john) Le Roux, 2008).
run(a,s) _
= name(j,john), run(a,j), often(a) 'c*/C, abbreviate a node with category C and a
Figure 1: Flat Semantics for “John often runs” top/bottom feature structure including the feature-vaiag
{index: z}.
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In the FTAG-to-RTG conversion, eacte@X- 3 TAG-based surfacerealisation

TAG elementary tree is converted to a rule that i
models its contribution to a TAG derivation tree. W& Now present RTEN and describe&enl, and

A TAG derivation involves the selection of an inj- C0Mpare the optimisations they propose to deal
tial tree, which has some nodes requiring substtith the task complexity. _
tution and some permitting adjunction. Let us GENI and RT&N are similar on several points.

think of the potential adjunction sites as requiring) €Y Use the same grammar, namesMXTAG

rather than permitting, adjunction, but such thatcl: Section 2). Further, they both pipeline three

the requirement can be satisfied by ‘null’ adjuncain steps. Firstlexical selection selects from

tion. Inserting another tree into this initial tree satth€ grammar those elementary trees whose seman-

isfies one of the substitution or adjunction requirelicS Subsumes part of the input semantics. Second,

ments, but introduces some new requirements infg€ trée combining phase systematically tries to

the resulting tree, in the form of its own substity-cOMbine trees using substitution and adjunction.
tion nodes and adjunction sites. Third, theretrieval phase extracts the yields of

Thus, intuitively, the RTG representation of athe complete derived trees, thereby producing the

SEMXTAG elementary tree is a rule that rewritegdenerated sentence(s).

the satisfied requirement as a local tree whose root GEN! @nd RTGEN differ however with respect

is a unique identifier of the tree and whose leave@ the trees they are working with (derived trees
are the introduced requirements. A requiremerf! GEN!I vsderivation trees in RTEN). They also

of a substitution or adjunction of a tree of rootdiffer in how tree combination is handled. We now
categoryX is written asXg or X 4, respectively. describe these differences in more detail and ex-
Here, for example, is the translation to RTG of thé?lin how each approach address the complexity
FTAG tree (minus semantics) foun in Figure 1, 'SSU€.
using the word anchoring the tree as its identifieé 1 G
(the upperscripts abbreviates features structures:

b/t refers to the bottom/top feature structure andhe tree combining phase BENI falls into two
the upper case letters to the semantic index valugain steps namely, filtering and tree combining.
[idz : X] is abbreviated tdX):

enl

Filtering. The so-called polarity filtering step
aims to reduce the initial search space. It elim-
SET = runs(SyT T NPES VPP EL Y EEEA) i ates from the initial search space all those sets
of TAG elementary trees which cover the input se-
. . mantics but cannot possibly lead to a valid derived
The semantics of the SemXTAG tree are carrieloq |y gpecific, this filtering removes all tree sets
over as-is to the corresponding RTG rule. Furggering the input semantics such that either the
ther, the feature structures labelling the nodes Qfyaq4ry of a substitution node cannot be canceled
the SemXTAG tree are converted into the RTG, s p that of the root node of a different tree:

rules so as to correctly interact with substitutiorbr a root node fails to have a matching substitu-
and adjunction (see (Schmitz and Le Roux, 2008),, gjte  |mportantly, this filtering relies solely

for more details on this part of the conversion prog, cateqorial information — feature information is

cess). o ~ notused. Furthermore, auxiliary trees have no im-
To account for the optionality of adjunction, 4t on filtering since they provide and require the

there are additional rules allowing any adjunctiory; .« category thereby being “polarity neutral el-
requirement to be rewritten as the symbgé ter-

minal symbol of the RTG.

The terminal symbols of the RTG are thus théree combining. The tree combining algorithm
tree identifiers and the symbel and its non- used after filtering has taken place, is a bottom-up
terminals areXg and X 4 for each terminal or tabular algorithm (Kay, 1996) optimised fosGs.
non-terminalX of SemXTAG. This step, unlike the first, uses all the features

ements”.
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present in the grammar. To handle intersectivgorithms designed for such grammars.

