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Abstract

Multiword Expressions (MWEs) appear
frequently and ungrammatically in the
natural languages. Identifying MWEs in
free texts is a very challenging problem.

This paper proposes a knowledge-free,
training-free, and language-independent
Multiword Expression Distance (MED).
The new metric is derived from an ac-
cepted physical principle, measures the
distance from an n-gram to its seman-
tics, and outperforms other state-of-the-art
methods on MWEs in two applications:
question answering and named entity ex-
traction.

1 Introduction

A Multiword Expression (MWE) is a sequence
of neighboring words “whose exact and unam-
biguous meaning or connotation cannot be derived
from the meaning or connotation of its compo-
nents” (Choueka, 1988). In the paper, MWE:s re-
fer to non-compositional lexical units including
idioms, terminologies and name entities. As Jack-
endoff (1997) notes, the magnitude of MWEs is
far greater than what has traditionally been real-
ized within linguistics. He estimates that the num-
ber of MWESs in a speaker’s lexicon is of the same
order of magnitude as the number of single words.
In WordNet 1.7 (Fellbaum, 1998), 41 percent of
the entries are multi-words. Some specialized
domain vocabulary, such as terminology, over-
whelmingly consists of MWEs. Automatic ex-
traction of MWEs is indispensable to many tasks
such as machine translation, name entity extrac-

tion, information retrieval and question answer-
ing.

Due to their non-compositionality, many
MWE:s cannot be directly identified using gram-
matical rules, which poses a major challenge to
automatic analysis. Moreover, existing resources
like dictionaries can never have adequate and
timely coverage. Therefore people turn to statisti-
cal method to characterize MWE:s.

Since Church and Hanks (1990) proposed
Pointwise Mutual Information (PMI), a variety of
measures, such as Log-likelihood, Symmetrical
Conditional Probability (SCP) and Mutual Expec-
tation (Dias et al., 2000), have been introduced to
measure word association. Their basic ideas are
very similar: the whole n-gram is separated into
two parts and the association is determined by the
joint probability and the probability of each part.
Pecina (2006) compared 84 bi-gram association
measures and found PMI has the best performance
in Czech data. When applying these measures to
the n-grams for n > 2, it is not clear how can
the association between the deliberately separated
two parts represent the non-compositionality of
the whole n-gram. Different policies have been
studied to extend these measures into arbitrary n-
grams (Silva and Lopes, 1999; Schone and Juraf-
sky, 2001; Dias et al., 2000). Is there a funda-
mental, less arbitrary, and general approach to this
problem? That is,

e Can we actually derive a MWE metric for
n-grams from the first principles, instead of
making a seemingly sensible, but really arbi-
trary, proposal?

e Will such a theoretically justified new met-
ric actually works better than other heuristic
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measures for general MWEs?

This paper will answer above questions posi-
tively. We derive an optimal distance metric Mul-
tiword Expression Distance (MED). MED defines
the semantic function for n-grams and the infor-
mation distance (Bennett et al., 1998) from the n-
grams to their semantics. Unlike previous meth-
ods it ensures the cohesion of the n-gram directly
hence applicable to MWEs of any length.

The MED is naturally generalized to its con-
ditional version. The extension is based on the
observation that many MWEs are domain depen-
dent. It is true that some MWEs are only used
in certain domains, but they are domain free. For
example, we know that “polymerase chain reac-
tion” is some sort of terminology even if many
of us do not know what it is exactly. However
that is not always the case. For those who do not
watch movies, the sentence “catch me if you can”
will probably be taken as a non-MWE, instead of
a movie name. The non-compositionality of this
sentence appears only in the movies domain. The
experimental results show that given appropriate
phrases as conditions, the conditional MED per-
forms better than MED.

We also investigate the efficacy of MED on
post-processing of Question Answering (QA) and
complex named entity extraction. The experimen-
tal results show that our method outperforms state
of art methods (Zhang et al., 2009; Downey et
al., 2007) in these two applications. Moreover,
MED is a pure statistical metric which can be eas-
ily combined with other methods.

The remainder of this paper is organized as fol-
lows: In the next section we review the related
work on Multiword Expression and information
distance. Section 3 gives a preliminary introduc-
tion to Kolomogorov complexity and information
distance. Section 4 proposes the formal definition
of MED. In Section 5 we discuss the difference
between MED and Pointwise Mutual Information.
We apply MED to QA post-processing and com-
plex named entity extraction in Section 6 and eval-
uate their performance in Section 7. In the last
section we conclude this work.

