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Abstract 

Previous methods on improving transla-

tion quality by employing multiple SMT 

models usually carry out as a second-

pass decision procedure on hypotheses 

from multiple systems using extra fea-

tures instead of using features in existing 

models in more depth. In this paper, we 

propose translation model generalization 

(TMG), an approach that updates proba-

bility feature values for the translation 

model being used based on the model it-

self and a set of auxiliary models, aiming 

to enhance translation quality in the first-

pass decoding. We validate our approach 

on translation models based on auxiliary 

models built by two different ways. We 

also introduce novel probability variance 

features into the log-linear models for 

further improvements. We conclude that 

our approach can be developed indepen-

dently and integrated into current SMT 

pipeline directly. We demonstrate BLEU 

improvements on the NIST Chinese-to-

English MT tasks for single-system de-

codings, a system combination approach 

and a model combination approach.
1
 

1 Introduction 

Current research on Statistical Machine Transla-

tion (SMT) has made rapid progress in recent 

decades. Although differed on paradigms, such 

as phrase-based (Koehn, 2004; Och and Ney, 

2004), hierarchical phrase-based (Chiang, 2007) 

and syntax-based (Galley et al., 2006; Shen et 

al., 2008; Huang, 2008), most SMT systems fol-
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low the similar pipeline and share common 

translation probability features which constitute 

the principal components of translation models. 

However, due to different model structures or 

data distributions, these features are usually as-

signed with different values in different transla-

tion models and result in translation outputs with 

individual advantages and shortcomings. 

In order to obtain further improvements, many 

approaches have been explored over multiple 

systems: system combination based on confu-

sion network (Matusov et al., 2006; Rosti et al., 

2007; Li et al., 2009a) develop on multiple N-

best outputs and outperform primary SMT sys-

tems; consensus-based methods (Li et al., 2009b; 

DeNero et al., 2010), on the other hand, avoid 

the alignment problem between translations can-

didates and utilize n-gram consensus, aiming to 

optimize special decoding objectives for hypo-

thesis selection. All these approaches act as the 

second-pass decision procedure on hypotheses 

from multiple systems by using extra features. 

They begin to work only after the generation of 

translation hypotheses has been finished. 

In this paper, we propose translation model 

generalization (TMG), an approach that takes 

effect during the first-pass decoding procedure 

by updating translation probability features for 

the translation model being used based on the 

model itself and a set of auxiliary models. Baye-

sian Model Averaging is used to integrate values 

of identical features between models. Our con-

tributions mainly include the following 3 aspects: 

 Alleviate the model bias problem based on 

translation models with different paradigms.  

Because of various model constraints, trans-

lation models based on different paradigms 

could have individual biases. For instance, 

phrase-based models prefer translation pairs 

with high frequencies and assign them high 
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probability values; yet such pairs could be 

disliked or even be absent in syntax-based 

models because of their violation on syntac-

tic restrictions. We alleviate such model bias 

problem by using the generalized probability 

features in first-pass decoding, which com-

puted based on feature values from all trans-

lation models instead of any single one. 

 Alleviate the over-estimation problem based 

on translation models with an identical pa-

radigm but different training corpora.  

In order to obtain further improvements by 

using an existing training module built for a 

specified model paradigm, we present a ran-

dom data sampling method inspired by bag-

ging (Breiman, 1996) to construct transla-

tion model ensembles from a unique data set 

for usage in TMG. Compared to results of 

TMG based on models with different para-

digms, TMG based on models built in such a 

way can achieve larger improvements. 

 Novel translation probability variance fea-

tures introduced. 

We present how to compute the variance for 

each probability feature based on its values 

in different involved translation models with 

prior model probabilities. We add them into 

the log-linear model as new features to make 

current SMT models to be more flexible. 

The remainder of this paper is organized as 

follows: we review various translation models in 

Section 2. In Section 3, we first introduce Baye-

sian Model Averaging method for SMT tasks 

and present a generic TMG algorithm based on it. 