modifiers, the delayed modifiers insertion strategy Second, RT &N makes use of the now standard
from (Carroll et al., 1999) is adapted to TAG assemantic criteria proposed in (Kay, 1996; Carroll
follows. First, all possible derived trees are obet al., 1999) to reduce the number of combinations
tained using only substitution. Next, adjunctiontried out by the realiser. On the one hand, two con-
is applied. Although the number of intermediatestituents are combined by the algorithm’s infer-
structures generated is stilt for » modifiers, this ence rules only if they cover disjoint parts of the
strategy has the effect of blocking theBestruc- input semantics. On the other hand, the seman-
tures from multiplying out with other structures intic indices present in both the input formula and

the chart. the lexically retrieved RTG trees are used to pre-
vent the generation of intermediate structures that
32 RTGen are not compatible with the input semantics. For

RTGen synthesises different techniques that ha¥@stance, given the input formula for “John likes
been observed in the past to improve surface réary”, semantic indices will block the generation
alisation runtimes. We first describe these tecHf “likes John” because this constituent requires
niques i.e., the main features of REG& We that the constituent for “John” fills the patient slot
then present three alternative ways of implemengf “likes” whereas the input semantics requires
ing RTGEN which will be compared in the evalu- that it fills the agent slot. In addition, chart items

ation. in RTGEN are indexed by semantic indices to ef-
ficiently select chart items for combination.
321 RTGen'smain features Third, RTGEN implements a standard Earley

A main feature of RT@N is that it focuses on algorithm complete with sharing and packing.
building derivation rather than derived trees. Moréharing allows for intermediate structures that are
specifically, the first two steps of the surface realcommon to several derivations to be represented
isation process (lexical selection, tree combining®nly once — in addition to not being recomputed
manipulate RTG rules describing the contributioreach time. Packing means that partial derivation
of the EMXTAG elementary trees to the deriva-trees with identical semantic coverage and similar
tion tree rather than the elementary tree thensombinatorics (same number and type of substi-
selves. The derived trees needed to produce actdigtion and adjunction requirements) are grouped
sentences are only produced in the last phase i.&gether and that only one representative of such
the retrieval phase. groups is stored in the chart. In this way, interme-

This strategy is inspired from a similar ap-diate structures covering the same set of intersec-
proach described in (Koller and Striegnitz, 2002}ive modifiers in a different order are only repre-
which was shown to be competitive with state ofented once and the negative impact of intersec-
the art realisers on a small sample of example irfive modifiers is lessened (cf. (Brew, 1992)). . As
put chosen for their inherent complexity. (Koller(Carroll and Oepen, 2005) have shown, packing
and Striegnitz, 2002)’s approach combines treed sharing are important factors in improving ef-
using a constraint based dependency parser ratfigiency. In particular, they show that an algorithm
than an Earley algorithm so that it is difficult With packing and sharing clearly outtperforms the
to assess how much of the efficiency is due t§ame algorithm without packing and sharing giv-
the parser and how much to the grammar coridg an up to 50 times speed-up for inputs with
version. Intuitively however, the motivation un-large numbers of realizations.
derlying the construction of a derivation rather )
than a derived tree is that efficiency might be in3-22 Threewaystoimplement RTGen
creased because the context free derivation treesDepending on how much linguistic information
(i) are simpler than the mildly context sensitive(i.e. feature constraints from the feature struc-
trees generated by an FTAG and (ii) permit drawtures) is preserved in the RTG rules, several RT-
ing on efficient parsing and surface realisation alGEN configurations can be tried out which each
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reflect a different division of labour between conthese features (in combination with the semantic
straint solving and structure building. To experifeatures and with categorial information) during
ment with these several configurations, we exploiree combining.

the fact that the FTAG-t0-RTG conversion proce- )

dure developed by Sylvain Schmitz permits spec® Evaluation

ifying which features should be preserved by theq eyaluate the impact of the different optimisa-

conversion. tion techniques discussed in the previous section,

RTGen-all. In this configuration, all the feature we use two benchmarks generated automatically

. . . from SEMXTAG (Gottesman, 2009).
structure information present in the 8XTAG el- The first benchmark (MDIFIERS) was de-
ementary trees is carried over to the RTG rules.. . . L
. . ._signed to test the realisers on cases involving in-
As a result, tree combining and constraint solvmq . g : .
. ersective modifiers. It includes 1 789 input for-
proceed simultaneously and the generated parrsneulae with a varying number (from 0 to 4 modifi-
forest contains the derivation trees of all the out- . e _
cations), type (N and VP modifications) and distri-
put sentences.