2 Related Work

Researchers have explored various techniques for
identifying MWEs. These approaches could be
broadly classified into three types: linguistic
methods, sequential tagging based methods and
statistical methods.

The mostly used linguistic information for
MWE extraction is words’ Part-Of-Speech tags.
Justeson and Katz (1995) extracted technical ter-
minologies from documents using a regular ex-
pression on POS-tags of a word sequence, to-
gether with some frequency constraints. Arga-
mon et al. (1998) separated the POS sequence of a
multi-word into small POS tiles, counted tile fre-
quency in the MWE and non-MWE training sets
and identify new MWEs by these counts. Al-
though linguistic methods perform well in term
extraction on specific domains, it cannot be gen-
eralized to identify arbitrary MWEs.

Several supervised learning methods have been
used previously for extracting Name Entities in-
cluding Hidden Markov Models, Maximum En-
tropy Markov Models and Conditional Random
Field (CRF) models (McCallum and Li, 2003). In
order to allow tractable computation, these models
can only use local features in a small window. Al-
though the approximate inference methods have
been incorporated into sequential tagging model
to capture non-local information (Finkel et al.,
2005), these models are not capable of recog-
nizing complex named entities, especially those
containing conjunctions and prepositions. Exper-
imental results in (Downey et al., 2007) show
that statistical methods substantially outperform
sequential tagging based methods on identifying
complex named entities.

In statistical methods for MWE extraction,
Church and Hanks (1990) first presented Point-
wise Mutual Information (PMI) as an objective
measure for estimating word association. Since
then, many methods has been proposed to mea-
sure bi-gram association, such as Log-likelihood
(Dunning, 1993) and Symmetrical Conditional
Probability (Silva and Lopes, 1999). Pecina
(2006) compared 84 bi-gram association mea-
sures and concluded that PMI had the best perfor-
mance in Czech data. When it comes to measure
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the non-compositionality for arbitrary n-grams,
policies were taken to separate n-gram into two
parts X and Y so that it can be measured by
existing bi-gram methods (such as PMI). Silva
and Lopes (1999) and Dias et al. (2000) calcu-
lated the arithmetic average of every possible sep-
aration. Schone and Jurafsky (2001) define X
and Y to be the word sequences wjw;...w; and
Wit1Wiy2...Wy, Where ¢ is chosen to maximize
P, Py. Recently Zhang et al. (2009) proposed
Enhanced Mutual Information (EMI) which mea-
sured the cohesion of n-gram by the frequency of
itself and the frequency of each word.

The information distance is a universal distance
measure between two information carrying enti-
ties (Bennett et al., 1998; Li et al., 2001; Li et
al., 2004). The applications of information dis-
tance using compression were first introduced in
(Li et al., 2001) and then in (Bennett et al., 2003;
Chen et al., 2004). The experimental results in
(Keogh et al., 2004) showed that information dis-
tance/compression based method was superior to
51 parameter-laden methods from seven major
data mining conferences on their benchmark data.
The web-based approximation of information dis-
tance was introduced by Cilibrasi and Vitdnyi
(2007) to measure the semantic similarity of two
words or concepts.

3 Preliminaries

3.1 Kolmogorov Complexity

Kolmogorov complexity defines randomness of
an individual string. Fix a universal Turing ma-
chine U, the Kolmogorov complexity of a bi-
nary string x condition to another binary string y
Ky (x|y) is defined as the length of the shortest
(prefix-free) program for U that outputs x with in-
put y. It can be shown that for a different universal
Turing machine U’, for all z, y

Ky (zly) = Ky (zly) + C, (1)

where the constant C' depends only on U’. Thus,
we can simply write Ky (xz|y) as K(z|y) and
K (z|e) as K(x), where ¢ is the empty string.

3.2 Information Distance

Between any two information carrying entities,
is there an objective distance that is application-
independent and unique, similar to the concept
of distance in the physical world? From a com-
monly accepted physical principle of von Neu-
mann and Landauer that irreversibly processing
one bit of information costs 1KT of energy, Ben-
nett et al. (1998) derived exactly such a distance:
the Information Distance. Information Distance
E(x,y) between two objects  and y is the en-
ergy to convert between x and y. Bennett et al.
(1998) proved:

Theorem 1 Up to an additive logarithmic term,
E(z,y) = max{K (zly), K (yl)}.

Thus, the max distance was defined below
(Bennett et al., 1998):

Dinaz(2,y) = max{K(z|y), K(y|z)}.

