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Abstract

Surface realisation with grammars inte-
grating flat semantics is known to be NP
complete. In this paper, we present a new
algorithm for surface realisation based on
Feature Based Tree Adjoining Grammar
(FTAG) which draws on the observation
that an FTAG can be translated into a Reg-
ular Tree Grammar describing its deriva-
tion trees. We carry out an extensive test-
ing of several variants of this algorithm
using an automatically produced testsuite
and compare the results obtained with
those obtained using GenI, another FTAG
based surface realiser.

1 Introduction

As shown in (Brew, 1992; Koller and Striegnitz,
2002), Surface Realisation is NP-complete. Var-
ious optimisation techniques have therefore been
proposed to help improve practical runtimes. For
instance, (Kay, 1996) proposes to reduce the num-
ber of constituents built during realisation by only
considering for combination constituents with non
overlapping semantics and compatible indices.
(Kay, 1996; Carroll and Oepen, 2005; Gardent
and Kow, 2007) propose various techniques to re-
strict the combinatorics induced by intersective
modifiers all applying to the same structure. And
(Koller and Striegnitz, 2002; Gardent and Kow,
2007) describe two alternative techniques for re-
ducing the initial search space.

In this paper, we focus on the optimisation
mechanisms of two TAG based surface realisers
namely,GENI (Gardent and Kow, 2007) and the

algorithm we present in this paper namely, RT-
GEN (Perez-Beltrachini, 2009).GENI’s optimisa-
tion includes both a filtering process whose aim is
to reduce the initial search space and a two step,
“substitution before adjunction”, tree combination
phase whose effect is to delay modifier adjunc-
tion thereby reducing the number of intermediate
structures being built. In RTGEN on the other
hand, the initial FTAG is converted to a Regu-
lar Tree Grammar (RTG) describing its derivation
trees and an Earley algorithm, including sharing
and packing, is used to optimise tree combination.

We compareGENI with several variants of the
proposed RTGEN algorithm using an automati-
cally produced testsuite of 2 679 input formulae
and relate the RTGEN approach to existing work
on surface realisation optimisation.

The paper is structured as follows. We first
present the grammar used by bothGENI and RT-
GEN, namely SEMXTAG (Section 2). We then de-
scribe the two surface realisation algorithms (Sec-
tion 3). In Section 4, we describe the empirical
evaluation carried out and present the results. Fi-
nally, Section 5 situates RTGEN with respect to
related work on surface realisation optimisation.

2 SemXTag

The grammar (SEMXTAG) used by GENI and
RTGEN is a Feature-Based Lexicalised Tree
Adjoining Grammar (FTAG) augmented with a
unification-based semantics as described in (Gar-
dent and Kallmeyer, 2003). We briefly introduce
each of these components and describe the gram-
mar coverage. We then show how this FTAG can
be converted to an RTG describing its derivation
trees.
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2.1 FTAG.

A Feature-based TAG (Vijay-Shanker and Joshi,
1988) consists of a set of (auxiliary or initial) el-
ementary trees and of two tree-composition oper-
ations: substitution and adjunction. Initial trees
are trees whose leaves are labeled with substitu-
tion nodes (marked with a downarrow) or termi-
nal categories. Auxiliary trees are distinguished
by a foot node (marked with a star) whose cate-
gory must be the same as that of the root node.
Substitution inserts a tree onto a substitution node
of some other tree while adjunction inserts an aux-
iliary tree into a tree. In an FTAG, the tree nodes
are furthermore decorated with two feature struc-
tures (calledtop and bottom) which are unified
during derivation as follows. On substitution, the
top of the substitution node is unified with the top
of the root node of the tree being substituted in.
On adjunction, the top of the root of the auxiliary
tree is unified with the top of the node where ad-
junction takes place; and the bottom features of
the foot node are unified with the bottom features
of this node. At the end of a derivation, the top
and bottom of all nodes in the derived tree are
unified. Finally, each sentence derivation in an
FTAG is associated with both aderived tree rep-
resenting the phrase structure of the sentence and
a derivation tree recording how the correspond-
ing elementary trees were combined to form the
derived tree. Nodes in a derivation tree are la-
belled with the name of a TAG elementary tree.
Edges are labelled with a description of the opera-
tion used to combine the TAG trees whose names
label the edge vertices.

