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Abstract

Most of the known stochastic sentence
generators use syntactically annotated
corpora, performing the projection to
the surface in one stage. However,
in full-fledged text generation, sentence
realization usually starts from semantic
(predicate-argument) structures. To be
able to deal with semantic structures,
stochastic generators require semantically
annotated, or, even better, multilevel an-
notated corpora. Only then can they
deal with such crucial generation issues as
sentence planning, linearization and mor-
phologization. Multilevel annotated cor-
pora are increasingly available for multi-
ple languages. We take advantage of them
and propose a multilingual deep stochastic
sentence realizer that mirrors the state-of-
the-art research in semantic parsing. The
realizer uses an SVM learning algorithm.
For each pair of adjacent levels of anno-
tation, a separate decoder is defined. So
far, we evaluated the realizer for Chinese,
English, German, and Spanish.

1 Introduction

Recent years saw a significant increase of inter-
est in corpus-based natural language generation
(NLG), and, in particular, in corpus-based (or
stochastic) sentence realization, i.e., that part of
NLG which deals with mapping of a formal (more
or less abstract) sentence plan onto a chain of in-
flected words; cf., among others, (Langkilde and

Knight, 1998; Oh and Rudnicky, 2000; Bangalore
and Rambow, 2000; Wan et al., 2009). The advan-
tage of stochastic sentence realization over tradi-
tional rule-based realization is mainly threefold:
(i) it is more robust, (ii) it usually has a signifi-
cantly larger coverage; (iii) it is per se language-
and domain-independent. Its disadvantage is that
it requires at least syntactically annotated corpora
of significant size (Bangalore et al., 2001). Given
the aspiration of NLG to start from numeric time
series or conceptual or semantic structures, syn-
tactic annotation even does not suffice: the cor-
pora must also be at least semantically annotated.
Up to date, deep stochastic sentence realization
was hampered by the lack of multiple-level an-
notated corpora. As a consequence, available
stochastic sentence generators either take syntac-
tic structures as input (and avoid thus the need for
multiple-level annotation) (Bangalore and Ram-
bow, 2000; Langkilde-Geary, 2002; Filippova
and Strube, 2008), or draw upon hybrid models
that imply a symbolic submodule which derives
the syntactic representation that is then used by
the stochastic submodule (Knight and Hatzivas-
siloglou, 1995; Langkilde and Knight, 1998).

The increasing availability of multilevel anno-
tated corpora, such as the corpora of the shared
task of the Conference on Computational Natu-
ral Language Learning (CoNLL), opens new per-
spectives with respect to deep stochastic sentence
generation—although the fact that these corpora
have not been annotated with the needs of genera-
tion in mind, may require additional adjustments,
as has been, in fact, in the case of our work.
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In this paper, we present a Support Vector
Machine (SVM)-based multilingual dependency-
oriented stochastic deep sentence realizer that
uses multilingual corpora of the CoNLL ’09
shared task (Hajič, 2009) for training. The sen-
tences of these corpora are annotated with shal-
low semantic structures, dependency trees, and
lemmata; for some of the languages involved,
they also contain morphological feature annota-
tions. The multilevel annotation allows us to take
into account all levels of representation needed
for linguistic generation and to model the pro-
jection between pairs of adjacent levels by sep-
arate decoders, which, in its turn, facilitates the
coverage of such critical generation tasks as sen-
tence planning, linearization, and morphologiza-
tion. The presented realizer is, in principle,
language-independent in that it is trainable on any
multilevel annotated corpus. In this paper, we dis-
cuss its performance for Chinese, English, Ger-
man, and Spanish.

The remainder of the paper is structured as fol-
lows. In Section 2, we discuss how the shallow se-
mantic annotation in the CoNLL ’09 shared task
corpora should be completed in order to be suit-
able for generation. Section 3 presents the train-
ing setup of our realizer. Section 4 shows the in-
dividual stages of sentence realization: from the
semantic structure to the syntactic structure, from
the syntactic structure to the linearized structure
and from the linearized structure to a chain of in-
flected word forms (if applicable for the language
in question). Section 5 outlines the experimental
set up for the evaluation of our realizer and dis-
cusses the results of this evaluation. In Section 6,
finally, some conclusions with respect to the char-
acteristics of our realizer and its place in the re-
search landscape are drawn.