D40 Was shown to satisfy distance requirements
such as positivity, symmetricity and triangle in-
equality (Bennett et al., 1998). It was further
shown that D,,,, is optimal in the sense that it
is universal. That is, it minorizes (up to constant
factors) all other nontrivial and computable dis-
tances. More precisely, a distance D is admissible

if
> o) < (2)
Yy

Thus, we exclude trivial distances such as
d(z,y) = 0 for all z,y. It was proved in (Bennett
et al., 1998) that for any admissible computable
distance D, there is a constant c, for all x,y,

D’m,a,;l:(xa ’IJ) < D(.I‘, y) +c.

In other words, if any such distance D discovers
some similarity between x and y, so will Dy, 4.
In order to deal with the information carrying
objects of different sizes, the normalized informa-
tion distance was proposed in (Li et al., 2001). In
(Li et al., 2004), the normalized max distance was
defined as:
Do (o) — XU ), K (yl)}
max{K(z), K(y)}
dmaz satisfies positivity, symmetricity, triangle in-
equality and some weak form of universality (Li et
al., 2004).
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4 A New Metric for MWE

4.1 The Semantics

When applying the Information Distance to iden-
tifying MWEs, how to encode n-grams and their
semantics is the first thing to be considered. It is
inappropriate to encode MWEs literally. For ex-
ample, when referring to “kick the bucket”, the
three words “kick”, “the” and ‘“bucket” cannot
represent all the semantics about this expression.
Inspired by Cilibrasi and Vitanyi (2007), we de-
fine context of an n-gram as the set of all the web
pages containing it. Also, semantic of an n-gram
is defined as the set of all the web pages contain-
ing all the words appeared in that n-gram. For
example, the semantic of “U.S. president” includ-
ing not only the pages containing itself but also
those containing “the president of U.S.” or “presi-
dent Obama says that ... U.S. government...”.

4.2 Multiword Expression Distance

Let us denote the vocabulary set by S and the set
of web pages by 2. The cardinality of €2 is de-
noted by M=|Q)|. Define G = ST as the set of
n-grams. A search term t is defined as an n-gram
or the conjunction of search terms. Denote 7" as
the set of search terms and we have G C T Let
¢ : T — 2 be the context function mapping each
search term ¢ to the web set which includes (and
only includes) all the web pages containing all the
n-grams in t. Let 6 : G — T be the function map-
ping each n-gram g = wjws...w, to /\Z w;, the
conjunction of the words in it. Finally we define
the semantic function y : G — 2 as the compos-
ite function ¢ o#@. It is obvious that for any n-gram
g, we have ¢(g) C u(g). Given an n-gram g, we
will encode ¢(g) and 1i(g) and calculate the dis-
tance between them.

While K () is not computable, a simple heuris-
tic, noticed by Cilibrasi and Vitdnyi (2007), is to
use Shannon-Fano code to encode the probability
(approximated by its internet frequency) of x. As-
sume that all web pages are equiprobable, with the
probability of being returned by search engine be-
ing % Letp: ¢(T) — [0, 1] be the context prob-
ability function in which ¢(7") = {z|Fy € T,z =
¢(y)}. Since each context is a set of webpages,

the probability of context ¢ is defined as p(c) = %

where N =3~ ;) |c| ensures p is a valid prob-
ability function. The Shannon-Fano code (Li and
Vitdnyi, 2008) length associated with p can then
be regarded as an approximation of K,

K(x) =~ —logp(x) 3)

K(z.y) = —logp(z,y) (4)
According to (3),(4) and Theorem 1, D4, can be
approximated as follows:

Dm(w (iE, y)
= max{K(z[y), K(ylz)}

K(z,y) — min{K(y), K(z)}
max{log |z[,log [y|} —log |z Nyl

Q

Similarly, we have

Dmax(xay|c)
~  max{log|z N clloglyNel}—loglzNyNel
Since ¢(g) € wu(g), the Multiword Expression

Distance of an n-gram g can be defined as fol-
lows:

MED(g)
Dinaz(6(9), 11(9))
16(9)] Ju(g)]
max{10g oy AL 18 ) e
= log|u(g)| —log|o(g)]

Given a search term c¢ as condition, the Condi-
tional Multiword Expression Distance of an n-
gram ¢ is defined as follows:

MED(glc) = Duax(d(9), 1u(g)|d(c))
=~ log|u(g) Nelc)|-logla(g) N (o)l
Based normalized information distance,

NMED and its conditional version can be derived
as follows:

NMED(g)
NMED(glc) =~

lok u(g) Lok ()]
log N—log [¢(g)|

log |u(g) N ¢(c)|—log |$(g9) N (<)
log [¢(c)|—log [¢(g) M &(c)|

Where N can be estimated from the size of in-
ternet by some combinatorial methods.