2.2 FTAG with semantics.

To associate semantic representations with natu-
ral language expressions, the FTAG is modified as
proposed in (Gardent and Kallmeyer, 2003).

NPj

John

name(j,john)

Sc

NP↓s VPc
b

Vb
a

runs

run(a,s)

VPx

often VP*
often(x)

⇒ name(j,john), run(a,j), often(a)

Figure 1: Flat Semantics for “John often runs”

Each elementary tree is associated with a flat
semantic representation. For instance, in Fig-
ure 1,1 the trees forJohn, runsandoftenare asso-
ciated with the semanticsname(j,john), run(a,s)
and often(x) respectively. Importantly, the argu-
ments of a semantic functor are represented by
unification variables which occur both in the se-
mantic representation of this functor and on some
nodes of the associated syntactic tree. For in-
stance in Figure 1, the semantic indexs occur-
ring in the semantic representation ofruns also
occurs on the subject substitution node of the as-
sociated elementary tree. The value of semantic
arguments is determined by the unifications re-
sulting from adjunction and substitution. For in-
stance, the semantic indexs in the tree forruns is
unified during substitution with the semantic in-
dex labelling the root node of the tree forJohn.
As a result, the semantics ofJohn often runsis
{name(j,john),run(a,j),often(a)}.

2.3 SemXTAG.

SEMXTAG is an FTAG for English augmented
with a unification based compositional semantics
of the type described above. Its syntactic cover-
age approaches that of XTAG, the FTAG devel-
oped for English by the XTAG group (The XTAG
Research Group, 2001). Like this grammar, it
contains around 1300 elementary trees and cov-
ers auxiliaries, copula, raising and small clause
constructions, topicalization, relative clauses, in-
finitives, gerunds, passives, adjuncts, ditransitives
and datives, ergatives, it-clefts, wh-clefts, PRO
constructions, noun-noun modification, extraposi-
tion, sentential adjuncts, imperatives and resulta-
tives.

2.4 Converting SemXTAG to RTG

As shown in (Schmitz and Le Roux, 2008), an
FTAG can be converted to a Regular Tree Gram-
mar describing its derivation tree. In this section,
we briefly sketch this conversion process. For a
more precise description of this FTAG to RTG
conversion, the reader is referred to (Schmitz and
Le Roux, 2008).

1Cx/Cx abbreviate a node with category C and a
top/bottom feature structure including the feature-valuepair
{ index : x}.
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In the FTAG-to-RTG conversion, each SEMX-
TAG elementary tree is converted to a rule that
models its contribution to a TAG derivation tree.
A TAG derivation involves the selection of an ini-
tial tree, which has some nodes requiring substi-
tution and some permitting adjunction. Let us
think of the potential adjunction sites as requiring,
rather than permitting, adjunction, but such that
the requirement can be satisfied by ‘null’ adjunc-
tion. Inserting another tree into this initial tree sat-
isfies one of the substitution or adjunction require-
ments, but introduces some new requirements into
the resulting tree, in the form of its own substitu-
tion nodes and adjunction sites.

Thus, intuitively, the RTG representation of a
SEMXTAG elementary tree is a rule that rewrites
the satisfied requirement as a local tree whose root
is a unique identifier of the tree and whose leaves
are the introduced requirements. A requirement
of a substitution or adjunction of a tree of root
categoryX is written asXS or XA, respectively.
Here, for example, is the translation to RTG of the
FTAG tree (minus semantics) forrun in Figure 1,
using the word anchoring the tree as its identifier
(the upperscripts abbreviates features structures:
b/t refers to the bottom/top feature structure and
the upper case letters to the semantic index value,
[idx : X] is abbreviated toX):

S
[t:T ]
S → runs(S

[t:T,b:C]
A NP

[t:S]
S V P

[t:C,b:B]
A V

[t:B,b:A]
A )

The semantics of the SemXTAG tree are carried
over as-is to the corresponding RTG rule. Fur-
ther, the feature structures labelling the nodes of
the SemXTAG tree are converted into the RTG
rules so as to correctly interact with substitution
and adjunction (see (Schmitz and Le Roux, 2008)
for more details on this part of the conversion pro-
cess).