The amount of the material which comes into
play makes it impossible to describe all stages
in adequate detail. However, we hope that the
overview provided in what follows still suffices to
fully assess our proposal.

2 Completing the Semantic Annotation

The semantic annotation of sentences in CoNLL
’09 shared task corpora follows the PropBank an-
notation guidelines (Palmer et al., 2005). Prob-

lematic from the viewpoint of generation is that
this annotation is not always a connected acyclic
graph. As a consequence, in these cases no valid
(connected) syntactic tree can be derived. The
most frequent cases of violation of the connectiv-
ity principle are not attached adjectival modifiers,
determiners, adverbs, and coordinations; some-
times, the verb is not connected with its argu-
ment(s). Therefore, prior to starting the training
procedure, the semantic annotation must be com-
pleted: non-connected adjectival modifiers must
be annotated as predicates with their syntactic
heads as arguments, determiners must be “trans-
lated” into quantifiers, detached verbal arguments
must be connected with their head, etc.

Algorithm 1 displays the algorithm that com-
pletes the semantic annotations of the corpora.
Each sentence xi of the corpus I , with i =
1, . . . , |I|, is annotated with its dependency tree
yi and its shallow semantic graph si. The algo-
rithm traverses yi breath-first, and examines for
each node n in yi whether n’s corresponding node
in si is connected with the node corresponding to
the parent of n. If not, the algorithm connects both
by a directed labeled edge. The direction and the
label of the edge are selected consulting a look up
table in which default labels and the orientation
of the edges between different node categories are
specified.

Figure 1 shows the semantic representation of
a sample English sentence obtained after the ap-
plication of Algorithm 1. The solid edges are
the edges available in the original annotation; the
dashed edges have been introduced by the algo-
rithm. The edge labels ‘A0’ and ‘A1’ stand for
“first argument” and “second argument” (of the
corresponding head), respectively, ‘R-A0’ for “A0
realized as a relative clause”, and ‘AM-MNR’ for
“manner modifier”. As can be seen, 6 out of the
total of 14 edges in the complete representation
of this example have been added by Algorithm 1.
We still did not finish the formal evaluation of
the principal changes necessary to adapt the Prop-
Bank annotation for generation, nor the quality of
our completion algorithm. However, the need of
an annotation with generation in mind is obvious.
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Algorithm 1: Complete semantic graph
//si is a semantic graph and yi a dependency tree
// si = 〈Nsi , Lsi , Esi〉, where Nsi is the set of nodes
// Lsi the set of edge labels
// Esi ⊆ Ns ×Ns × Ls is the set of edges
for i← 1 to |I| // iteration over the training examples

let ry ∈ yi be the root node of the dependency tree
// initialization of the queue
nodeQueue ← children(ry)
while nodeQueue 6= ∅ do
ny ← removeFirst(nodeQueue)
// breath first: add nodes at the end of the queue
nodeQueue← nodeQueue ∪ children(ny)
nys ← sem(ny); pys ← sem(parent(ny))
//get the semantic equivalents of ny and of its parent
if not exists path(nys , pys ) then
l← label(ny ,parent(ny))
ls ← look-up-sem-label(nys , pys , l)
if look-up-sem-direction(nys , pys , ls) = “→” then

// add the semantic edge
Es← Es ∪ (pys , nys , ls)

else // direction of the edge “←”
// add the semantic edge
Es← Es ∪ (nys , pys , ls)

3 Realizer Training Setup

Figure 2 shows the training setup of our realizer.
For each level of annotation, an SVM feature ex-
tractor and for each pair of adjacent levels of an-
notation, an SVM decoder is defined. The Sem-
Synt decoder constructs from a semantic graph
the corresponding dependency tree. The Synt-
Linearization decoder derives from a dependency
tree a chain of lemmata, i.e., determines the word
order within the sentence. The Linearization-
Morph decoder generates the inflected word form
for each lemma in the chain. Both the fea-
ture extractors and the decoders are language-
independent, which makes the realizer applicable
to any language for which multilevel-annotated
corpora are available.

