
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 89–97,
Beijing, August 2010

Very High Accuracy and Fast Dependency Parsing is not a Contradiction

Bernd Bohnet
University of Stuttgart

Institut für Maschinelle Sprachverarbeitung
bernd.bohnet@ims.uni-stuttgart.de

Abstract

In addition to a high accuracy, short pars-
ing and training times are the most impor-
tant properties of a parser. However, pars-
ing and training times are still relatively
long. To determine why, we analyzed the
time usage of a dependency parser. We il-
lustrate that the mapping of the features
onto their weights in the support vector
machine is the major factor in time com-
plexity. To resolve this problem, we im-
plemented the passive-aggressive percep-
tron algorithm as a Hash Kernel. The
Hash Kernel substantially improves the
parsing times and takes into account the
features of negative examples built dur-
ing the training. This has lead to a higher
accuracy. We could further increase the
parsing and training speed with a paral-
lel feature extraction and a parallel parsing
algorithm. We are convinced that the Hash
Kernel and the parallelization can be ap-
plied successful to other NLP applications
as well such as transition based depen-
dency parsers, phrase structrue parsers,
and machine translation.

1 Introduction

Highly accurate dependency parsers have high de-
mands on resources and long parsing times. The
training of a parser frequently takes several days
and the parsing of a sentence can take on average
up to a minute. The parsing time usage is impor-
tant for many applications. For instance, dialog

systems only have a few hundred milliseconds to
analyze a sentence and machine translation sys-
tems, have to consider in that time some thousand
translation alternatives for the translation of a sen-
tence.

Parsing and training times can be improved
by methods that maintain the accuracy level, or
methods that trade accuracy against better parsing
times. Software developers and researchers are
usually unwilling to reduce the quality of their ap-
plications. Consequently, we have to consider at
first methods to improve a parser, which do not in-
volve an accuracy loss, such as faster algorithms,
faster implementation of algorithms, parallel al-
gorithms that use several CPU cores, and feature
selection that eliminates the features that do not
improve accuracy.

We employ, as a basis for our parser, the second
order maximum spanning tree dependency pars-
ing algorithm of Carreras (2007). This algorithm
frequently reaches very good, or even the best la-
beled attachment scores, and was one of the most
used parsing algorithms in the shared task 2009
of the Conference on Natural Language Learning
(CoNLL) (Hajič et al., 2009). We combined this
parsing algorithm with the passive-aggressive per-
ceptron algorithm (Crammer et al., 2003; McDon-
ald et al., 2005; Crammer et al., 2006). A parser
build out of these two algorithms provides a good
baseline and starting point to improve upon the
parsing and training times.

The rest of the paper is structured as follows. In
Section 2, we describe related work. In section 3,
we analyze the time usage of the components of

89

the parser. In Section 4, we introduce a new Ker-
nel that resolves some of the bottlenecks and im-
proves the performance. In Section 5, we describe
the parallel parsing algorithms which nearly al-
lowed us to divide the parsing times by the num-
ber of cores. In Section 6, we determine the opti-
mal setting for the Non-Projective Approximation
Algorithm. In Section 7, we conclude with a sum-
mary and an outline of further research.

2 Related Work

The two main approaches to dependency parsing
are transition based dependency parsing (Nivre,
2003; Yamada and Matsumoto., 2003; Titov and
Henderson, 2007) and maximum spanning tree
based dependency parsing (Eisner, 1996; Eisner,
2000; McDonald and Pereira, 2006). Transition
based parsers typically have a linear or quadratic
complexity (Nivre et al., 2004; Attardi, 2006).
Nivre (2009) introduced a transition based non-
projective parsing algorithm that has a worst case
quadratic complexity and an expected linear pars-
ing time. Titov and Henderson (2007) combined
a transition based parsing algorithm, which used a
beam search with a latent variable machine learn-
ing technique.

