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Abstract 

We present Mixture Model-based Mini-

mum Bayes Risk (MMMBR) decoding, 

an approach that makes use of multiple 

SMT systems to improve translation ac-

curacy. Unlike existing MBR decoding 

methods defined on the basis of single 

SMT systems, an MMMBR decoder re-

ranks translation outputs in the combined 

search space of multiple systems using 

the MBR decision rule and a mixture dis-

tribution of component SMT models for 

translation hypotheses. MMMBR decod-

ing is a general method that is indepen-

dent of specific SMT models and can be 

applied to various commonly used search 

spaces. Experimental results on the NIST 

Chinese-to-English MT evaluation tasks 

show that our approach brings significant 

improvements to single system-based 

MBR decoding and outperforms a state-

of-the-art system combination method.
 1
 

1 Introduction 

Minimum Bayes Risk (MBR) decoding is be-

coming more and more popular in recent Statis-

tical Machine Translation (SMT) research. This 

approach requires a second-pass decoding pro-

cedure to re-rank translation hypotheses by risk 

scores computed based on model’s distribution. 

Kumar and Byrne (2004) first introduced 

MBR decoding to SMT field and developed it on 

the N-best list translations. Their work has 

shown that MBR decoding performs better than 

Maximum a Posteriori (MAP) decoding for dif-

ferent evaluation criteria. After that, many dedi-
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cated efforts have been made to improve the per-

formances of SMT systems by utilizing MBR-

inspired methods. Tromble et al. (2008) pro-

posed a linear approximation to BLEU score 

(log-BLEU) as a new loss function in MBR de-

coding and extended it from N-best lists to lat-

tices, and Kumar et al. (2009) presented more 

efficient algorithms for MBR decoding on both 

lattices and hypergraphs to alleviate the high 

computational cost problem in Tromble et al.’s 

work. DeNero et al. (2009) proposed a fast con-

sensus decoding algorithm for MBR for both 

linear and non-linear similarity measures. 

All work mentioned above share a common 

setting: an MBR decoder is built based on one 

and only one MAP decoder. On the other hand, 

recent research has shown that substantial im-

provements can be achieved by utilizing consen-

sus statistics over multiple SMT systems (Rosti 

et al., 2007; Li et al., 2009a; Li et al., 2009b; 

Liu et al., 2009). It could be desirable to adapt 

MBR decoding to multiple SMT systems as well. 

In this paper, we present Mixture Model-

based Minimum Bayes Risk (MMMBR) decoding, 

an approach that makes use of multiple SMT 

systems to improve translation performance. In 

this work, we can take advantage of a larger 

search space for hypothesis selection, and em-

ploy an improved probability distribution over 

translation hypotheses based on mixture model-

ing, which linearly combines distributions of 

multiple component systems for Bayes risk 

computation. The key contribution of this paper 

is the usage of mixture modeling in MBR, which 

allows multiple SMT models to be involved in 

and makes the computation of n-gram consensus 

statistics to be more accurate. Evaluation results 

have shown that our approach not only brings 

significant improvements to single system-based 

MBR decoding but also outperforms a state-of-

the-art word-level system combination method. 
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The rest of the paper is organized as follows: 

In Section 2, we first review traditional MBR 

decoding method and summarize various search 

spaces that can be utilized by an MBR decoder. 

Then, we describe how a mixture model can be 

used to combine distributions of multiple SMT 

systems for Bayes risk computation. Lastly, we 

present detailed MMMBR decoding model on 

multiple systems and make comparison with 

single system-based MBR decoding methods. 

Section 3 describes how to optimize different 

types of parameters. Experimental results will be 

shown in Section 4. Section 5 discusses some 

related work and Section 6 concludes the paper. 

2 Mixture Model-based MBR Decoding 

2.1 Minimum Bayes Risk Decoding 

Given a source sentence  , MBR decoding aims 

to find the translation with the least expected 

loss under a probability distribution. The objec-

tive of an MBR decoder can be written as: 

         
     

                 

    

  (1) 

where    denotes a search space for hypothesis 

selection;    denotes an evidence space for 

Bayes risk computation;      denotes a function 

that measures the loss between    and  ;      is 

the underlying distribution based on   . 