To compute the score of the alternative realiza-
tions by each decoder, we apply MIRA (Margin
Infused Relaxed Algorithm) to the features pro-
vided by the feature extractors. MIRA is one
of the most successful large-margin training tech-
niques for structured data (Crammer et al., 2006).
It has been used, e.g., for dependency parsing,
semantic role labelling, chunking and tagging.
Since we have similar feature sets (of compara-
ble size) as those for which MIRA has proven to
work well, we assume that it will also perform
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Figure 1: Semantic representation of the sentence
But Panama illustrates that their substitute is a
system that produces an absurd gridlock. after
completion

well for sentence realization. Unfortunately, due
to the lack of space, we cannot present here the
instantiation of MIRA for all stages of our model.
For illustration, Algorithm 2 outlines it for mor-
phological realization.

The morphologic realization uses the minimal
string edit distance (Levenshtein, 1966) to map
lemmata to word forms. As input to the MIRA-
classifier, we use the lemmata of a sentence, its
dependency tree and the already ordered sentence.
The characters of the input strings are reversed
since most of the changes occur at the end of the
words and the string edit scripts work relatively
to the beginning of the string. For example, to
calculate the minimal string edit distance between
the lemma go and the form goes, both are first
reversed by the function compute-edit-dist and
then the minimal string edit script between og and
seog is computed. The resulting script is Ie0Is0.
It translates into the operations ‘insert e at the po-
sition 0 of the input string’ and ‘insert s at the po-
sition 0’.

Before MIRA starts, we compute all mini-
mal edit distance scripts to be used as classes of
MIRA. Only scripts that occur more often than
twice are used. The number of the resulting edit
scripts is language-dependent; e.g., we get about
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Figure 2: Realizer training scenario setup

1500 scripts for English and 2500 for German.
The training algorithms typically perform 6 it-

erations (epochs) over the training examples. For
each training example, a minimal edit script is se-
lected. If this script is different from the gold
script, the features of the gold script are calcu-
lated and the weight vector of the SVM is adjusted
according to the difference between the predicted
vector and the gold feature vector. The classifi-
cation task consists then in finding the classifica-
tion script that maps the lemma to the correct word
form. For this purpose, the classifier scores each
of the minimal edit scripts according to the input,
choosing the one with the highest score.

4 Sentence Generation

Sentence generation that starts from a given se-
mantic structure as input consists in the applica-
tion of the previously trained SVM decoders in se-
quence in order to realize the following sequence
of mappings:

SemStr→ SyntStr→ LinearStr→ Surface

4.1 Semantic Generation
Algorithm 3 shows the algorithm for semantic
generation, i.e., the derivation of a dependency
tree from a semantic structure. It is a beam search
that creates a maximum spanning tree. In the first
step, a seed tree consisting of one edge is built.
In each of the subsequent steps, this tree is ex-
tended by one node. For the decision, which node

Algorithm 2: Morphological realization
training with MIRA

// yi, li; yi is a dependency tree, li lemmatized sentence
script-list← {} //initialize the script-list
for i← 1 to |I| // iteration over the training examples

for l← 1 to |li| do//// iteration over the lemmata of li
lemmal← lower-case (li,l)
//ensure that all lemmata start with a lower case letter
script← compute-edit-dist-script(lemmal, form(li,l))
if script 6∈ script-list

script-list← script-list ∪ { script }
for k← 1 to E // E = number of traininig epochs

for i← 1 to |I| // iteration over the training examples
for l← 1 to |li| do

scriptp← predict-script(li,yi,l)
scriptg ← edit-dist-script(lemmal, form(li,l))
if scriptp 6= scriptg then
// update the weight vector v and the vector w, which
// averages over all collected weight vectors acc.
// to diff. of the predicted and gold feature vector
update w, v according to ∆(φ(scriptp), φ(scriptg))
//with φ(scriptp), φ(scriptg) as feature vectors of
//scriptp and scriptg , respectively

is to be attached next and to which node, we con-
sider the highest scoring options. This procedure
works well since nodes that are close in the se-
mantic structure are usually close in the syntactic
tree as well. Therefore subtrees that contain those
nodes are considered first.

Unlike the traditional n-gram based stochastic
realizers such as (Langkilde and Knight, 1998),
we use for the score calculation structured fea-
tures composed of the following elements: (i) the
lemmata, (ii) the distance between the starting
node s and the target node t, (iii) the direction
of the path (if the path has a direction), (iv) the
sorted bag of in-going edges labels without repi-
tition, (v) the path of edge labels between source
and target node.