We then discuss two solutions for constructing 

TM ensembles for usage in TMG. We next in-

troduce probability variance features into current 

SMT models as new features. We evaluate our 

method on four state-of-the-art SMT systems, a 

system combination approach and a model com-

bination approach. Evaluation results are shown 

in Section 4. In Section 5, we discuss some re-

lated work. We conclude the paper in Section 6. 

2 Summary of Translation Models 

Translation Model (TM) is the most important 

component in current SMT framework. It 

provides basic translation units for decoders with 

a series of probability features for model 

scoring. Many literatures have paid attentions to 

TMs from different aspects: DeNeefe et al. 

(2007) compared strengths and weaknesses of a 

phrase-based TM and a syntax-based TM from 

the statistic aspect; Zollmann et al. (2008) made 

a systematic comparison of three TMs, including 

phrasal, hierarchical and syntax-based, from the 

performance aspect; and Auli et al. (2009) made 

a systematic analysis of a phrase-based TM and 

a hierarchical TM from the search space aspect. 

Given a word-aligned training corpus, we 

separate a TM training procedure into two phas-

es: extraction phase and parameterization phase. 

Extraction phase aims to pick out all valid 

translation pairs that are consistent with pre-

defined model constraints. We summarize cur-

rent TMs based on their corresponding model 

constraints into two categories below: 

 String-based TM (string-to-string): reserves 

all translation pairs that are consistent with 

word alignment and satisfy length limitation. 

SMT systems using such TMs can benefit 

from a large convergence of translation pairs. 

 Tree-based TM (string-to-tree, tree-to-string 

or tree-to-tree): needs to obey syntactic re-

strictions in one side or even both sides of 

translation candidates. The advantage of us-

ing such TMs is that translation outputs 

trend to be more syntactically well-formed. 

Parameterization phase aims to assign a series 

of probability features to each translation pair. 

These features play the most important roles in 

the decision process and are shared by most cur-

rent SMT decoders. In this paper, we mainly 

focus on the following four commonly used do-

minant probability features including: 

 translation probability features in two direc-

tions:          and          

 lexical weight features in two directions: 

            and             

Both string-based and tree-based TMs are 

state-of-the-art models, and each extraction ap-

proach has its own strengths and weaknesses 

comparing to others. Due to different predefined 

model constraints, translation pairs extracted by 

different models usually have different distribu-

tions, which could directly affect the resulting 

probability feature values computed in parame-

305



terization phase. In order to utilize translation 

pairs more fairly in decoding, it is desirable to 

use more information to measure the quality of 

translation pairs based on different TMs rather 

than totally believing any single one. 

3 Translation Model Generalization 

We first introduce Bayesian Model Averaging 

method for SMT task. Based on it, we then for-

mally present the generic TMG algorithm. We 

also provide two solutions for constructing TM 

ensembles as auxiliary models. We last intro-

duce probability variance features based on mul-

tiple TMs for further improvements. 

3.1 Bayesian Model Averaging for SMT 

Bayesian Model Averaging (BMA) (Hoeting et 

al., 1999) is a technique designed to solve uncer-

tainty inherent in model selection.  

Specifically, for SMT tasks,   is a source sen-

tence,   is the training data,    is the  th
 SMT 

model trained on     ,            represents 

the probability score predicted by    that   can 

be translated into a target sentence  . BMA pro-

vides a way to combine decisions of all     

SMT models by computing the final translation 

probability score              as follows: 

                               

 

   

  (1) 

where          is the prior probability that 

   is a true model. For convenience, we will 

omit all symbols    in following descriptions. 

Ideally, if all involved models           
share the same search space, then translation 

hypotheses could only be differentiated in prob-

ability scores assigned by different SMT models. 

In such case, BMA can be straightly developed 

on the whole SMT models in either span level or 

sentence level to re-compute translation scores 

of hypotheses for better rankings. However, be-

cause of various reasons, e.g. different pruning 

methods, different training data used, different 

generative capabilities of SMT models, search 

spaces between different models are always not 

identical. Thus, it is intractable to develop BMA 

on the whole SMT model level directly. 