Some of existing work on MBR decoding fo-

cused on exploring larger spaces for both    

and   , e.g. from N-best lists to lattices or 

hypergraphs (Tromble et al., 2008; Kumar et al., 

2009). Various loss functions have also been 

investigated by using different evaluation crite-

ria for similarity computation, e.g. Word Error 

Rate, Position-independent Word Error Rate, 

BLEU and log-BLEU (Kumar and Byrne, 2004; 

Tromble et al., 2008). But less attention has 

been paid to distribution     . Currently, many 

SMT systems based on different paradigms can 

yield similar performances but are good at mod-

eling different inputs in the translation task 

(Koehn et al., 2004a; Och et al., 2004; Chiang, 

2007; Mi et al., 2008; Huang, 2008). We expect 

to integrate the advantages of different SMT 

models into MBR decoding for further im-

provements. In particular, we make in-depth in-

vestigation into MBR decoding concentrating on 

the translation distribution      by leveraging a 

mixture model based on multiple SMT systems. 

2.2 Summary of Translation Search Spaces 

There are three major forms of search spaces 

that can be obtained from an MAP decoder as a 

byproduct, depending on the design of the de-

coder: N-best lists, lattices and hypergraphs. 

An N-best list contains the   most probable 

translation hypotheses produced by a decoder. It 

only presents a very small portion of the entire 

search space of an SMT model. 

A hypergraph is a weighted acyclic graph 

which compactly encodes an exponential num-

ber of translation hypotheses. It allows us to 

represent both phrase-based and syntax-based 

systems in a unified framework. Formally, a 

hypergraph   is a pair      , where   is a 

set of hypernodes and   is a set of hyperedges. 

Each hypernode     corresponds to transla-

tion hypotheses with identical decoding states, 

which usually include the span       of the 

words being translated, the grammar symbol   

for that span and the left and right boundary 

words of hypotheses for computing language 

model (LM) scores. Each hyperedge     cor-

responds to a translation rule and connects a 

head node      and a set of tail nodes     . The 

number of tail nodes        is called the arity of 

the hyperedge   and the arity of a hypergraph is 

the maximum arity of its hyperedges. If the arity 

of a hyperedge   is zero,      is then called a 

source node. Each hypergraph has a unique root 

node and each path in a hypergraph induces a 

translation hypothesis. A lattice (Ueffing et al., 

2002) can be viewed as a special hypergraph, in 

which the maximum arity is one. 

2.3 Mixture Model for SMT 

We first describe how to construct a general dis-

tribution for translation hypotheses over multiple 

SMT systems using mixture modeling for usage 

in MBR decoding. 

Mixture modeling is a technique that has been 

applied to many statistical tasks successfully. 

For the SMT task in particular, given   SMT 

systems with their corresponding model distribu-

tions, a mixture model is defined as a probability 

distribution over the combined search space of 

all component systems and computed as a 

weighted sum of component model distributions: 
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  (2) 

In Equation 2,            are system weights 

which hold following constraints:        

and    
 
     ,            is the  th

 distri-

bution estimated on the search space    based 

on the log-linear formulation: 

           
              

           
          

  

where         is the score function of the  th
 

system for translation  ,          is a scaling 

factor that determines the flatness of the distri-

bution    sharp (    ) or smooth (    ). 

Due to the inherent differences in SMT mod-

els, translation hypotheses have different distri-

butions in different systems. A mixture model 

can effectively combine multiple distributions 

with tunable system weights. The distribution of 

a single model used in traditional MBR can be 

seen as a special mixture model, where   is one. 