Maximum spanning tree dependency based
parsers decomposes a dependency structure into
parts known as “factors”. The factors of the first
order maximum spanning tree parsing algorithm
are edges consisting of the head, the dependent
(child) and the edge label. This algorithm has a
quadratic complexity. The second order parsing
algorithm of McDonald and Pereira (2006) uses a
separate algorithm for edge labeling. This algo-
rithm uses in addition to the first order factors: the
edges to those children which are closest to the de-
pendent. The second order algorithm of Carreras
(2007) uses in addition to McDonald and Pereira
(2006) the child of the dependent occurring in the
sentence between the head and the dependent, and
the an edge to a grandchild. The edge labeling is
an integral part of the algorithm which requires
an additional loop over the labels. This algorithm
therefore has a complexity of O(n4). Johansson
and Nugues (2008) reduced the needed number of
loops over the edge labels by using only the edges
that existed in the training corpus for a distinct

head and child part-of-speech tag combination.
The transition based parsers have a lower com-

plexity. Nevertheless, the reported run times in
the last shared tasks were similar to the maxi-
mum spanning tree parsers. For a transition based
parser, Gesmundo et al. (2009) reported run times
between 2.2 days for English and 4.7 days for
Czech for the joint training of syntactic and se-
mantic dependencies. The parsing times were
about one word per second, which speeds up
quickly with a smaller beam-size, although the ac-
curacy of the parser degrades a bit. Johansson and
Nugues (2008) reported training times of 2.4 days
for English with the high-order parsing algorithm
of Carreras (2007).

3 Analysis of Time Usage

We built a baseline parser to measure the time us-
age. The baseline parser resembles the architec-
ture of McDonald and Pereira (2006). It consists
of the second order parsing algorithm of Carreras
(2007), the non-projective approximation algo-
rithm (McDonald and Pereira, 2006), the passive-
aggressive support vector machine, and a feature
extraction component. The features are listed in
Table 4. As in McDonald et al. (2005), the parser
stores the features of each training example in a
file. In each epoch of the training, the feature
file is read, and the weights are calculated and
stored in an array. This procedure is up to 5 times
faster than computing the features each time anew.
But the parser has to maintain large arrays: for
the weights of the sentence and the training file.
Therefore, the parser needs 3GB of main memory
for English and 100GB of disc space for the train-
ing file. The parsing time is approximately 20%
faster, since some of the values did not have to be
recalculated.

Algorithm 1 illustrates the training algorithm in
pseudo code.τ is the set of training examples
where an example is a pair (xi, yi) of a sentence
and the corresponding dependency structure.−→w
and −→v are weight vectors. The first loop ex-
tracts features from the sentencexi and maps the
features to numbers. The numbers are grouped
into three vectors for the features of all possible
edgesφh,d, possible edges in combination with
siblingsφh,d,s and in combination with grandchil-

90

te+s tr tp ta rest total te pars. train. sent. feat. LAS UAS
Chinese 4582 748 95 - 3 846 3298 3262 84h 22277 8.76M 76.88 81.27
English 1509 168 12.5 20 1.5 202 1223 1258 38.5h 39279 8.47M 90.14 92.45
German 945 139 7.7 17.8 1.5 166 419 429 26.7h 36020 9.16M 87.64 90.03
Spanish 3329 779 36 - 2 816 2518 2550 16.9h 14329 5.51M 86.02 89.54

Table 1:te+s is the elapsed time in milliseconds to extract and store the features,tr to read the features
and to calculate the weight arrays,tp to predict the projective parse tree,ta to apply the non-projective
approximation algorithm,rest is the time to conduct the other parts such as the update function, train. is
the total training time per instance (tr+ tp+ ta+rest), andte is the elapsed time to extract the features.
The next columns illustrate the parsing time in milliseconds per sentence for the test set, training time
in hours, the number of sentences in the training set, the total number of features in million, the labeled
attachment score of the test set, and the unlabeled attachment score.

Algorithm 1: Training – baseline algorithm
τ = {(xi, yi)}Ii=1 // Training data
−→w = 0,−→v = 0
γ = E ∗ I // passive-aggresive update weight
for i = 1 to I

tss+e; extract-and-store-features(xi); tes+e;
for n = 1 to E // iteration over the training epochs

for i = 1 to I // iteration over the training examples
k ← (n− 1) ∗ I + i
γ = E ∗ I − k + 2 // passive-aggressive weight
tsr,k; A = read-features-and-calc-arrays(i,−→w) ; ter,k
tsp,k; yp = predicte-projective-parse-tree(A);tep,k
tsa,k; ya = non-projective-approx.(yp ,A); tea,k
update−→w ,−→v according to∆(yp, yi) andγ

w = v/(E ∗ I) // average

dren φh,d,g whereh, d, g, and s are the indexes
of the words included inxi. Finally, the method
stores the feature vectors on the hard disc.

The next two loops build the main part of the
training algorithm. The outer loop iterates over
the number of training epochs, while the inner
loop iterates over all training examples. The on-
line training algorithm considers a single training
example in each iteration. The first function in the
loop reads the features and computes the weights
A for the factors in the sentencexi. A is a set of
weight arrays.