As a tradeoff, we notice that translation pairs 

between different TMs share a relatively large 

convergence because of word length limitation. 

So we instead utilize BMA method to multiple 

TMs by re-computing values of probability fea-

tures between them, and we name this process as 

translation model generalization. 

3.2 A Generic BMA-based TMG Algorithm 

For a translation model   , TMG aims to re-

compute its values of probability features based 

on itself and   collaborative TMs          . 
We describe the re-computation process for an 

arbitrary feature               as follows: 

                              

 

   

  (2) 

where             is the feature value assigned 

by   . We denote    as the main model, and 

other collaborative TMs as auxiliary models. 

Figure 1 describes an example of TMG on two 

TMs, where the main model is a phrasal TM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Equation 2 is a general framework that can be 

applied to all TMs. The only limitation is that 

the segmentation (or tokenization) standards for 

source (or target) training sentences should be 

identical for all models. We describe the generic 

TMG procedure in Algorithm 1
2
. 

                                                 
2
 In this paper, since all data sets used have relative large 

sizes and all SMT models have similar performances, we 

heuristically set all       equally to        . 

 

Figure 1. TMG applied to a phrasal TM (main 

model) and a syntax-based TM (auxiliary mod-

el). The value of a translation probability feature 

           参加  in TM1 is de-valued (from 0.6 

to 0.3), in which ‘join the’ is absent in TM2 be-

cause of its bad syntactic structure. 

           参加  
=0.6 

Phrase-based TM1 

(Main model) 

Syntax-based TM2 

(Auxiliary model) 

      =0.5       =0.5 

 

Generalized TM1 

           参加  
=0.6*0.5+0.0*0.5=0.3 

           参加  
=0.0 
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Algorithm 1: TMG for a main model    

1: for the  th
 auxiliary TM do 

2:          run training procedure on    with specified 

model constraints and generate    

3: end for 
4: for each translation pair         in    do 

5:  for each probability feature            do 

6:           for each translation model    do 

7:      if          is contained in    then 

8:                                            

9    end if 
10:   end for 

11:  end for 

12: end for 

13: return the generalized    for SMT decoding 

 

3.3 Auxiliary Model Construction 

In order to utilize TMG, more than one TM as 

auxiliary models is needed. Building TMs with 

different paradigms is one solution. For exam-

ple, we can build a syntax-based TM as an aux-

iliary model for a phrase-based TM. However, it 

has to re-implement more complicated TM train-

ing modules besides the existing one. 

In this sub-section, we present an alternative 

solution to construct auxiliary model ensembles 

by using the existing training module with dif-

ferent training data extracted from a unique data 

set. We describe the general procedure for con-

structing   auxiliary models as follows: 

1) Given a unique training corpus  , we ran-

domly sample    bilingual sentence pairs 

without replacement and denote them as   . 

  is a number determined empirically; 

2) Based on   , we re-do word alignment and 

train an auxiliary model    using the exist-

ing training module; 

3) We execute Step 1 and Step 2 iteratively for 

  times, and finally obtain   auxiliary mod-

els. The optimal setting of   for TMG is al-

so determined empirically. 

With all above steps finished, we can perform 

TMG as we described in Algorithm 1 based on 

the   auxiliary models generated already. 

The random data sampling process described 

above is very similar to bagging except for it not 

allowing replacement during sampling. By mak-

ing use of this process, translation pairs with low 

frequencies have relatively high probabilities to 

be totally discarded, and in resulting TMs, their 

probabilities could be zero; meanwhile, transla-

tion pairs with high frequencies still have high 

probabilities to be reserved, and hold similar 

probability feature values in resulting TMs com-

paring to the main model. Thus, after TMG pro-

cedure, feature values could be smoothed for 

translation pairs with low frequencies, and be 

stable for translation pairs with high frequencies. 

From this point of view, TMG can also be seen 

as a TM smoothing technique based on multiple 

TMs instead of single one such as Foster et al. 