bution of intersective maodifiersy(modifiers dis-
RTGen-level0. In the RTGen-level0 configura- tributed differently over the predicate argument
tion, only the syntactic category and the semarstructures). For instance, the formula in (1) in-
tic features are preserved by the conversion. A9Ives 2 N and 1 VP modification.  Further,
a result, the grammar information used by thd combines lexical ambiguity with modification
(derivation) tree building phase is comparable t§omplexities, i.e. for thenoremodifier the gram-
that used byGeN filtering step. In both cases, Mar provides 10 trees.

the aim is to detect those sets of elementary trees1) 1, . 3(z1,he,he) he > o he > sl
which cover the input semantics and such that all  man(z1),l2 : snoring(er,z1),l2 : big(z1),l3 :
synt'actic requirgments are satisfied while_ no syn- f/iezﬁé‘?fr’]g“b)igjn :af]oglzgllsfsf‘;%)unmy

tactic resource is left out. A further step is addi-

tionally needed to produce only those trees which The second benchmark ¢MPLEXITY) was
can be built from these tree sets when applying théesigned to test overall performance on cases of
constraints imposed by other features. dBni, differing complexity (input formulae of increas-
this additional step is carried out by the tree coming length, involving verbs with a various number
bining phase, in RTEN, it is realised by the ex- and types of arguments and with a varying num-
traction phase i.e., the phase that constructs tier of and types of modifiers). It contains 890 dis-
derived trees from the derivation trees producetinct cases. A sample formula extracted from this
by the tree combining phase. benchmark is shown in (2), which includes one

modification and to different verb types.
RTGen-sdlective. Contrary to parsing, surface
realisation only accesses the morphological lex-(@ i1 > lulo - want(e, h), by = (21, hrs hs) by >
. . . li,hs > lo,l1 : man(x1),l1 : snoring(e1, z1),ls :
icon last i.e., after sentence trees are built. Be- 30z, hy, b, ha) by > 15, he > Ly by > Us,ls
cause throughout the tree combining phase, lem-  monkey(z2),ls : eat(ez, w2, e3),1s5 : sleep(es, x2)

mas are handled rather than forms, much of the (The snoring man wants the monkey to sjeep

morpho-syntactic feature information which is 14 eyajuateseni and the various configurations
necessary to block the construction of ill-formedys rTGen (RTGEN-all, RTGEN-level0, RTGEN-
constituents is simply not available. Itis thereforeselective) we ran the 4 algorithms in batch mode

meaningful to only include in the tree combiningyp, the two benchmarks and collected the follow-
phase those features whose value is available iﬂb data for each test case:

tree combining time. In a third experiment, we au-

tomatically identified those features from the ob- e Packed chart size : the number of chart items
served feature structure unification failures during  built. This feature is only aplicable to RTGen
runs of the realisation algorithm. We thenuse only ~ asGENI does not implement packing.
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e Unpacked chart size : the number of interme-
diate and final structures available after un-
packing (or at the end of the tree combining
process in the case GENI).

10*
e Initial Search Space (ISS) : the number of all
possible combinations of elementary trees to
be explored given the result of lexical selec-
tion on the input semantics. That is, the prod-
uct of the number of FTAG elementary trees

unpacked chart size

—e— RTGEN-all
—m— RTGEN-level0
—P— RTGEN-selective

selected by each literal in the input seman- —— GENI
tics. I
e Generation forest (GF) : the number of number of modifiers

derivation trees covering the input semantics. o
Figure 2: Performance of realisation approaches

The graph in Figure 2 shows the differences besn the MoDIFIERS benchmark, average unpacked
tween the different strategies with respect to thehart size as a function of the number of modifiers.
unpacked chart size metric.

A first observation is that RTEN-all outper-  \ye show in Table 1 the average results for various
forms GENI in terms of intermediate structureseﬁiciency metric2. This provides a more detail

built . In other words, the Earley sharing and,iey of the performance of the differences among
packing strategy is more effective in reducing thene three RT@N variants.

number of constituents built than the filtering and
. . . . .. - | strategy GF chart unpacked-chart seconhs
substitution-before-adjunction optimisations used =—— s
i - RTGen-level0 1,118.06 2,018 6,898.28 1.41
by G_ENI' In faCt’ even when no feature informa RTGeE?seeIZEtive 27.08 910.34 2,531.23 0.44
tion is used at all (RT&N-levelO plot), for more
complex test cases, packing and sharing is moreble 1: Average results on 610 test cases from

effective in reducing the chart size than filteringghe MODIFIERS benchmark. Each test case has
and operation ordering. 3 modifications, distributed in various ways be-