A = {−→w ∗ −→f h,d,
−→w ∗ −→f h,d,s,

−→w ∗ −→f h,d,g}
The parsing algorithm uses the weight arrays

to predict a projective dependency structureyp.
The non-projective approximation algorithm has
as input the dependency structure and the weight
arrays. It rearranges the edges and tries to in-
crease the total score of the dependency structure.
This algorithm builds a dependency structureya,
which might be non-projective. The training al-

gorithm updates−→w according to the difference
between the predicted dependency structuresya
and the reference structureyi. It updates−→v as
well, whereby the algorithm additionally weights
the updates byγ. Since the algorithm decreases
γ in each round, the algorithm adapts the weights
more aggressively at the beginning (Crammer et
al., 2006). After all iterations, the algorithm com-
putes the average of−→v , which reduces the effect
of overfitting (Collins, 2002).

We have inserted into the training algorithm
functions to measure the start timests and the
end timeste for the procedures to compute and
store the features, to read the features, to pre-
dict the projective parse, and to calculate the non-
projective approximation. We calculate the aver-
age elapsed time per instance, as the average over
all training examples and epochs:

tx =

∑E∗I
k=1

te
x,k

−ts
x,k

E∗I .

We use the training set and the test set of the
CoNLL shared task 2009 for our experiments. Ta-
ble 1 shows the elapsed times in11000 seconds
(milliseconds) of the selected languages for the
procedure calls in the loops of Algorithm 1. We
had to measure the times for the feature extraction
in the parsing algorithm, since in the training al-
gorithm, the time can only be measured together
with the time for storing the features. The table
contains additional figures for the total training
time and parsing scores.1

The parsing algorithm itself only required, to
our surprise, 12.5 ms (tp) for a English sentence

1We use a Intel Nehalem i7 CPU 3.33 Ghz. With turbo
mode on, the clock speed was 3.46 Ghz.

91

on average, while the feature extraction needs
1223 ms. To extract the features takes about
100 times longer than to build a projective depen-
dency tree. The feature extraction is already im-
plemented efficiently. It uses only numbers to rep-
resent features which it combines to a long integer
number and then maps by a hash table2 to a 32bit
integer number. The parsing algorithm uses the
integer number as an index to access the weights
in the vectors−→w and−→v .

The complexity of the parsing algorithm is usu-
ally considered the reason for long parsing times.
However, it is not the most time consuming com-
ponent as proven by the above analysis. There-
fore, we investigated the question further, asking
what causes the high time consumption of the fea-
ture extraction?

In our next experiment, we left out the mapping
of the features to the index of the weight vectors.
The feature extraction takes 88 ms/sentence with-
out the mapping and 1223 ms/sentence with the
mapping. The feature–index mapping needs 93%
of the time to extract the features and 91% of the
total parsing time. What causes the high time con-
sumption of the feature–index mapping?

The mapping has to provide a number as an in-
dex for the features in the training examples and to
filter out the features of examples built, while the
parser predicts the dependency structures. The al-
gorithm filters out negative features to reduce the
memory requirement, even if they could improve
the parsing result. We will call the features built
due to the training examples positive features and
the rest negative features. We counted 5.8 times
more access to negative features than positive fea-
tures.

We now look more into the implementation de-
tails of the used hash table to answer the pre-
viously asked question. The hash table for the
feature–index mapping uses three arrays: one for
the keys, one for the values and a status array to
indicate the deleted elements. If a program stores
a value then the hash function uses the key to cal-
culate the location of the value. Since the hash
function is a heuristic function, the predicted lo-
cation might be wrong, which leads to so-called

2We use the hash tables of thetrove library:
http://sourceforge.net/projects/trove4j.

hash misses. In such cases the hash algorithm
has to retry to find the value. We counted 87%
hash misses including misses where the hash had
to retry several times. The number of hash misses
was high, because of the additional negative fea-
tures. The CPU cache can only store a small
amount of the data from the hash table. Therefore,
the memory controller has frequently to transfer
data from the main memory into the CPU. This
procedure is relatively slow. We traced down the
high time consumption to the access of the key
and the access of the value. Successive accesses
to the arrays are fast, but the relative random ac-
cesses via the hash function are very slow. The
large number of accesses to the three arrays, be-
cause of the negative features, positive features
and because of the hash misses multiplied by the
time needed to transfer the data into the CPU are
the reason for the high time consumption.