2.4 Mixture Model for SMT 

Let              denote   machine translation 

systems,    denotes the search space produced 

by system    in MAP decoding procedure. An 

MMMBR decoder aims to seek a translation 

from the combined search space        that 

maximizes the expected gain score based on a 

mixture model         . We write the objec-

tive function of MMMBR decoding as: 

         
    

                

   

  (3) 

For the gain function     , we follow Trom-

ble et al. (2008) to use log-BLEU, which is 

scored by the hypothesis length and a linear 

function of n-gram matches as: 

            
                

 

     

In this definition,   is a reference translation, 

     is the length of hypothesis   ,   is an n-

gram presented in   ,        is the number of 

times that   occurs in   , and       is an indi-

cator function which equals to 1 when   occurs 

in   and 0 otherwise.            are model 

parameters, where   is the maximum order of 

the n-grams involved. 

For the mixture model     , we replace it by 

Equation 2 and rewrite the total gain score for 

hypothesis    in Equation 3: 

                

   

 

                      

    

 

    

 

                  

   

 

    

 

                   

    

 

   

  

 

 

 

 

 

 

(4) 

In Equation 4, the total gain score on the com-

bined search space   can be further decom-

posed into each local search space    with a 

specified distribution           . This is a nice 

property and it allows us to compute the total 

gain score as a weighted sum of local gain 

scores on different search spaces. We expand the 

local gain score for    computed on search space 

   with            using log-BLEU as: 

                   

    

 

       
                   

 

 

    

           

     
                      

 

                           

We make two approximations for the situations 

when    : the first is                  
 

and the second is                      

          In fact, due to the differences in ge-

nerative capabilities of SMT models, training 

data selection and various pruning techniques 

used, search spaces of different systems are al-

ways not identical in practice. For the conveni-

ence of formal analysis, we treat all            

as ideal distributions with assumptions that all 

systems work in similar settings, and translation 

candidates are shared by all systems. 

The method for computing n-gram posterior 

probability          in Equation 5 depends on 

different types of search space   : 

 When    is an N-best list, it can be com-

puted immediately by enumerating all trans-

lation candidates in the N-best list: 
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 When    is a hypergraph (or a lattice) that 

encodes exponential number of hypotheses, 

it is often impractical to compute this proba-

bility directly.  In this paper, we use the al-

gorithm presented in Kumar et al. (2009) 

which is described in Algorithm 1
2
: 

                            

   

          

    

 

                                       

       

 

                               

   

  

           counts the edge   with n-gram 

  that has the highest edge posterior proba-

bility relative to predecessors in the entire 

graph   , and          is the edge posterior 

probability that can be efficiently computed 

with standard inside and outside probabili-

ties      and      
as: 

         
 

    
                

      

  

where      is the weight of hyperedge   in 

  ,      is the normalization factor that 

equals to the inside probability of the root 

node in   .  

 

Algorithm 1: Compute n-gram posterior proba-

bilities on hypergraph    (Kumar et al., 2009) 
1: sort hypernodes topologically 

2: compute inside/outside probabilities      and      

for each hypernode      

3: compute edge posterior probability          for 

each hyperedge       

4: for each hyperedge      do  

5:       merge n-grams on      and keep the highest 

probability when n-grams are duplicated 

6:      apply the rule of edge   to n-grams on      and 

propagate     gram prefixes/suffixes to      

7:          for each n-gram   introduced by   do  

8:      if                      then 

9:                                            

                     

10:           else 

11:                                 

12:   end if 

13:  end for   

14: end for 

15: return n-gram posterior probability set             

                                                 
2
 We omit the similar algorithm for lattices because of their 

homogenous structures comparing to hypergraphs as we 

discussed in Section 2.2. 

Thus, the total gain score for hypothesis    on 

       can be further expanded as: 

   

 

                   

    

 

   

 

    

 

      
                      

 

 

 

   

 

    

 

      
                      

 

  

      

 

    
                 

 

        

 

  

       
                  

 

                            

where                   is a mixture n-

gram posterior probability. The most important 

fact derived from Equation 6 is that, the mixture 

of different distributions can be simplified to the 

weighted sum of n-gram posterior probabilities 

on different search spaces.  