Another interesting observation is that REG  tween adjectival and adverbial modifications. The

all and RTG:N-selective have the same impact orfecond column, Generation Forest (GF), is the
chart size (their plots coincide). This is unsurprishumber of derivation trees present in the gener-
ing since the features used by REGselective ated parse forest. The third and fourth columns
have been selected based on their ability to blockow the chart and unpacked chart sizes, respec-
constituent combination. The features used ifively. The last column shows the runtime in sec-
RTGEN-selective mode aren, xp, assi gn-conp,  Onds.

nmode, definite,inv, assi gn-case, rel -cl ause, ) ) )

ext ract ed andphon, in addition to the categorial  This data shows that running RE® with no

and semantic information. In other words, usindeature information leads not only to an increased

all 42 EMXTAG grammar features has the same&hart size but also to runtimes that are higher in
impact on search space pruning as using only &/erage than for full surface realisation i.e., reali-
small subset of them. As explained in the previSation using the full grammar complete with con-

ous section, this is probably due to the fact that 27he two realisers being implemented in different
contrary to parsing, surface realisation only acProgramming languages (RTE® uses Prolog andENI

. . askell), runtimes comparisons are not necessarily very
cesses the morphological lexicon after tree co eaningful. AdditionallyGENI does not provide time statis-

bining takes place. Another possibility is that theics. After adding this functionality tGENI, we found that
grammar is under constrained and that feature valverall GENI is faster on simple cases but slower on more

issing th by induci ti complex ones. We are currently working on optimising RT-
ues are missing thereby Inaucing overgenerationge prolog implementation before carrying out a full scale

Zooming in on cases involving three modifiersyuntime comparison.
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106 1 T — — | [ strategy GF chart unpacked-chart —seconfis

I —e— RTGEN-all RTGen-all 14.77 693.39 2,427.82 0.81
L RTGen-leveld  162.02  2,114.16 6,954.84 1.09
| | —=— RTGEN-level0 RTGen-selective  15.31 692.9 2,427.2 0.36

105 || —P— RTGEN-selective
F|—— GENI

Table 2: Average results on 335 cases with
10000 < 1S5S < 100000, from the GMPLEXITY
benchmark. The columns show the same perfor-
mance metrics as in Table 1.

unpacked chart size

103 E

5 Related work

Much work has already been done on optimising
surface realisation. Because surface realisation
often draws on parsing techniques, work on pars-
ing optimisation is also relevant. In this section,
we briefly relate our proposal to another gram-
mar converting approach (Koller and Striegnitz,

Figure 3: Performance of realisation approachezsooz); to another chart based approach (Carrol

on the ®MMPLEXITY benchmark, average un-aanI Oepen, 2005); and to approaches based on

packed chart size as a function of the 1SS Conf_{tatlstlcal pruning (White, 2004; Bangalore and
plexity ambow, 2000).

0-100 [
100-1000}—
1000-5000{—
5000-10000}—
10000-100000—
100000-500000—
500000-1000000—
more than 1000000

Initial Search Space (ISS) size

5.1 Optimising surface realisation

straints. Encodinginto another grammatical formalism.

Interestingly, it also shows that the selectivéAs already mentioned, the RTE& approach is
mode (RT@&N-selective) permits improving run- closely related to the work of (Koller and Strieg-
times while achieving almost perfect disambiguanitz, 2002) where the XTAG grammar is con-
tion in that the average number of derivation treeserted to a dependency grammar capturing its
(GF) produced is close to that produced whederivation trees. This conversion enables the use
using all features. The differences between thef a constraint based dependency parser, a parser
two generation forests stems from packing. Usingrhich was specifically developed for the efficient
only a subset of features favors packing, therebgarsing of free word order languages and is shown
reducing the number of chart items built, but into support an efficient handling of both lexical and
troduces over- generation. modifier attachment ambiguity.