We tried to solve this problem with Bloom fil-
ters, larger hash tables and customized hash func-
tions to reduce the hash misses. These techniques
did not help much. However, a substantial im-
provement did result when we eliminated the hash
table completely, and directly accessed the weight
vectors−→w and−→v with a hash function. This led
us to the use of Hash Kernels.

4 Hash Kernel

A Hash Kernel for structured data uses a hash
function h : J → {1...n} to indexφ, cf. Shi et
al. (2009). φ maps the observationsX to a fea-
ture space. We defineφ(x, y) as the numeric fea-
ture representation indexed byJ . Let φk(x, y) =
φj(x, y) the hash based feature–index mapping,
whereh(j) = k. The process of parsing a sen-
tencexi is to find a parse treeyp that maximizes
a scoring function argmaxyF (xi, y). The learning
problem is to fit the functionF so that the errors
of the predicted parse treey are as low as possible.
The scoring function of the Hash Kernel is

F (x, y) = −→w ∗ φ(x, y)
where−→w is the weight vector and the size of−→w is
n.

Algorithm 2 shows the update function of the
Hash Kernel. We derived the update function
from the update function of MIRA (Crammer et

92

Algorithm 2: Update of the Hash Kernel
// yp = arg maxyF (xi, y)
update(−→w,−→v , xi, yi, yp, γ)

ǫ = ∆(yi, yp) // number of wrong labeled edges
if ǫ > 0 then
−→u ← (φ(xi, yi)− φ(xi, yp))

ν =
ǫ−(F (xt,yi)−F (xi,yp))

||−→u ||2−→w ← −→w + ν ∗ −→u
−→v ← ~v + γ ∗ ν ∗ −→u

return −→w ,−→v

al., 2006). The parameters of the function are
the weight vectors−→w and −→v , the sentencexi,
the gold dependency structureyi, the predicted
dependency structureyp, and the update weight
γ. The function∆ calculates the number of
wrong labeled edges. The update function up-
dates the weight vectors, if at least one edge is la-
beled wrong. It calculates the difference−→u of the
feature vectors of the gold dependency structure
φ(xi, yi) and the predicted dependency structure
φ(xi, yp). Each time, we use the feature represen-
tationφ, the hash functionh maps the features to
integer numbers between1 and |−→w |. After that
the update function calculates the marginν and
updates−→w and−→v respectively.

Algorithm 3 shows the training algorithm for
the Hash Kernel in pseudo code. A main dif-
ference to the baseline algorithm is that it does
not store the features because of the required time
which is needed to store the additional negative
features. Accordingly, the algorithm first extracts
the features for each training instance, then maps
the features to indexes for the weight vector with
the hash function and calculates the weight arrays.

Algorithm 3: Training – Hash Kernel
for n← 1 to E // iteration over the training epochs

for i← 1 to I // iteration over the training exmaples
k ← (n− 1) ∗ I + i
γ ← E ∗ I − k + 2 // passive-aggressive weight
tse,k; A← extr.-features-&-calc-arrays(i,−→w) ; tee,k
tsp,k; yp← predicte-projective-parse-tree(A);tep,k
tsa,k; ya← non-projective-approx.(yp ,A); tea,k
update−→w ,−→v according to∆(yp, yi) andγ

w = v/(E ∗ I) // average

For different j, the hash functionh(j) might
generate the same valuek. This means that the
hash function maps more than one feature to the

same weight. We call such cases collisions. Col-
lisions can reduce the accuracy, since the weights
are changed arbitrarily. This procedure is similar
to randomization of weights (features), which
aims to save space by sharing values in the weight
vector (Blum., 2006; Rahimi and Recht, 2008).
The Hash Kernel shares values when collisions
occur that can be considered as an approximation
of the kernel function, because a weight might
be adapted due to more than one feature. If the
approximation works well then we would need
only a relatively small weight vector otherwise
we need a larger weight vector to reduce the
chance of collisions. In an experiments, we
compared two hash functions and different hash
sizes. We selected for the comparison a standard
hash function (h1) and a custom hash function
(h2). The idea for the custom hash functionh2 is
not to overlap the values of the feature sequence
number and the edge label with other values.
These values are stored at the beginning of a long
number, which represents a feature.