(2006). We will see in Section 4 that TMG based 

on TMs generated by both of these two solutions 

can improve translation quality for all baseline 

decoders on a series of evaluation sets. 

3.4 Probability Variance Feature 

The re-computed values of probability features 

in Equation 2 are actually the feature expecta-

tions based on their values from all involved 

TMs. In order to give more statistical meanings 

to translation pairs, we also compute their cor-

responding feature variances based on feature 

expectations and TM-specified feature values 

with prior probabilities. We introduce such va-

riances as new features into the log-linear model 

for further improvements. Our motivation is to 

quantify the differences of model preferences 

between TMs for arbitrary probability features. 

The variance for an arbitrary probability fea-

ture         can be computed as follows: 

                     
       

 

   

  (3) 

where        is the feature expectation computed 

by Equation 2,       is the feature value pre-

dicted by   , and        is the prior probabil-

ity for   . Each probability feature now corres-

ponds to a variance score. We extend the origi-

nal feature set of    with variance features add-

ed in and list the updated set below: 

 translation probability expectation features 

in two directions:            and            

 translation probability variance features in 

two directions:           and           

 lexical weight expectation features in two 

directions:            
   and         

      

 lexical weight variance features in two di-

rections:           
   and        
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4 Experiments 

4.1 Data Condition 

We conduct experiments on the NIST Chinese-

to-English MT tasks. We tune model parameters 

on the NIST 2003 (MT03) evaluation set by 

MERT (Och, 2003), and report results on NIST 

evaluation sets including the NIST 2004 (MT04), 

the NIST 2005 (MT05), the newswire portion of 

the NIST 2006 (MT06) and 2008 (MT08). Per-

formances are measured in terms of the case-

insensitive BLEU scores in percentage numbers. 

Table 1 gives statistics over these evaluation sets. 

 

 MT03 MT04 MT05 MT06 MT08 

Sent 919 1,788 1,082 616 691 

Word 23,788 48,215 29,263 17,316 17,424 

Table 1. Statistics on dev/test evaluation sets 

We use the selected data that picked out from 

the whole data available for the NIST 2008 con-

strained track of Chinese-to-English machine 

translation task as the training corpora, including 

LDC2003E07, LDC2003E14, LDC2005T06, 

LDC2005T10, LDC2005E83, LDC2006E26, 

LDC2006E34, LDC2006E85 and LDC2006E92, 

which contain about 498,000 sentence pairs after 

pre-processing. Word alignments are performed 

by GIZA++ (Och and Ney, 2000) in both direc-

tions with an intersect-diag-grow refinement. 

A traditional 5-gram language model (LM) 

for all involved systems is trained on the English 

side of all bilingual data plus the Xinhua portion 

of LDC English Gigaword Version 3.0. A lexi-

calized reordering model (Xiong et al., 2006) is 

trained on the selected data in maximum entropy 

principle for the phrase-based system. A tri-

gram target dependency LM (DLM) is trained 

on the English side of the selected data for the 

dependency-based hierarchical system. 

 

 

 

 

 

 

 

 

4.2 MT System Description 

We include four baseline systems. The first one 

(Phr) is a phrasal system (Xiong et al., 2006) 

based on Bracketing Transduction Grammar 

(Wu, 1997) with a lexicalized reordering com-

ponent based on maximum entropy model. The 

second one (Hier) is a hierarchical phrase-based 

system (Chiang, 2007) based on Synchronous 

Context Free Grammar (SCFG). The third one 

(Dep) is a string-to-dependency hierarchical 

phrase-based system (Shen et al., 2008) with a 

dependency language model, which translates 

source strings to target dependency trees. The 

fourth one (Synx) is a syntax-based system (Gal-

ley et al., 2006) that translates source strings to 

target syntactic trees. 