To account for the optionality of adjunction,
there are additional rules allowing any adjunction
requirement to be rewritten as the symbolǫ, a ter-
minal symbol of the RTG.

The terminal symbols of the RTG are thus the
tree identifiers and the symbolǫ, and its non-
terminals areXS and XA for each terminal or
non-terminalX of SemXTAG.

3 TAG-based surface realisation

We now present RTGEN and describeGENI, and
compare the optimisations they propose to deal
with the task complexity.

GENI and RTGEN are similar on several points.
They use the same grammar, namely SEMXTAG

(cf. Section 2). Further, they both pipeline three
main steps. First,lexical selection selects from
the grammar those elementary trees whose seman-
tics subsumes part of the input semantics. Second,
the tree combining phase systematically tries to
combine trees using substitution and adjunction.
Third, theretrieval phase extracts the yields of
the complete derived trees, thereby producing the
generated sentence(s).

GENI and RTGEN differ however with respect
to the trees they are working with (derived trees
in GENI vsderivation trees in RTGEN). They also
differ in how tree combination is handled. We now
describe these differences in more detail and ex-
plain how each approach address the complexity
issue.

3.1 GenI

The tree combining phase inGENI falls into two
main steps namely, filtering and tree combining.

Filtering. The so-called polarity filtering step
aims to reduce the initial search space. It elim-
inates from the initial search space all those sets
of TAG elementary trees which cover the input se-
mantics but cannot possibly lead to a valid derived
tree. In specific, this filtering removes all tree sets
covering the input semantics such that either the
category of a substitution node cannot be canceled
out by that of the root node of a different tree;
or a root node fails to have a matching substitu-
tion site. Importantly, this filtering relies solely
on categorial information – feature information is
not used. Furthermore, auxiliary trees have no im-
pact on filtering since they provide and require the
same category thereby being “polarity neutral el-
ements”.

Tree combining. The tree combining algorithm
used after filtering has taken place, is a bottom-up
tabular algorithm (Kay, 1996) optimised forTAGs.
This step, unlike the first, uses all the features
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present in the grammar. To handle intersective
modifiers, the delayed modifiers insertion strategy
from (Carroll et al., 1999) is adapted to TAG as
follows. First, all possible derived trees are ob-
tained using only substitution. Next, adjunction
is applied. Although the number of intermediate
structures generated is still2n for n modifiers, this
strategy has the effect of blocking these2n struc-
tures from multiplying out with other structures in
the chart.

3.2 RTGen

RTGen synthesises different techniques that have
been observed in the past to improve surface re-
alisation runtimes. We first describe these tech-
niques i.e., the main features of RTGEN. We
then present three alternative ways of implement-
ing RTGEN which will be compared in the evalu-
ation.

3.2.1 RTGen’s main features

A main feature of RTGEN is that it focuses on
building derivation rather than derived trees. More
specifically, the first two steps of the surface real-
isation process (lexical selection, tree combining)
manipulate RTG rules describing the contribution
of the SEMXTAG elementary trees to the deriva-
tion tree rather than the elementary tree them-
selves. The derived trees needed to produce actual
sentences are only produced in the last phase i.e.,
the retrieval phase.