The composed structured features are:

– label+dist(s, t)+dir

– label+dist(s, t)+lemmas+dir

– label+dist(s, t)+lemmat+dir

– label+dist(s, t)+lemmas+lemmat+dir

– label+dist(s, t)+bags+dir

– label+dist(s, t)+bagt+dir

– label+path(s, t)+dir
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# word-pairs(w1,w2) # n-grams
1 labelw1+labelw2 13 PoS1+PoS2+PoS3

2 labelw1+lemma1 14 PoS1+PoS2+PoS3+dist
3 labelw1+lemma2 15 lemma1+lemma2+lemma3
4 labelw2+lemma1 16 lemma1+lemma2+lemma3+dist
5 labelw2+lemma2 17 lemma1+lemma3+head(w1,w2,w3)
6 PoS1+PoS2 18 lemma1+lemma3+head(w1,w2,w3)+dist
7 PoS1+PoS2+head(w1,w2) 19 label1+label2+label3+head(w1,w2,w3)
8 labelw1+labelw2+PoS1+head(w1,w2) 20 label1+label2+label3+head(w1,w2,w3)+dist
9 labelw1+labelw2+PoS2+head(w1,w2) 21 label1+label2+label3+lemma1+PoS2+head(w1,w2,w3)
10 labelw1+labelw2+PoS1+PoS2+head(w1,w2) 22 label1+label2+label3+lemma1+PoS2+head(w1,w2,w3)+dist
11 labelw1+labelw2+PoS1+#children2+head(w1,w2) 23 label1+label2+label3+lemma2+PoS1+head(w1,w2,w3)
12 labelw1+labelw2+PoS2+#children1+head(w1,w2) 24 label1+label2+label3+lemma2+PoS1+head(w1,w2,w3)+dist
# global features for constituents
25 if |constituent| > 1 then label1st+labellast+labellast−1+PoSfirst+PoSlast+PoShead

26 if |constituent| > 2 then label1st+label2d+label3d+PoSlast+PoSlast−1+PoShead+contains-?
27 if |constituent| > 2 then label1st+label2d+label3d+PoSlast+PoSlast−1+lemmahead+contains-?
28 if |constituent| > 3 then PoS1st+PoS2d+PoS3d+PoS4th+PoSlast+labelhead+contains-?+pos-head
29 if |constituent| > 3 then PoSlast+PoSlast−1+PoSlast−2+PoSlast−3+PoSfirst+labelhead+contains-?+pos-head
30 PoSfirst+PoSlast+lemmafirst+lemmalast+lemmahead+contains-?+pos-head

Table 1: Feature schemas used for linearization (labelw is the label of the in-going edge to a word w in
the dependency tree; lemmaw is the lemma of w, and PoSw is the part-of-speech tag of w; head(w1,w2,
. . . ) is a function which is 1 if w1 is the head, 2 if w2 is the head, etc. and else 0; dist is the position
within the constituent; contains-? is a boolean value which is true if the sentence contains a question
mark and false otherwise; pos-head is the position of the head in the constituent)

4.2 Dependency Tree Linearization

Since we use unordered dependency trees as syn-
tactic structures, our realizer has to find the opti-
mal linear order for the lexemes of each depen-
dency tree. Algorithm 4 shows our linearization
algorithm. To order the dependency tree, we use a
one classifier-approach for all languages—in con-
trast to, e.g., Filippova and Strube (2009), who use
a two-classifier approach for German.1

The algorithm is again a beam search. It starts
with an elementary list for each node of the depen-
dency tree. Each elementary list is first extended
by the children of the node in the list; then, the
lists are extended stepwise by the children of the
newly added nodes. If the number of lists during
this procedure exceeds the threshold of 1000, the
lists are sorted in accordance with their score, and
the first 1000 are kept. The remaining lists are
removed. Afterwards, the score of each list is ad-
justed according to a global score function which
takes into account complex features such as the
first word of a consitutent, last word, the head, and
the edge label to the head (cf. Table 1 for the list
of the features). Finally, the nodes of the depen-

1We decided to test at this stage of our work a uniform
technology for all languages, even if the idiosyncrasies of
some languages may be handled better by specific solutions.

dency tree are ordered with respect to the highest
ranked lists.

Only in a very rare case, the threshold of the
beam search is exceeded. Even with a rich feature
set, the procedure is very fast. The linearization
takes about 3 milliseconds in average per depen-
dency tree on a computer with a 2.8 Ghz CPU.