We now derive the decision rule of MMMBR 

decoding based on Equation 6 below: 

         
    

    
                  

 

  (7) 

We also notice that MAP decoding and MBR 

decoding are two different ways of estimating 

the probability        and each of them has 

advantages and disadvantages. It is desirable to 

interpolate them together when choosing the fi-

nal translation outputs. So we include each sys-

tem’s MAP decoding cost as an additional fea-

ture further and modify Equation 7 to: 

         
 ′  

    
                  

 

 

                    

 

  

 

 

 

 

(8) 

where               is the model cost as-

signed by the MAP decoder    for hypothesis   . 

Because the costs of MAP decoding on different 

SMT models are not directly comparable, we 

utilize the MERT algorithm to assign an appro-

priate weight    for each component system.  

Compared to single system-based MBR de-

coding, which obeys the decision rule below:  
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MMMBR decoding has a similar objective func-

tion (Equation 8). The key difference is that, in 

MMMBR decoding, n-gram posterior probabili-

ty      is computed as              based on 

an ensemble of search spaces; meanwhile, in 

single system-based MBR decoding, this quanti-

ty is computed locally on single search space   . 

The procedure of MMMBR decoding on mul-

tiple SMT systems is described in Algorithm 2. 

 

Algorithm 2: MMMBR decoding on multiple 

SMT systems 
1: for each component system    do 

2:     run MAP decoding and generate the correspond-

ing search space    

3:  compute the n-gram posterior probability set 

            for    based on Algorithm 1 

4: end for 
5 compute the mixture n-gram posterior  probability 

                  for each  : 

6: for each unique n-gram   appeared in      do 

7:      for each search space    do 

8                    

9:         end for 

10: end for  

11: for each hyperedge   in      do 

12:     assign      to the edge   for all   contained in   

13: end for 
14: return the best path according to Equation 8 

 

3 A Two-Pass Parameter Optimization 

In Equation 8, there are two types of parameters: 

parameters introduced by the gain function      

and the model cost        , and system weights 

introduced by the mixture model     . Because 

Equation 8 is not a linear function when all pa-

rameters are taken into account, MERT algo-

rithm (Och, 2003) cannot be directly applied to 

optimize them at the same time. Our solution is 

to employ a two-pass training strategy, in which 

we optimize parameters for MBR first and then 

system weights for the mixture model. 

3.1 Parameter Optimization for MBR 

The inputs of an MMMBR decoder can be a 

combination of translation search spaces with 

arbitrary structures. For the sake of a general and 

convenience solution for optimization, we utilize 

the simplest N-best lists with proper sizes as 

approximations to arbitrary search spaces to 

optimize MBR parameters using MERT in the 

first-pass training. System weights can be set 

empirically based on different performances, or 

equally without any bias. Note that although we 

tune MBR parameters on N-best lists, n-gram 

posterior probabilities used for Bayes risk 

computation could still be estimated on 

hypergraphs for non N-best-based search spaces. 

3.2 Parameter Optimization for Mixture 

Model 

After MBR parameters optimized, we begin to 

tune system weights for the mixture model in the 

second-pass training. We rewrite Equation 8 as: 

         
 ′  

   

 

     
    

                                                     

 

 

                                                       

 

          

For each   , the aggregated score surrounded 

with braces can be seen as its feature value. Eq-

uation 9 now turns to be a linear function for all 

weights and can be optimized by the MERT. 

4 Experiments 

4.1 Data and Metric 

We conduct experiments on the NIST Chinese-

to-English machine translation tasks. We use the 

newswire portion of the NIST 2006 test set 

(MT06-nw) as the development set for parameter 

optimization, and report results on the NIST 

2008 test set (MT08). Translation performances 

are measured in terms of case-insensitive BLEU 

scores. Statistical significance is computed using 

the bootstrap re-sampling method proposed by 

Koehn (2004b). Table 1 gives data statistics. 

 

Data Set #Sentence #Word 

MT06-nw (dev) 616 17,316 

MT08 (test) 1,357 31,600 

Table 1. Statistics on dev and test data sets 

All bilingual corpora available for the NIST 

2008 constrained track of Chinese-to-English 

machine translation task are used as training data, 

which contain 5.1M sentence pairs, 128M Chi-

nese words and 147M English words after pre-

processing. Word alignments are performed by 

GIZA++ with an intersect-diag-grow refinement.  
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A 5-gram language model is trained on the 

English side of all bilingual data plus the Xinhua 

portion of LDC English Gigaword Version 3.0. 