This strategy is inspired from a similar ap-
proach described in (Koller and Striegnitz, 2002)
which was shown to be competitive with state of
the art realisers on a small sample of example in-
put chosen for their inherent complexity. (Koller
and Striegnitz, 2002)’s approach combines trees
using a constraint based dependency parser rather
than an Earley algorithm so that it is difficult
to assess how much of the efficiency is due to
the parser and how much to the grammar con-
version. Intuitively however, the motivation un-
derlying the construction of a derivation rather
than a derived tree is that efficiency might be in-
creased because the context free derivation trees
(i) are simpler than the mildly context sensitive
trees generated by an FTAG and (ii) permit draw-
ing on efficient parsing and surface realisation al-

gorithms designed for such grammars.
Second, RTGEN makes use of the now standard

semantic criteria proposed in (Kay, 1996; Carroll
et al., 1999) to reduce the number of combinations
tried out by the realiser. On the one hand, two con-
stituents are combined by the algorithm’s infer-
ence rules only if they cover disjoint parts of the
input semantics. On the other hand, the seman-
tic indices present in both the input formula and
the lexically retrieved RTG trees are used to pre-
vent the generation of intermediate structures that
are not compatible with the input semantics. For
instance, given the input formula for “John likes
Mary”, semantic indices will block the generation
of “likes John” because this constituent requires
that the constituent for “John” fills the patient slot
of “likes” whereas the input semantics requires
that it fills the agent slot. In addition, chart items
in RTGEN are indexed by semantic indices to ef-
ficiently select chart items for combination.

Third, RTGEN implements a standard Earley
algorithm complete with sharing and packing.
Sharing allows for intermediate structures that are
common to several derivations to be represented
only once – in addition to not being recomputed
each time. Packing means that partial derivation
trees with identical semantic coverage and similar
combinatorics (same number and type of substi-
tution and adjunction requirements) are grouped
together and that only one representative of such
groups is stored in the chart. In this way, interme-
diate structures covering the same set of intersec-
tive modifiers in a different order are only repre-
sented once and the negative impact of intersec-
tive modifiers is lessened (cf. (Brew, 1992)). . As
(Carroll and Oepen, 2005) have shown, packing
and sharing are important factors in improving ef-
ficiency. In particular, they show that an algorithm
with packing and sharing clearly outtperforms the
same algorithm without packing and sharing giv-
ing an up to 50 times speed-up for inputs with
large numbers of realizations.

3.2.2 Three ways to implement RTGen

Depending on how much linguistic information
(i.e. feature constraints from the feature struc-
tures) is preserved in the RTG rules, several RT-
GEN configurations can be tried out which each
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reflect a different division of labour between con-
straint solving and structure building. To experi-
ment with these several configurations, we exploit
the fact that the FTAG-to-RTG conversion proce-
dure developed by Sylvain Schmitz permits spec-
ifying which features should be preserved by the
conversion.

RTGen-all. In this configuration, all the feature
structure information present in the SEMXTAG el-
ementary trees is carried over to the RTG rules.
As a result, tree combining and constraint solving
proceed simultaneously and the generated parse
forest contains the derivation trees of all the out-
put sentences.

RTGen-level0. In the RTGen-level0 configura-
tion, only the syntactic category and the seman-
tic features are preserved by the conversion. As
a result, the grammar information used by the
(derivation) tree building phase is comparable to
that used byGENI filtering step. In both cases,
the aim is to detect those sets of elementary trees
which cover the input semantics and such that all
syntactic requirements are satisfied while no syn-
tactic resource is left out. A further step is addi-
tionally needed to produce only those trees which
can be built from these tree sets when applying the
constraints imposed by other features. InGENI,
this additional step is carried out by the tree com-
bining phase, in RTGEN, it is realised by the ex-
traction phase i.e., the phase that constructs the
derived trees from the derivation trees produced
by the tree combining phase.

RTGen-selective. Contrary to parsing, surface
realisation only accesses the morphological lex-
icon last i.e., after sentence trees are built. Be-
cause throughout the tree combining phase, lem-
mas are handled rather than forms, much of the
morpho-syntactic feature information which is
necessary to block the construction of ill-formed
constituents is simply not available. It is therefore
meaningful to only include in the tree combining
phase those features whose value is available at
tree combining time. In a third experiment, we au-
tomatically identified those features from the ob-
served feature structure unification failures during
runs of the realisation algorithm. We then use only

these features (in combination with the semantic
features and with categorial information) during
tree combining.