4.3 TMG based on Multiple Paradigms 

We develop TMG for each baseline system’s 

TM based on the other three TMs as auxiliary 

models. All prior probabilities of TMs are set 

equally to 0.25 heuristically as their similar per-

formances. Evaluation results are shown in Ta-

ble 2, where gains more than 0.2 BLEU points 

are highlighted as improved cases. Compared to 

baseline systems, systems based on generalized 

TMs improve in most cases (18 times out of 20). 

We also notice that the improvements achieved 

on tree-based systems (Dep and Synx) are rela-

tively smaller than those on string-based systems 

(Phr and Hier). A potential explanation can be 

that with considering more syntactic restrictions, 

tree-based systems suffer less than string-based 

systems on the over-estimation problem. We do 

not present further results with variance features 

added because of their consistent un-promising 

numbers. We think this may be due to the consi-

derable portion of non-overlapping translation 

pairs between main model and auxiliary models, 

which cause the variances not so accurate. 

 

 

 

 

 

 

 

 

 

 

 

  MT03(dev) MT04 MT05 MT06 MT08 Average 

Phr 
Baseline 40.45 39.21 38.03 34.24 30.21 36.43 

TMG 41.19(+0.74) 39.74(+0.53) 38.39(+0.36) 34.71(+0.47) 30.69(+0.48) 36.94(+0.51) 

Hier 
Baseline 41.30 39.63 38.83 34.63 30.46 36.97 

TMG 41.67(+0.37) 40.25(+0.62) 39.11(+0.28) 35.78(+1.15) 31.17(+0.71) 37.60(+0.63) 

Dep 
Baseline 41.10 39.81 39.47 35.72 30.50 37.32 

TMG 41.37(+0.27) 39.92(+0.11) 39.91(+0.44) 35.99(+0.27) 31.07(+0.57) 37.65(+0.33) 

Synx 
Baseline 41.02 39.88 39.47 36.41 32.15 37.79 

TMG 41.26(+0.24) 40.09(+0.21) 39.90(+0.43) 36.77(+0.36) 32.15(+0.00) 38.03(+0.24) 

Table 2. Results of TMG based on TMs with different paradigms 
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4.4 TMG based on Single Paradigm 

We then evaluate TMG based on auxiliary mod-

els generated by the random sampling method. 

We first decide the percentage of training data 

to be sampled. We empirically vary this number 

by 20%, 40%, 60%, 80% and 90% and use each 

sampled data to train an auxiliary model. We 

then run TMG on the baseline TM with different 

auxiliary model used each time. For time saving, 

we only evaluate on MT03 for Phr in Figure 2. 

 

Figure 2. Affects of different percentages of data 

The optimal result is achieved when the per-

centage is 80%, and we fix it as the default value 

in following experiments. 

We then decide the number of auxiliary mod-

els used for TMG by varying it from 1 to 5. We 

list different results on MT03 for Phr in Figure 3. 

 

Figure 3. Affects of different numbers of auxi-

liary models 

 

 

 

 

 

 

 

 

 

 

The optimal result is achieved when the num-

ber of auxiliary models is 4, and we fix it as the 

default value in following experiments. 

We now develop TMG for each baseline sys-

tem’s TM based on auxiliary models constructed 

under default settings determined above. Evalua-

tion results are shown in Table 3. We also inves-

tigate the affect of variance features for perfor-

mance, whose results are denoted as TMG+Var. 

From Table 3 we can see that, compared to 

the results on baseline systems, systems using 

generalized TMs obtain improvements on almost 

all evaluation sets (19 times out of 20). With 

probability variance features added further, the 

improvements become even more stable than the 

ones using TMG only (20 times out of 20). Simi-

lar to the trend in Table 2, we also notice that 

TMG method is more preferred by string-based 

systems (Phr and Hier) rather than tree-based 

systems (Dep and Synx). This makes our con-

clusion more solidly that syntactic restrictions 

can help to alleviate the over-estimation problem. 

4.5 Analysis on Phrase Coverage 

We next empirically investigate on the transla-

tion pair coverage between TM ensembles built 

by different ways, and use them to analyze re-

sults got from previous experiments. Here, we 

only focus on full lexicalized translation entries 

between models. Those entries with variables 

are out of consideration in comparisons because 

of their model dependent properties. 