4.2 System Description 

We use two baseline systems. The first one 

(SYS1) is a hierarchical phrase-based system 

(Chiang, 2007) based on Synchronous Context 

Free Grammar (SCFG), and the second one 

(SYS2) is a phrasal system (Xiong et al., 2006) 

based on Bracketing Transduction Grammar 

(Wu, 1997) with a lexicalized reordering com-

ponent based on maximum entropy model. 

Phrasal rules shared by both systems are ex-

tracted on all bilingual data, while hierarchical 

rules for SYS1 only are extracted on a selected 

data set, including LDC2003E07, LDC2003E14, 

LDC2005T06, LDC2005T10, LDC2005E83, 

LDC2006E26, LDC2006E34, LDC2006E85 and 

LDC2006E92, which contain about 498,000 sen-

tence pairs. Translation hypergraphs are generat-

ed by each baseline system during the MAP de-

coding phase, and 1000-best lists used for 

MERT algorithm are extracted from hyper-

graphs by the k-best parsing algorithm (Huang 

and Chiang, 2005). We tune scaling factor to 

optimize the performance of HyperGraph-based 

MBR decoding (HGMBR) on MT06-nw for 

each system (0.5 for SYS1 and 0.01 for SYS2). 

4.3 MMMBR Results on Multiple Systems 

We first present the overall results of MMMBR 

decoding on two baseline systems. 

To compare with single system-based MBR 

methods, we re-implement N-best MBR, which 

performs MBR decoding on 1000-best lists with 

the fast consensus decoding algorithm (DeNero 

et al., 2009), and HGMBR, which performs 

MBR decoding on a hypergraph (Kumar et al., 

2009). Both methods use log-BLEU as the loss 

function. We also compare our method with 

IHMM Word-Comb, a state-of-the-art word-level 

system combination approach based on incre-

mental HMM alignment proposed by Li et al. 

(2009b). We report results of MMMBR decod-

ing on both N-best lists (N-best MMMBR) and 

hypergraphs (Hypergraph MMMBR) of two 

baseline systems. As MBR decoding can be used 

for any SMT system, we also evaluate MBR-

IHMM Word-Comb, which uses N-best lists 

generated by HGMBR on each baseline systems. 

The default beam size is set to 50 for MAP de-

coding and hypergraph generation. The setting 

of N-best candidates used for (MBR-) IHMM 

Word-Comb is the same as the one used in Li et 

al. (2009b). The maximum order of n-grams in-

volved in MBR model is set to 4. Table 2 shows 

the evaluation results. 

 

 MT06-nw MT08 

 SYS1 SYS2 SYS1 SYS2 

MAP 38.1 37.1 28.5 28.0 

N-best MBR 38.3 37.4 29.0 28.1 

HGMBR 38.3 37.5 29.1 28.3 

IHMM 

Word-Comb 
39.1 29.3 

MBR-IHMM 

Word-Comb 
39.3 29.7 

N-best 

MMMBR 
39.0* 29.4* 

Hypergraph 

MMMBR 
39.4*

+
 29.9*

+
 

Table 2. MMMBR decoding on multiple sys-

tems (*: significantly better than HGMBR with 

      ; +: significantly better than IHMM 

Word-Comb with       ) 

From Table 2 we can see that, compared to 

MAP decoding, N-best MBR and HGMBR only 

improve the performance in a relative small 

range (+0.1~+0.6 BLEU), while MMMBR de-

coding on multiple systems can yield significant 

improvements on both dev set (+0.9 BLEU on 

N-best MMMBR and +1.3 BLEU on Hyper-

graph MMMBR) and test set (+0.9 BLEU on N-

best MMMBR and +1.4 BLEU on Hypergraph 

MMMBR); compared to IHMM Word-Comb, 

N-best MMMBR can achieve comparable results 

on both dev and test sets, while Hypergraphs 

MMMBR can achieve even better results (+0.3 

BLEU on dev and +0.6 BLEU on test); com-

pared to MBR-IHMM Word-Comb, Hypergraph 

MMMBR can also obtain comparable results 

with tiny improvements (+0.1 BLEU on dev and 

+0.2 BLEU on test). However, MBR-IHMM 

Word-Comb has ability to generate new hypo-

theses, while Hypergraph MMMBR only choos-

es translations from original search spaces. 