4.3 Morphological Realization

The morphological realization algorithm selects
the edit script in accordance with the highest score
for each lemma of a sentence obtained during
training (see Algorithm 2 above) and applies then
the scripts to obtain the word forms; cf. Algo-
rithm 5.

Table 2 lists the feature schemas used for mor-
phological realization.

5 Experiments

To evaluate the performance of our realizer, we
carried out experiments on deep generation of
Chinese, English, German and Spanish, starting
from CoNLL ’09 shared task corpora. The size of
the test sets is listed in Table 3.2

2As in (Langkilde-Geary, 2002) and (Ringger et al.,
2004), we used Section 23 of the WSJ corpus as test set for
English.
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Algorithm 3: Semantic generation
//si, y semantic graph and its dependency tree
for i← 1 to |I| // iteration over the training examples

// build an initial tree
for all n1 ∈ si do
trees← {} // initialize the constructed trees list

for all n2 ∈ si do
if n1 6= n2 then

for all l ∈ dependency-labels do
trees = trees ∪ {(synt(n1),synt(n2),l)}

trees← sort-trees-descending-to-score(trees)
trees← look-forward(1000,sublist(trees,20))
//assess at most 1000 edges of the 20 best trees
tree← get-best-tree-due-to-score(trees)
(s,t,l)← first-added-edge(tree)
// create the best tree
best-tree← (s,t,l)
// compute the nodes that still need to be attached
rest← nodes(si) - {s, t}
while rest 6= ∅ do

trees← look-forward(1000,best-tree,rest)
tree← get-best-tree-due-to-score(trees)
(s,t,l)← first-added-edge(tree)
best-tree← best-tree ∪ { (s,t,l) }
if (root(s,best-tree)) then rest← rest - {s}
else rest← rest - {t}

The performance of both the isolated stages and
the realizer as a whole has been assessed.

5.1 Evaluation Metrics
In order to measure the correctness of the se-
mantics to syntax mapping, we use the unlabeled
and labeled attachment score as it commonly used
in dependency parsing. The labeled attachment
score (LAS) is the proportion of tokens that are as-
signed both the correct head and the correct edge
label. The unlabeled attachment score (ULA) is
the proportion of correct tokens that are assigned
the correct head.

To assess the quality of linearization, we use
three different evaluation metrics. The first metric
is the per-phrase/per-clause accuracy (acc snt.),
which facilitates the automatic evaluation of re-
sults:

acc = correct constituents
all constituents

As second evaluation metric, we use a metric
related to the edit distance:

di = 1− m
total number of words

(with m as the minimum number of deletions
combined with insertions to obtain the correct or-
der (Ringger et al., 2004)).

Algorithm 4: Dependency tree lineariza-
tion

//yi a dependency tree
for i← 1 to |I| // iteration over the training examples

// iterate over all nodes of the dependency tree yi
for n← 1 to |yi| do

subtreen← children(n) ∪ {n}
ordered-listsn← {} // initialize
for all m ∈ subtreen do

beam← {}
for all l ∈ ordered-lists do

beam← beam ∪ { append(clone(l),m)}
for all l ∈ ordered-lists do

score(l)← compute-score-for-word-list(l)
sort-lists-descending-to-score(beam,score)
if | beam | > beam-size then

beam← sublist(0,1000,beam)
ordered-listsn← beam

scoreg(l)← score(l) + compute-global-score(l)
sort-lists-descending-in-score(beam,scoreg)

Algorithm 5: Morphological realization
// yi a dependency tree, and li an ordered list of lemmata
for l← 1 to |li| do

scriptp← predict-script(li,yi,l)
forml← apply-edit-dist-script(lemmal, scriptp)

To be able to compare our results with (He et
al., 2009) and (Ringger et al., 2004), we use the
BLEU score as a third metric.

For the asessment of the quality of the word
form generation, we use the accuracy score. The
accuracy is the ratio between correctly generated
word forms and the entire set of generated word
forms.

For the evaluation of the sentence realizer as a
whole, we use the BLEU metric.

5.2 Experimental Results

Table 4 displays the results obtained for the iso-
lated stages of sentence realization and of the real-
ization as a whole, with reference to a baseline and
to some state-of-the-art works. The baseline is
the deep sentence realization over all stages start-
ing from the original semantic annotation in the
CoNLL ’09 shared task corpora.