Phrase pairs in the first three TMs have a 

length limitation in source side up to 3 words, 

and each source phrase can be translated to at 

most 20 target phrases.  
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  MT03(dev) MT04 MT05 MT06 MT08 Average 

Phr 

Baseline 40.45 39.21 38.03 34.24 30.21 36.43 

TMG 41.77(+1.32) 40.28(+1.07) 39.13(+1.10) 35.38(+1.14) 31.12(+0.91) 37.54(+1.11) 

TMG+Var 41.77(+1.32) 40.31(+1.10) 39.43(+1.30) 35.61(+1.37) 31.62(+1.41) 37.74(+1.31) 

Hier 

Baseline 41.30 39.63 38.83 34.63 30.46 36.97 

TMG 42.28(+0.98) 40.45(+0.82) 39.61(+0.78) 35.67(+1.04) 31.54(+1.08) 37.91(+0.94) 

TMG+Var 42.42(+1.12) 40.55(+0.92) 39.69(+0.86) 35.55(+0.92) 31.41(+0.95) 37.92(+0.95) 

Dep 

Baseline 41.10 39.81 39.47 35.72 30.50 37.32 

TMG 41.49(+0.39) 40.20(+0.39) 40.00(+0.53) 36.13(+0.41) 31.24(+0.74) 37.81(+0.49) 

TMG+Var 41.72(+0.62) 40.57(+0.76) 40.44(+0.97) 36.15(+0.43) 31.31(+0.81) 38.04(+0.72) 

Synx 

Baseline 41.02 39.88 39.47 36.41 32.15 37.79 

TMG 41.18(+0.16) 40.30(+0.42) 39.90(+0.43) 36.99(+0.58) 32.45(+0.30) 38.16(+0.37) 

TMG+Var 41.42(+0.40) 40.55(+0.67) 40.17(+0.70) 36.89(+0.48) 32.51(+0.36) 38.31(+0.52) 

Table 3. Results of TMG based on TMs constructed by random data sampling 
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For the fourth TM, these two limitations are 

released to 4 words and 30 target phrases. We 

treat phrase pairs identical on both sides but with 

different syntactic labels in the fourth TM as a 

unique pair for conveniences in statistics.  

We first make statistics on TMs with different 

paradigms in Table 4. We can see from Table 4 

that only slightly over half of the phrase pairs 

contained by the four involved TMs are common, 

which is also similar to the conclusion drawn in 

DeNeefe et al. (2006). 

 

Models #Translation Pair #Percentage 

Phr 1,222,909 50.6% 

Hier 1,222,909 50.6% 

Dep 1,087,198 56.9% 

Synx 1,188,408 52.0% 

Overlaps 618,371 - 

Table 4. Rule statistics on TMs constructed by 

different paradigms 

We then make statistics on TMs with identical 

paradigm in Table 5. For each baseline TM and 

its corresponding four auxiliary models con-

structed by random data sampling, we count the 

number of phrase pairs that are common be-

tween them and compute the percentage num-

bers based on it for each TM individually. 

 

Models TM0 TM1 TM2 TM3 TM4 

Phr 61.8% 74.0% 74.1% 73.9% 74.1% 

Hier 61.8% 74.0% 74.1% 73.9% 74.1% 

Dep 60.8% 73.6% 73.6% 73.5% 73.7% 

Synx 57.2% 68.4% 68.5% 68.5% 68.6% 

Table 5. Rule statistics on TMs constructed by 

random sampling (TM0 is the main model) 

Compared to the numbers in Table 4, we find 

that the coverage between baseline TM and 

sampled auxiliary models with identical para-

digm is larger than that between baseline TM 

and auxiliary models with different paradigms 

(about 10 percents). It is a potential reason can 

explain why results of TMG based on sampled 

auxiliary models are more effective than those 

based on auxiliary models built with different 

paradigms, as we infer that they share more 

common phrase pairs each other and make the 

computation of feature expectations and va-

riances to be more reliable and accurate. 