To implement MED by a general search engine,
we assume 2 to be the set of indexed webpages.
Thus, |¢(g)| and |u(g)| can be approximated by
the hit numbers given g and the “logic and” of
each word in ¢ as queries. Yahoo Search is used
in our experiments.
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5 Relation with Pointwise Mutual
Information

When n = 2, we denote P(wjws2) the probability
of a web page containing bi-gram g = wjws and
P(wy )\ w2) the probability of a web page con-
taining w; and wy. Assuming the occurrence of
wy and wo are independent, we have

[o(wi Awa)|
[p(wrwz)]

_ - P(wi Aws)
- lOg P(’j)l’wz)z

P(wq)P(w
~ g Eppies

x —PMI(g)

MEDsy(g) = log

Thus, PMI is inversely proportional to MED un-
der the independence assumption. This assump-
tion is unadvisable for obvious reasons. PMI com-
pares the probability of observing x and y within
a given window w (w=2 when measuring collo-
cation) with the probabilities of observing x and
y independently. However, most of the word se-
quences in practice (both MWEs and non-MWEs)
are far from being independent. Therefore the as-
sumption potentially creates additional noises to
MED, especially when nn > 2. The internet con-
tains billions of pages and thus we can count the
pages containing specified words directly without
making independent assumption to overcome data
sparseness.

6 Applications
6.1 MWE for QA Systems

Some types of questions require a QA system to
return phrases as the answers instead of sentences,
such as Factoid and List. Given a question, we
need to generate queries, obtain relevant pages
from the internet, extract the candidate n-grams
from relevant pages and finally rank all the candi-
dates by their likelihood of being an answer.
Some previous work exploited web redundancy
to estimate answer validity(Magnini et al., 2002;
Zhang et al., 2008). No research, to our knowl-
edge, has focused on checking the completeness
of candidates. Most of texts on the internet are
informal (e.g. they contain uncapitalized proper
nouns and incomplete sentence structures). Parser
and named entity recognizers trained on formal

corpus are unpractical on recognize NP chunks or
name entities on the web.

Observing that each candidate is n-gram and
checking the completeness of a candidate is to
measure its non-compositionality, we introduce a
simple MWEs-based method to rank all candi-
dates by their completeness and merge similar an-
SWers.

Given a question and a list of candidate an-
swers:

1. Extract proper nouns from the question as
conditions.

2. Calculate the conditional MED (or MED if
no proper noun is found in question) for each
candidate. Then for each pair of literally sim-
ilar candidates, the one with larger MED dis-
tance is removed.

3. Rank the rest candidates by conditional
MED.

This method is case insensitive and do not rely
on context information. All of the statistics are
performed on the internet thus no local corpus is
needed.

6.2 Complex Named Entity Extraction

In many previous work (McCallum and Li, 2003;
Finkel et al., 2005), named entity extraction is
combined with classification, which is known as
Name Entity Recognition (NER). Most of these
NER technique are based on sequential tagging
models and unsuitable to the task of locating com-
plex named entities in Web text. In (Downey et al.,
2007), the author treated named entity as a type of
MWE and proposed the algorithm LEX++ to lo-
cate complex named entities.

Inspired by Downey’s work, we propose
a conditional MED based algorithm MWE++
to extract named entities. Given a sentence
S = {51,59...5,} and parameters 71,72 and J,
MWE-++ proceeds as follows:

1. Initialize a sequence of names N =
(n1,ng,...,npr) equal to the maximal con-
tiguous substrings of S that consist entirely
of capitalized words. If the first word of .S
appears capitalized in the local corpus and it
is at the beginning of a sentence more than
of the times, it is omitted from V.
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2. Until N does not change during last iteration:

(a) Choose the mergeable pair of names
(nj, nj+1) with minimum conditional MED.

(b) Replace nynin, and nyin,+1 Wwith the
single name 7y in, Winin, Mmin,+1 Where w;
is the uncapitalized words between n; and
Mj41.

3. For every names n; in N

(a) Check common prefix and punctuation at
boundary of n; via local corpus.

(b) Check number at boundary of n; via in-
ternet.