We next evaluate performances of MMMBR 

decoding on hypergraphs generated by different 

beam size settings, and compare them to (MBR-) 
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IHMM Word-Comb with the same candidate 

size and HGMBR with the same beam size. We 

list the results of MAP decoding for comparison. 

The comparative results on MT08 are shown in 

Figure 1, where X-axis is the size used for all 

methods each time, Y-axis is the BLEU score, 

MAP-  and HGMBR-  stand for MAP decoding 

and HGMBR decoding for the  th
 system. 

 

Figure 1. MMMBR vs. (MBR-) IHMM Word-

Comb and HGMBR with different sizes 

From Figure 1 we can see that, MMMBR de-

coding performs consistently better than both 

(MBR-) IHMM Word-Comb and HGMBR on 

all sizes. The gains achieved are around +0.5 

BLEU compared to IHMM Word-Comb, +0.2 

BLEU compared to MBR-IHMM Word-Comb, 

and +0.8 BLEU compared to HGMBR. Com-

pared to MAP decoding, the best result (30.1) is 

obtained when the size is 100, and the largest 

improvement (+1.4 BLEU) is obtained when the 

size is 50. However, we did not observe signifi-

cant improvement when the size is larger than 50.  

We then setup an experiment to verify that the 

mixture model based on multiple distributions is 

more effective than any individual distributions 

for Bayes risk computation in MBR decoding. 

We use Mix-HGMBR to denote MBR decoding 

performed on single hypergraph of each system 

in the meantime using a mixture model upon 

distributions of two systems for Bayes risk com-

putation. We compare it with HGMBR and 

Hypergraph MMMBR and list results in Table 3. 

 

 MT08 

 SYS1 SYS2 

HGMBR 29.1 28.3 

Mix-HGMBR 29.4 28.9 

Hypergraph MMMBR 29.9 

Table 3. Performance of MBR decoding on dif-

ferent settings of search spaces and distributions 

It can be seen that based on the same search 

space, the performance of Mix-HGMBR is sig-

nificantly better than that of HGMBR (+0.3/+0.6 

BLEU on dev/test). Yet the performance is still 

not as good as Hypergraph, which indicates the 

fact that the mixture model and the combination 

of search spaces are both helpful to MBR decod-

ing, and the best choice is to use them together. 

We also empirically investigate the impacts of 

different system weight settings upon the per-

formances of Hypergraph MMMBR on dev set 

in Figure 2, where X-axis is the weight    for 

SYS1, Y-axis is the BLEU score. The weight    

for SYS2 equals to      as only two systems 

involved. The best evaluation result on dev set is 

achieved when the weight pair is set to 0.7/0.3 

for SYS1/SYS2, which is also very close to the 

one trained automatically by the training strategy 

presented in Section 3.2. Although this training 

strategy can be processed repeatedly, the per-

formance is stable after the 1
st
 round finished. 

 

Figure 2. Impacts of different system weights in 

the mixture model 

4.4 MMMBR Results on Identical Systems 

with Different Translation Models 

Inspired by Macherey and Och (2007), we ar-

range a similar experiment to test MMMBR de-

coding for each baseline system on an ensemble 

of sub-systems built by the following two steps. 

Firstly, we iteratively apply the following 

procedure 3 times: at the  th
 time, we randomly 

sample 80% sentence pairs from the total bilin-

gual data to train a translation model and use it 

to build a new system based on the same decod-

er, which is denoted as sub-system- . Table 4 

shows the evaluation results of all sub-systems 

on MT08, where MAP decoding (the former 

ones) and corresponding HGMBR (the latter 

ones) are grouped together by a slash. We set all 

beam sizes to 20 for a time-saving purpose. 