4 Evaluation

To evaluate the impact of the different optimisa-
tion techniques discussed in the previous section,
we use two benchmarks generated automatically
from SEMXTAG (Gottesman, 2009).

The first benchmark (MODIFIERS) was de-
signed to test the realisers on cases involving in-
tersective modifiers. It includes 1 789 input for-
mulae with a varying number (from 0 to 4 modifi-
cations), type (N and VP modifications) and distri-
bution of intersective modifiers (n modifiers dis-
tributed differently over the predicate argument
structures). For instance, the formula in (1) in-
volves 2 N and 1 VP modification. Further,
it combines lexical ambiguity with modification
complexities, i.e. for thesnoremodifier the gram-
mar provides 10 trees.

(1) l1 : ∃(x1, hr, hs), hr ≥ l2, hs ≥ l3, l2 :
man(x1), l2 : snoring(e1, x1), l2 : big(x1), l3 :
sleep(e2, x1), l4 : soundly(e2)
(A snoring big man sleeps soundly)

The second benchmark (COMPLEXITY) was
designed to test overall performance on cases of
differing complexity (input formulae of increas-
ing length, involving verbs with a various number
and types of arguments and with a varying num-
ber of and types of modifiers). It contains 890 dis-
tinct cases. A sample formula extracted from this
benchmark is shown in (2), which includes one
modification and to different verb types.

(2) h1 ≥ l4, l0 : want(e, h1), l1 : ∃(x1, hr, hs), hr ≥
l1, hs ≥ l0, l1 : man(x1), l1 : snoring(e1, x1), l3 :
∃(x2, hp, hw , hu), hp ≥ l3, hw ≥ l4, hu ≥ l5, l3 :
monkey(x2), l4 : eat(e2, x2, e3), l5 : sleep(e3, x2)
(The snoring man wants the monkey to sleep)

To evaluateGENI and the various configurations
of RTGEN (RTGEN-all, RTGEN-level0, RTGEN-
selective), we ran the 4 algorithms in batch mode
on the two benchmarks and collected the follow-
ing data for each test case:

• Packed chart size : the number of chart items
built. This feature is only aplicable to RTGen
asGENI does not implement packing.
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• Unpacked chart size : the number of interme-
diate and final structures available after un-
packing (or at the end of the tree combining
process in the case ofGENI).

• Initial Search Space (ISS) : the number of all
possible combinations of elementary trees to
be explored given the result of lexical selec-
tion on the input semantics. That is, the prod-
uct of the number of FTAG elementary trees
selected by each literal in the input seman-
tics.

• Generation forest (GF) : the number of
derivation trees covering the input semantics.

The graph in Figure 2 shows the differences be-
tween the different strategies with respect to the
unpacked chart size metric.

A first observation is that RTGEN-all outper-
forms GENI in terms of intermediate structures
built . In other words, the Earley sharing and
packing strategy is more effective in reducing the
number of constituents built than the filtering and
substitution-before-adjunction optimisations used
by GENI. In fact, even when no feature informa-
tion is used at all (RTGEN-level0 plot), for more
complex test cases, packing and sharing is more
effective in reducing the chart size than filtering
and operation ordering.

Another interesting observation is that RTGEN-
all and RTGEN-selective have the same impact on
chart size (their plots coincide). This is unsurpris-
ing since the features used by RTGEN-selective
have been selected based on their ability to block
constituent combination. The features used in
RTGEN-selective mode arewh, xp, assign-comp,

mode, definite, inv, assign-case, rel-clause,

extracted andphon, in addition to the categorial
and semantic information. In other words, using
all 42 SEMXTAG grammar features has the same
impact on search space pruning as using only a
small subset of them. As explained in the previ-
ous section, this is probably due to the fact that
contrary to parsing, surface realisation only ac-
cesses the morphological lexicon after tree com-
bining takes place. Another possibility is that the
grammar is under constrained and that feature val-
ues are missing thereby inducing overgeneration.