In MWE++, We define two thresholds 71 and 7
to estimate the name entity confidence of a given
n-gram. If MED(g|.) is lower than 7, between 74
and 79 or higher than 7o, conf(g) will be 2 (Def-
initely), 1 (Probably) or O (Impossible). The con-
fidence of all initialized capitalized words will be
set to 1. If an n-gram contain unmatched brack-
ets or quotation marks, its confidence will be set
to 0. Also, The confidence of n-gram contain-
ing comma will be reduced by 1. We say a pair
of names (n;,n;+1) is mergeable if and only if
conf(n;w;n;y1) > max(conf(n;), conf(n;t1)).

After iteration, we will check common prefixes,
punctuations and numbers at boundary of each
names. If a name 7n; is immediately preceded by
a single number ¢ and conf(tn;) > 1, we replace
n; by tn;. Similarly, a number ¢ immediately fol-
lowing n; is appended to n; when conf(n;t) > 1.
Due to the limitation of search engine, punctu-
ation check and common prefix check modules
are performed on local corpus just the same as
LEX++.

7 Experiments and Analysis

7.1 Compositionality Measure

In this section, we evaluate how well can MED
separate non-compositional phrases (idioms) from
compositional ones. First we evaluate MED and
other four metrics on English_VPC data published
on the MWE 2008 shared task. The data set con-
tains 3078 verb-noun bi-grams and 14 percent of
them are annotated as idiomatic. The average
precision of MED, PMI, SCP, t-score and EMI

(Zhang et al., 2009) are 0.234, 0.233, 0.285, 0.274
and 0.205. The result shows that MED is not dis-
tinguished on bi-grams test. It is partly because
most idiomatic verb-noun collocations are often
used non-idiomatically. Their compositionality
are not necessarily lower than non-idiomatic ones.

We also evaluate different metrics on n-grams
of varied lengths. Since all published MWE data
sets we find only contain bi-grams, we construct
our test set as follows. We first collected com-
mon idioms from the lists of english idioms on
Wikipedia. To get enough common but not id-
iomatic phrases, we collect common composi-
tional phrases from UsingEnglish.com, englishs-
peak.com, Wikipedia and China Daily BBS. Since
it is difficult for non-native speakers to pick up
idioms from non-idiomatic ones, we do not man-
ually check all compositional phrases. The test
set contains 1529 idioms and 1798 compositional
phrases. The n-gram frequencies are not sig-
nificantly different between idioms and compo-
sitional phrases. The mean and standard devi-
ation are 2.1 x 10° and 7.8 x 10° on idioms
and 7.4 x 10° and 4.8 x 10° on compositional
phrases. We employ different measures to rank all
the phrases. Non-conditional MED and NMED
are compared with AVG_SCP (Silva and Lopes,
1999), MAX_PMI (Schone and Jurafsky, 2001),
EMI (Zhang et al., 2009) and the baseline n-gram
frequency. T-score is not under evaluation because
we do not find sound n-gram extension for it. The
precision-recall curve is shown in Fig. 1. Since
the performance of MED and NMED are very

SEEPA

o4 —MED
—Frequency
== MAX_PMI

Figure 1: Precision-recall curves of five measures
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freq | MAX_PMI | AVG_SCP | EMI | NMED | MED | MED(.|.)
fairy tale 0.493 0.484 0.570 0.515 | 0.615 | 0.617 0.657
science fiction | 0.500 0.470 0.558 0.525 | 0.596 | 0.599 0.633
action movie | 0.695 0.523 0.723 0.703 | 0.763 | 0.768 0.823
animation 0.561 0.642 0.693 0.489 | 0.671 | 0.673 0.689
horror movie | 0.595 0.528 0.647 0.633 | 0.667 | 0.670 0.692
documentary | 0.525 0.549 0.626 0.512 | 0.596 | 0.598 0.654
hip hop 0.598 0.627 0.645 0.635 | 0.652 | 0.651 0.712
jazz 0.549 0.501 0.543 0.539 | 0.627 | 0.625 0.716
rock&roll 0.742 0.567 0.730 0.741 | 0.708 | 0.717 0.836
company 0.614 0.584 0.689 0.663 | 0.754 | 0.756 0.735
soccer player | 0.945 0.648 0.904 0973 | 0911 | 0918 0.941
novelists 0.772 0.701 0.870 0.866 | 0.821 | 0.828 0.864
PS3 game 0.603 0.675 0.740 0.535 | 0.742 | 0.744 0.727
overall 0.612 0.577 0.688 0.629 | 0.696 | 0.700 0.726

Table 1: Performance of different measures in each list

close, NMED is not displayed for clarity. From
the result we can see that MED performs substan-
tially better than all the other measures. Average
precision(avp) of the top 3 measures MED, EMI
and AVG_SCP are 0.75, 0.71 and 0.66.