Note, that our results are not fully comparable
with (He et al., 2009; Filippova and Strube, 2009)
and (Ringger et al., 2004), respectively, since the
data are different. Furthermore, Filippova and
Strube (2009) linearize only English sentences
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# features
1 es+lemma
2 es+lemma+m.feats
3 es+lemma+m.feats+POS
4 es+lemma+m.feats+POS+position
5 es+lemma+(lemma+1)+m.feats
6 es+lemma+(lemma+1)+POS
7 es+lemma+(m.feats-1)+(POS-1)
8 es+lemma+(m.feats-1)+(POS-1)+position
9 es+m.feats+(m.feats-1)
10 es+m.feats+(m.feats+1)
11 es+lemma+(m.feats-1)
12 es+m.feats+(m.feats-1)+(m.feats-2)
13 es+m.feats+POS
14 es+m.feats+(m.feats+1)
15 es+m.feats+(m.feats+1)+lemma
16 es+m.feats
17 es+e0+e1+m.feats
18 es+e0+e1+e2+m.feats
19 es+e0+e1+e2+e3+m.feats
20 es+e0+e1+e2+e3+e4+m.feats
21 es+e0+m.feats

Table 2: Feature schemas used for morphological
realization

Chinese English German Spanish
2556 2400 2000 1725

Table 3: The number of sentences in the test sets
used in the experiments

that do not contain phrases that exceed 20,000 lin-
earization options—which means that they filter
out about 1% of the phrases.

For Spanish, to the best of our knowledge, no
linearization experiments have been carried out so
far. Therefore, we cannot contrast our results with
any reference work.

As far as morphologization is concerned, the
performance achieved by our realizer for English
is somewhat lower than in (Minnen et al., 2001)
(97.8% vs. 99.8% of accuracy). Note, however,
that Minnen et al. describe a combined analyzer-
generator, in which the generator is directly de-
rived from the analyzer, which makes both ap-
proaches not directly comparable.

5.3 Discussion

The overall performance of our SVM-based deep
sentence generator ranges between 0.611 (for Ger-
man) and 0.688 (for Chinese) of the BLEU score.
HALogen’s (Langkilde-Geary, 2002) scores range
between 0.514 and 0.924, depending on the com-
pleteness of the input. The figures are not directly
comparable since HALogen takes as input syntac-
tic structures. However, it gives us an idea where

our generator is situated.
Traditional linearization approaches are rule-

based; cf., e.g., (Bröker, 1998; Gerdes and Ka-
hane, 2001; Duchier and Debusmann, 2001), and
(Bohnet, 2004). More recently, statistic language
models have been used to derive word order, cf.
(Ringger et al., 2004; Wan et al., 2009) and (Fil-
ippova and Strube, 2009). Because of its partially
free order, which is more difficult to handle than
fixed word order, German has often been worked
with in the context of linearization. Filippova and
Strube (2009) adapted their linearization model
originally developed for German to English. They
use two classifiers to determine the word order
in a sentence. The first classifier uses a trigram
LM to order words within constituents, and the
second (which is a maximum entropy classifier)
determines the order of constituents that depend
on a finite verb. For English, we achieve with
our SVM-based classifier a better performance.
As mentioned above, for German, Filippova and
Strube (2009)’s two classifier approach pays off
because it allows them to handle non-projective
structures for the Vorfeld within the field model.
It is certainly appropriate to optimize the perfor-
mance of the realizer for the languages covered in
a specific application. However, our goal has been
so far different: to offer an off-the-shelf language-
independent solution.

The linearization error analysis, first of all of
German and Spanish, reveals that the annotation
of coordinations in corpora of these languages as
‘X ← and/or/. . .→ Y’ is a source of errors. The
“linear” annotation used in the PropBank (‘X →
and/or/. . .→ Y’) appears to facilitate higher qual-
ity linearization. A preprocessing stage for au-
tomatic conversion of the annotation of coordi-
nations in the corpora would have certainly con-
tributed to a higher quality. We refrained from
doing this because we did not want to distort the
figures.