Zooming in on cases involving three modifiers,
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Figure 2: Performance of realisation approaches
on the MODIFIERS benchmark, average unpacked
chart size as a function of the number of modifiers.

we show in Table 1 the average results for various
efficiency metrics2. This provides a more detail
view of the performance of the differences among
the three RTGEN variants.

strategy GF chart unpacked-chart seconds

RTGen-all 15.05 918.31 2,538.98 0.99
RTGen-level0 1,118.06 2,018 6,898.28 1.41

RTGen-selective 27.08 910.34 2,531.23 0.44

Table 1: Average results on 610 test cases from
the MODIFIERS benchmark. Each test case has
3 modifications, distributed in various ways be-
tween adjectival and adverbial modifications. The
second column, Generation Forest (GF), is the
number of derivation trees present in the gener-
ated parse forest. The third and fourth columns
show the chart and unpacked chart sizes, respec-
tively. The last column shows the runtime in sec-
onds.

This data shows that running RTGEN with no
feature information leads not only to an increased
chart size but also to runtimes that are higher in
average than for full surface realisation i.e., reali-
sation using the full grammar complete with con-

2The two realisers being implemented in different
programming languages (RTGEN uses Prolog andGENI
Haskell), runtimes comparisons are not necessarily very
meaningful. Additionally,GENI does not provide time statis-
tics. After adding this functionality toGENI, we found that
overall GENI is faster on simple cases but slower on more
complex ones. We are currently working on optimising RT-
GEN prolog implementation before carrying out a full scale
runtime comparison.
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Figure 3: Performance of realisation approaches
on the COMPLEXITY benchmark, average un-
packed chart size as a function of the ISS com-
plexity.

straints.
Interestingly, it also shows that the selective

mode (RTGEN-selective) permits improving run-
times while achieving almost perfect disambigua-
tion in that the average number of derivation trees
(GF) produced is close to that produced when
using all features. The differences between the
two generation forests stems from packing. Using
only a subset of features favors packing, thereby
reducing the number of chart items built, but in-
troduces over- generation.

Graph 3 and Table 2 confirm the results ob-
tained using the MODIFIERSbenchmark on a test-
set (COMPLEXITY) where input complexity varies
not only with respect to modification but also with
respect to the length of the input and to the de-
gree of lexical ambiguity. Typically, in a TAG, one
word or one semantic literal may be associated ei-
ther with one tree or with up to several hundred
trees (e.g., ditransitive verbs and verbs with sev-
eral subcategorisation types). By varying the type
and the number of verbs selected by the seman-
tic literals contained in the input semantics, the
COMPLEXITY benchmark provides a more exten-
sive way to test performance on cases of varying
complexity.

strategy GF chart unpacked-chart seconds

RTGen-all 14.77 693.39 2,427.82 0.81
RTGen-level0 162.02 2,114.16 6,954.84 1.09

RTGen-selective 15.31 692.9 2,427.2 0.36

Table 2: Average results on 335 cases with
10000 < ISS ≤ 100000, from the COMPLEXITY

benchmark. The columns show the same perfor-
mance metrics as in Table 1.

5 Related work

Much work has already been done on optimising
surface realisation. Because surface realisation
often draws on parsing techniques, work on pars-
ing optimisation is also relevant. In this section,
we briefly relate our proposal to another gram-
mar converting approach (Koller and Striegnitz,
2002); to another chart based approach (Carroll
and Oepen, 2005); and to approaches based on
statistical pruning (White, 2004; Bangalore and
Rambow, 2000).

5.1 Optimising surface realisation

Encoding into another grammatical formalism.
As already mentioned, the RTGEN approach is
closely related to the work of (Koller and Strieg-
nitz, 2002) where the XTAG grammar is con-
verted to a dependency grammar capturing its
derivation trees. This conversion enables the use
of a constraint based dependency parser, a parser
which was specifically developed for the efficient
parsing of free word order languages and is shown
to support an efficient handling of both lexical and
modifier attachment ambiguity.