Graph 3 and Table 2 confirm the results ob- Our proposal differs from this approach in three
tained using the MDIFIERSbenchmark on a test- main ways. First, contrary to XTAG, E1X-
set (GMPLEXITY) where input complexity varies TAG integrates a full-fledged, unification based
not only with respect to modification but also withcompositional semantics thereby allowing for a
respect to the length of the input and to the deprincipled coupling between semantic represen-
gree of lexical ambiguity. Typically, in a TAG, one tations and natural language expressions. Sec-
word or one semantic literal may be associated edpnd, the grammar conversion and the feature-
ther with one tree or with up to several hundredbased RTGs used by RTEG accurately trans-
trees (e.g., ditransitive verbs and verbs with seuates the full range of unification mechanisms em-
eral subcategorisation types). By varying the typployed in FTAG wheras the conversion described
and the number of verbs selected by the semahy (Koller and Striegnitz, 2002) does not take
tic literals contained in the input semantics, theénto account feature structure information. Third,
ComPLEXITY benchmark provides a more extenthe RTGEN approach was extensively tested on a
sive way to test performance on cases of varyintarge benchmark using 3 different configurations
complexity. whilst (Koller and Striegnitz, 2002) results are re-
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stricted to a few hand constructed example inputsnodifiers are handled by the grammar (constraints
] ) o on the respective order of adjectives) and the chart
Chart generation algorithm —optimisations. ., ying strategy (for optimisation), and ranking is

(Carroll and Oepen, 2005) provides an extensivgy serformed. We are currently exploring the use
and detailed study of how various techniques usqgf Optimality Theory for ranking.

to optimise parsing and surface realisation impact
the efficiency of a surface realiser based on alarg® Conclusion
coverage Head-Driven Phrase Structure grammar.

Because they use different grammars granWe presented RTE&\N, a novel surface realiser for
mar formalisms and different benchmarks, it id 1AG grammars which builds on the observation

difficult to compare the RTEN and the HPSG that an FTAG can be translated to a regular tree
approach. However, one point is put forwardrammar describing its derivation trees. Using
by (Carroll and Oep,en 2005) which it woulg@utomatically constructed benchmarks, we com-

be interesting to integrate in REG(Carroll and pared the performance of this realiser with that of

Oepen, 2005) show that for packing to be offiGENI, another state of the art realiser for FTAG.

cient, it is important that equivalence be checkedVe Showed that RTEN outperformsGENI in
through subsumption, not through equality. rlerms of space i.e. that the Earley sharing and

GEN also implements a packing mechanism witfpacking strategy is more effective in reducing the
number of constituents built than the filtering and

subsumption check, i.e. different ways of cov- S ) ) S S
ering the same subset of the input semantics aﬁgbStltutlon-before-adjun_ctlon ppt|m|sat|ons used
GENI. Moreover, we investigated three ways

grouped together and represented in the chart 59’ i
the most general one. One difference however af mterleavm_g phrase structure and f(_aature strL_Jc-
that RTGEN will pack analyses together as longturé constraints and showed that, given a naive
as the new ones are more specific cases. It wfenstraint solving approach, the interleaving ap-
not go backwards to recalculate the packing mad¥0ach with selective features seems to provide
so far if a more general item is found (Stefan and€ Pest space/runtimes compromise.

John, 2000). In this case the algorithm will pack Future work will concentrate on further investi-
them’under two different groups. gating the interplay in surface realisation between

phrase structure and feature structure constraints.
Statistical pruning. Various probabilistic tech- In particular, (Maxwell and Kaplan, 1994) shows
niques have been proposed in surface realisatiedhat a more sophisticated approach to constraint
to improve e.g., lexical selection, the handling okolving and to its interaction with chart process-
intersective modifiers or ranking. For instanceing renders the non interleaved approach more ef-
(Bangalore and Rambow, 2000) uses a tree modlctive than the interleaved one. We plan to exam-
to produce a single most probable lexical seledne whether this observation applies teMBX TAG
tion while in White’s system, the best paraphraseand RTGN. Further, we intend to integrate Op-
is determined on the basis of n-gram scores. Futimality Theory constraints in RTEN so as sup-
ther, to address the fact that there arfeways port ranking of multiple outputs. Finally, we want
to combine anyn modifiers with a single con- to further optimise RT@N on intersective modi-
stituent, (White, 2004) proposes to use a languadiers using one the methods mentioned in Section
model to prune the chart of identical edges repb.
resenting different modifier permutations, e.g., to
choose betweefierce black catandblack fierce
cat Similarly, (Bangalore and Rambow, 2000) asRReferences
sumes a single derivation tree that encodes a woBkngalore, S. and O. Rambow. 2000. Using TAGs, a
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