7.2 QA Post-processing

It is difficult to evaluate the method introduced in
Section 6.1 directly since QA benchmarks mainly
focus on accuracy of the top one answer instead of
the completeness of top-n candidates. Therefore,
the experiment is designed as follows. We extract
name lists on different domains from Wikipedia.
For each name in each list, we put it into a search
engine and get the context from a random selected
snippet. For each name, We created two incom-
plete names by randomly adding (or removing)
one or two words according to its context. It is
guaranteed that the original name and its counter-
part with noise must have at least two words in
common. We tag the original names and the noise
added ones in each list as positive and negative
samples. A list can be regarded as the candidates
and the list name (or its synonym) can be seen as
the key phrase extracted from question.

The test set can be divided into six common cat-
egories: movie, book, music, person, organization
and video game. Each category contains one to
four lists. The test set contains 11080 samples in
total. Still, we employ the measures in previous

experiments to rank all the candidates to see if the
complete names can be separated from the incom-
plete names. The results are listed in Table 1. The
overall avp is the average of the avp of each lists
weighted by their size.

It is shown that the performance of conditional
MED is the best over all metrics, followed by
MED. The reason why EMI and AVG_SCP get
best results on soccer player and novelists is that
they take more advantage of frequency. Since the
length of people’s name are short (2 to 3 words),
most of negative samples are created by adding
words, which makes frequency important.

7.3 Complex Named Entity Extraction

In this section we evaluate the named entity ex-
traction performance of Algorithm MWE++. The
experiment is done on the corpus, the training
set and the test set provided by Downey et al.
(2007). Four classes of entities (Actor, Book,
Company and Film) were manually annotated on
both training and test set. All sentences in the cor-
pus contain named entities from the above four
classes (but not annotated). The corpus consists of
183,726 sentences while the training and the test
set contain 200 and 629 sentences, respectively.
Furthermore, test sentences are separated into 100
difficult cases and 529 easy cases. All difficult
cases contain complex name entities (entities con-
taining uncapitalized words), such as “Procter and
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Gamble” and “Gone with the Wind”.
The conditional MED metric in this experiment
is redefined as follows:

MED(g|C) = min{MED(glc)},
ceC

where  C={“IMDB”,“Amazon”, ‘corporation”}.
“IMDB” is used as the condition of Actor and
Film while “Amazon” and “corporation” are cho-
sen to be the condition of Book and Company.
We compute the conditional MED for all entities
on training set. 77 is set to the median and 7o
is set to the value larger than 90% entities on
training set. ¢ is set to 0.5. MWE++ is performed
on the 100 difficult cases. The results shown
in Table 2 convincingly show that MWE++
significantly outperforms LEX++, supervised
models (SVMCMM, CRF) and rule-based model
(MAN) on identifying complex named entities.
Compared to LEX++, MWE++ is not only more
accurate but also more flexible. LEX++ relies
on local corpus while MWE++ does not. When
recognizing new entities, we just need to find
appropriate condition words instead of preparing
new corpus. For the sake of completeness, the
F-score of MWE++ on easy cases is 91, which
is lower than all the other methods. However
this is irrelevant since this part can be made quite
accurate by specialized databases and training by
any known methods.

All test data in this paper can be downloaded
from http://60.195.250.61:8080/download/.

8 Conclusion

We have derived an MWE metric MED from the
first principles via Information Distance. The new
metric measures the distance from an n-gram to
its semantics. It is provably optimal (universal),

F7 | Recall | Precision
MAN 0.18 | 0.22 0.16
CRF 035 | 042 0.31
SVMCMM | 042 | 048 0.37
LEX++ 0.74 | 0.76 0.72
MWE++ | 0.83 | 0.86 0.80

Table 2: Named entity extraction on difficult cases

overcomes several deficiencies of previous ap-
proaches, and convincingly outperforms the other
methods.

Also, we have taken advantage of the fact that
some MWEs are domain dependent. This fea-
ture is important when recognizing named entities
and terminologies. The conditional MED is better
than MED when we know what we are looking
for. Since MED is quite different from previous
measures, it can be combined with others by ma-
chine learning approaches and enhance the overall
performance. Further experiments are needed.
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