4.6 Improvements on System Combination 

Besides working for single-system decoding, we 

also perform a system combination method on 

N-best outputs from systems using generalized 

TMs. We re-implement a state-of-the-art word-

level System Combination  (SC) approach based 

on incremental HMM alignment proposed by Li 

et al. (2009a). The default number of N-best 

candidates used is set to 20. 

We evaluate SC on N-best outputs generated 

from 4 baseline decoders by using different TM 

settings and list results in Table 6, where Base 

stands for combination results on systems using 

default TMs; Paras stands for combination re-

sults on systems using TMs generalized based 

on auxiliary models with different paradigms; 

and Samp stands for combination results on sys-

tems using TMs generalized based on auxiliary 

models constructed by the random data sampling 

method. For the Samp setting, we also include 

probability variance features computed based on 

Equation 3 in the log-linear model.  

 
SC MT03 MT04 MT05 MT06 MT08 

Base 44.20 42.30 41.22 37.77 33.07 

Paras 44.40 42.69 41.53 38.05 33.31 

Samp 44.80 42.95 42.10 38.39 33.67 

Table 6. Results on system combination 

From Table 6 we can see that system combi-

nation can benefit from TMG method. 

4.7 Improvements on Model Combination 

As an alternative, model combination is another 

effective way to improve translation perfor-

mance by utilizing multiple systems. We re-

implement the Model Combination (MC) ap-

proach (DeNero et al., 2010) using N-best lists 

as its inputs and develop it on N-best outputs 

used in Table 6. Evaluation results are presented 

in Table 7.  

 
MC MT03 MT04 MT05 MT06 MT08 

Base 42.31 40.57 40.31 38.65 33.88 

Paras 42.87 40.96 40.77 38.81 34.47 

Samp 43.29 41.29 41.11 39.28 34.77 

Table 7. Results on model combination 
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From Table 7 we can see that model combina-

tion can also benefit from TMG method. 

5 Related Work 

Foster and Kuhn (2007) presented an approach 

that resembles more to our work, in which they 

divided the training corpus into different com-

ponents and integrated models trained on each 

component using the mixture modeling. Howev-

er, their motivation was to address the domain 

adaption problem, and additional genre informa-

tion should be provided for the corpus partition 

to create multiple models for mixture. We in-

stead present two ways for the model ensemble 

construction without extra information needed: 

building models by different paradigms or by a 

random data sampling technique inspired by a 

machine learning technique. Compared to the 

prior work, our approach is more general, which 

can also be used for model adaptation. We can 

also treat TMG as a smoothing way to address 

the over-estimation problem existing in almost 

all TMs. Some literatures have paid attention to 

this issue as well, such as Foster et al. (2006) 

and Mylonakis and Sima ’an (2008). However, 

they did not leverage information between mul-

tiple models as we did, and developed on single 

models only. Furthermore, we also make current 

translation probability features to contain more 

statistical meanings by introducing the probabili-

ty variance features into the log-linear model, 

which are completely novel to prior work and 

provide further improvements. 

6 Conclusion and Future Work 

In this paper, we have investigated a simple but 

effective translation model generalization me-

thod that benefits by integrating values of prob-

ability features between multiple TMs and using 

them in decoding phase directly. We also intro-

duce novel probability variance features into the 

current feature sets of translation models and 

make the SMT models to be more flexible. We 

evaluate our method on four state-of-the-art 

SMT systems, and get promising results not only 

on single-system decodings, but also on a system 

combination approach and a model combination 

approach. 

Making use of different distributions of trans-

lation probability features is the essential of this 

work. In the future, we will extend TMG method 

to other statistical models in SMT framework, 

(e.g. LM), which could be also suffered from the 

over-estimation problem. And we will make fur-

ther research on how to tune prior probabilities 

of models automatically as well, in order to 

make our method to be more robust and tunable. 
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