Our proposal differs from this approach in three
main ways. First, contrary to XTAG, SEMX-
TAG integrates a full-fledged, unification based
compositional semantics thereby allowing for a
principled coupling between semantic represen-
tations and natural language expressions. Sec-
ond, the grammar conversion and the feature-
based RTGs used by RTGEN accurately trans-
lates the full range of unification mechanisms em-
ployed in FTAG wheras the conversion described
by (Koller and Striegnitz, 2002) does not take
into account feature structure information. Third,
the RTGEN approach was extensively tested on a
large benchmark using 3 different configurations
whilst (Koller and Striegnitz, 2002) results are re-
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stricted to a few hand constructed example inputs.

Chart generation algorithm optimisations.
(Carroll and Oepen, 2005) provides an extensive
and detailed study of how various techniques used
to optimise parsing and surface realisation impact
the efficiency of a surface realiser based on a large
coverage Head-Driven Phrase Structure grammar.

Because they use different grammars, gram-
mar formalisms and different benchmarks, it is
difficult to compare the RTGEN and the HPSG
approach. However, one point is put forward
by (Carroll and Oepen, 2005) which it would
be interesting to integrate in RTGEN(Carroll and
Oepen, 2005) show that for packing to be effi-
cient, it is important that equivalence be checked
through subsumption, not through equality. RT-
GEN also implements a packing mechanism with
subsumption check, i.e. different ways of cov-
ering the same subset of the input semantics are
grouped together and represented in the chart by
the most general one. One difference however it
that RTGEN will pack analyses together as long
as the new ones are more specific cases. It will
not go backwards to recalculate the packing made
so far if a more general item is found (Stefan and
John, 2000). In this case the algorithm will pack
them under two different groups.

Statistical pruning. Various probabilistic tech-
niques have been proposed in surface realisation
to improve e.g., lexical selection, the handling of
intersective modifiers or ranking. For instance,
(Bangalore and Rambow, 2000) uses a tree model
to produce a single most probable lexical selec-
tion while in White’s system, the best paraphrase
is determined on the basis of n-gram scores. Fur-
ther, to address the fact that there aren! ways
to combine anyn modifiers with a single con-
stituent, (White, 2004) proposes to use a language
model to prune the chart of identical edges rep-
resenting different modifier permutations, e.g., to
choose betweenfierce black catandblack fierce
cat. Similarly, (Bangalore and Rambow, 2000) as-
sumes a single derivation tree that encodes a word
lattice (a {fierce black, black fierce} cat), and uses
statistical knowledge to select the best linearisa-
tion. Our approach differs from these approaches
in that lexical selection is not filtered, intersective

modifiers are handled by the grammar (constraints
on the respective order of adjectives) and the chart
packing strategy (for optimisation), and ranking is
not performed. We are currently exploring the use
of Optimality Theory for ranking.

6 Conclusion

We presented RTGEN, a novel surface realiser for
FTAG grammars which builds on the observation
that an FTAG can be translated to a regular tree
grammar describing its derivation trees. Using
automatically constructed benchmarks, we com-
pared the performance of this realiser with that of
GENI, another state of the art realiser for FTAG.
We showed that RTGEN outperformsGENI in
terms of space i.e. that the Earley sharing and
packing strategy is more effective in reducing the
number of constituents built than the filtering and
substitution-before-adjunction optimisations used
by GENI. Moreover, we investigated three ways
of interleaving phrase structure and feature struc-
ture constraints and showed that, given a naive
constraint solving approach, the interleaving ap-
proach with selective features seems to provide
the best space/runtimes compromise.

Future work will concentrate on further investi-
gating the interplay in surface realisation between
phrase structure and feature structure constraints.
In particular, (Maxwell and Kaplan, 1994) shows
that a more sophisticated approach to constraint
solving and to its interaction with chart process-
ing renders the non interleaved approach more ef-
fective than the interleaved one. We plan to exam-
ine whether this observation applies to SEMXTAG

and RTGEN. Further, we intend to integrate Op-
timality Theory constraints in RTGEN so as sup-
port ranking of multiple outputs. Finally, we want
to further optimise RTGEN on intersective modi-
fiers using one the methods mentioned in Section
5.
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