The morphologization error analysis indicates
a number of error sources that we will address
in the process of the improvement of the model.
Among those sources are: quotes at the beginning
of a sentence, acronyms, specific cases of start-
ing capital letters of proper nouns (for English and
Spanish), etc.
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Chinese English German Spanish
Semantics-Syntax (ULA/LAS) 95.71/86.29 94.77/89.76 95.46/82.99 98.39/93.00
Syntax-Topology (di/acc) 0.88/64.74 0.91/74.96 0.82/50.5 0.83/52.77
Syntax-Topology (BLEU) 0.85 0.894 0.735 0.78
Topology-Morphology (accuracy=correct words/all words) – 97.8 97.49 98.48
All stages (BLEU) 0.688 0.659 0.611 0.68
Baseline (BLEU) 0.12 0.18 0.11 0.14
Syntax-Topology (He et al., 2009) (di/acc) 0.89/– – – –
Syntax-Topology (He et al., 2009) (BLEU) 0.887 – – –
Syntax-Topology (Filippova and Strube, 2009) (di/acc) – 0.88/67 0.87/61 –
Syntax-Topology (Ringger et al., 2004) (BLEU) – 0.836 – –

Table 4: Quality figures for the isolated stages of deep sentence realization and the complete process.

As far as the contrastive evaluation of the qual-
ity of our morphologization stage is concerned,
it is hampered by the fact that for the traditional
manually crafted morphological generators, it is
difficult to find thorough quantitative evaluations,
and stochastic morphological generators are rare.

As already repeatedly pointed out above, so far
we intentionally refrained from optimizing the in-
dividual realization stages for specific languages.
Therefore, there is still quite a lot of room for im-
provement of our realizer when one concentrates
on a selected set of languages.

6 Conclusions

We presented an SVM-based stochastic deep mul-
tilingual sentence generator that is inspired by the
state-of-the-art research in semantic parsing. It
uses similar techniques and relies on the same re-
sources. This shows that there is a potential for
stochastic sentence realization to catch up with
the level of progress recently achieved in parsing
technologies.

The generator exploits recently available
multilevel-annotated corpora for training. While
the availability of such corpora is a condition for
deep sentence realization that starts, as is usually
the case, from semantic (predicate-argument)
structures, we discovered that current annotation
schemata do not always favor generation such
that additional preprocessing is necessary. This
is not surprising since stochastic generation is a
very young field. An initiative of the generation
community would be appropriate to influence
future multilevel annotation campaigns or to feed
back the enriched annotations to the “official”

resources.3

The most prominent features of our generator
are that it is per se multilingual, it achieves an ex-
tremely broad coverage, and it starts from abstract
semantic structures. The last feature allows us to
cover a number of critical generation issues: sen-
tence planning, linearization and morphological
generation. The separation of the semantic, syn-
tactic, linearization and morphological levels of
annotation and their modular processing by sep-
arate SVM decoders also facilitates a subsequent
integration of other generation tasks such as re-
ferring expression generation, ellipsis generation,
and aggregation. As a matter of fact, this gen-
erator instantiates the Reference Architecture for
Generation Systems (Mellish et al., 2006) for lin-
guistic generation.

A more practical advantage of the presented
deep stochastic sentence generator (as, in prin-
ciple, of all stochastic generators) is that, if
trained on a representative corpus, it is domain-
independent. As rightly pointed out by Belz
(2008), traditional wide coverage realizers such
as KPML (Bateman et al., 2005), FUF/SURGE
(Elhadad and Robin, 1996) and RealPro (Lavoie
and Rambow, 1997), which were also intended
as off-the-shelf plug-in realizers still tend to re-
quire a considerable amount of work for integra-
tion and fine-tuning of the grammatical and lexical
resources. Deep stochastic sentence realizers have
the potential to become real off-the-shelf modules.
Our realizer is freely available for download at
http://www.recerca.upf.edu/taln.

3We are currently working on a generation-oriented mul-
tilevel annotation of corpora for a number of languages. The
corpora will be made available to the community.

105



Acknowledgments

Many thanks to the three anonymous reviewers for
their very valuable comments and suggestions.

References
Bangalore, S. and O. Rambow. 2000. Exploiting a

Probabilistic Hierarchical Model for Generation. In
Proceedings of COLING ’00, pages 42–48.

Bangalore, S., J. Chen, and O. Rambow. 2001. Impact
of Quality and Quantity of Corpora on Stochastic
Generation. In Proceedings of the EMNLP Confer-
ence, pages 159–166.

Bateman, J.A., I. Kruijff-Korbayová, and G.-J. Krui-
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