27.5

28.0

28.5

29.0

29.5

30.0

30.5

10 20 50 100 150

MAP-1

MAP-2

HGMBR-1

HGMBR-2
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MBR-IHMM

MMMBR

38.5

38.7

38.9

39.1

39.3

39.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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 MT08 

 SYS1 SYS2 

Baseline 28.4/29.0 27.6/27.8 

sub-system-1 28.1/28.5 26.8/27.3 

sub-system-2 28.3/28.4 27.0/27.1 

sub-system-3 27.7/28.0 27.3/27.6 

Table 4. Performance of sub-systems 

Secondly, starting from each baseline system, 

we gradually add one more sub-system each 

time and perform Hypergraph MMMBR on 

hypergraphs generated by current involved sys-

tems. Table 5 shows the evaluation results. 

 

 MT08 

 SYS1 SYS2 

MAP 28.4 27.6 

HGMBR 29.0 27.8 

Hypergraph MMMBR 

+ sub-system-1 29.1 27.9 

+ sub-system-2 29.1 28.1 

+ sub-system-3 29.3 28.3 

Table 5. Performance of Hypergraph MMMBR 

on multiple sub-systems 

We can see from Table 5 that, compared to 

the results of MAP decoding, MMMBR decod-

ing can achieve significant improvements when 

more than one sub-system are involved; however, 

compared to the results of HGMBR on baseline 

systems, there are few changes of performance 

when the number of sub-systems increases. One 

potential reason is that the translation hypotheses 

between multiple sub-systems under the same 

SMT model hold high degree of correlation, 

which is discussed in Macherey and Och (2007). 

We also evaluate MBR-IHMM Word-Comb 

on N-best lists generated by each baseline sys-

tem with its corresponding three sub-systems. 

Evaluation results are shown in Table 6, where 

Hypergraph MMMBR still outperforms MBR-

IHMM Word-Comb on both baseline systems. 

 

 MT08 

 SYS1 SYS2 

MBR-IHMM Word-Comb 29.1 28.0 

Hypergraph MMMBR 29.3 28.3 

Table 6. Hypergraph MMMBR vs. MBR-IHMM 

Word-Comb with multiple sub-systems 

5 Related Work 

Employing consensus between multiple systems 

to improve machine translation quality has made 

rapid progress in recent years. System combina-

tion methods based on confusion networks (Ros-

ti et al., 2007; Li et al., 2009b) have shown 

state-of-the-art performances in MT benchmarks. 

Different from them, MMMBR decoding me-

thod does not generate new translations. It main-

tains the essential of MBR methods to seek 

translations from existing search spaces. Hypo-

thesis selection method (Hildebrand and Vogel, 

2008) resembles more our method in making use 

of n-gram statistics. Yet their work does not be-

long to the MBR framework and treats all sys-

tems equally. Li et al. (2009a) presents a co-

decoding method, in which n-gram agreement 

and disagreement statistics between translations 

of multiple decoders are employed to re-rank 

both full and partial hypotheses during decoding. 

Liu et al. (2009) proposes a joint-decoding me-

thod to combine multiple SMT models into one 

decoder and integrate translation hypergraphs 

generated by different models. Both of the last 

two methods work in a white-box way and need 

to implement a more complicated decoder to 

integrate multiple SMT models to work together; 

meanwhile our method can be conveniently used 

as a second-pass decoding procedure, without 

considering any system implementation details. 

6 Conclusions and Future Work 

In this paper, we have presented a novel 

MMMBR decoding approach that makes use of 

a mixture distribution of multiple SMT systems 

to improve translation accuracy. Compared to 

single system-based MBR decoding methods, 

our method can achieve significant improve-

ments on both dev and test sets. What is more, 

MMMBR decoding approach also outperforms a 

state-of-the-art system combination method.  We 

have empirically verified that the success of our 

method comes from both the mixture modeling 

of translation hypotheses and the combined 

search space for translation selection. 

In the future, we will include more SMT sys-

tems with more complicated models into our 

MMMBR decoder and employ more general 

MERT algorithms on hypergraphs and lattices 

(Kumar et al., 2009) for parameter optimization. 
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