h1 ← |(l xor(l ∨ 0xffffffff00000000 >> 32))% size|3

h2 ← |(l xor ((l >> 13) ∨ 0xffffffffffffe000) xor

((l >> 24) ∨ 0xffffffffffff0000) xor

((l >> 33) ∨ 0xfffffffffffc0000) xor

((l >> 40) ∨ 0xfffffffffff00000)) % size|

vector size h1 #(h1) h2 #(h2)
411527 85.67 0.41 85.74 0.41

3292489 87.82 3.27 87.97 3.28
10503061 88.26 8.83 88.35 8.77
21006137 88.19 12.58 88.41 12.53
42012281 88.32 12.45 88.34 15.27

115911564∗ 88.32 17.58 88.39 17.34
179669557 88.34 17.65 88.28 17.84

Table 2: The labeled attachment scores for differ-
ent weight vector sizes and the number of nonzero
values in the feature vectors in millions.∗ Not a
prime number.

Table 2 shows the labeled attachment scores for
selected weight vector sizes and the number of
nonzero weights. Most of the numbers in Table
2 are primes, since they are frequently used to ob-
tain a better distribution of the content in hash ta-

3>> n shifts n bits right, and% is the modulo operation.

93

bles.h2 has more nonzero weights thanh1. Nev-
ertheless, we did not observe any clear improve-
ment of the accuracy scores. The values do not
change significantly for a weight vector size of 10
million and more elements. We choose a weight
vector size of 115911564 values for further exper-
iments since we get more non zero weights and
therefore fewer collisions.

te tp ta r total par. trai.
Chinese 1308 - 200 3 1511 1184 93h
English 379 21.3 18.2 1.5 420 354 46h
German 209 12 15.3 1.7 238 126 24h
Spanish 1056 - 39 2 1097 1044 44h

Table 3: The time in milliseconds for the feature
extraction, projective parsing, non-projective ap-
proximation, rest (r), the total training time per
instance, the average parsing (par.) time in mil-
liseconds for the test set and the training time in
hours

0

1

2

3

0 5000 10000 15000

Spanish

Figure 1: The difference of the labeled attachment
score between the baseline parser and the parser
with the Hash Kernel (y-axis) for increasing large
training sets (x-axis).

Table 3 contains the measured times for the
Hash Kernel as used in Algorithm 2. The parser
needs 0.354 seconds in average to parse a sen-
tence of the English test set. This is 3.5 times
faster than the baseline parser. The reason for that
is the faster feature mapping of the Hash Kernel.
Therefore, the measured timete for the feature ex-
traction and the calculation of the weight arrays
are much lower than for the baseline parser. The
training is about 19% slower since we could no
longer use a file to store the feature indexes of
the training examples because of the large number
of negative features. We counted about twice the
number of nonzero weights in the weight vector of

the Hash Kernel compared to the baseline parser.
For instance, we counted for English 17.34 Mil-
lions nonzero weights in the Hash Kernel and 8.47
Millions in baseline parser and for Chinese 18.28
Millions nonzero weights in the Hash Kernel and
8.76 Millions in the baseline parser. Table 6 shows
the scores for all languages of the shared task
2009. The attachment scores increased for all lan-
guages. It increased most for Catalan and Span-
ish. These two corpora have the smallest training
sets. We searched for the reason and found that
the Hash Kernel provides an overproportional ac-
curacy gain with less training data compared to
MIRA. Figure 1 shows the difference between the
labeled attachment score of the parser with MIRA
and the Hash Kernel for Spanish. The decreasing
curve shows clearly that the Hash Kernel provides
an overproportional accuracy gain with less train-
ing data compared to the baseline. This provides
an advantage for small training corpora.

However, this is probably not the main rea-
son for the high improvement, since for languages
with only slightly larger training sets such as Chi-
nese the improvement is much lower and the gra-
dient at the end of the curve is so that a huge
amount of training data would be needed to make
the curve reach zero.

5 Parallelization

Current CPUs have up to 12 cores and we will
see soon CPUs with more cores. Also graphic
cards provide many simple cores. Parsing algo-
rithms can use several cores. Especially, the tasks
to extract the features and to calculate the weight
arrays can be well implemented as parallel algo-
rithm. We could also successful parallelize the
projective parsing and the non-projective approx-
imation algorithm. Algorithm 4 shows the paral-
lel feature extraction in pseudo code. The main
method prepares a list of tasks which can be per-
formed in parallel and afterwards it creates the
threads that perform the tasks. Each thread re-
moves from the task list an element, carries out
the task and stores the result. This procedure is
repeated until the list is empty. The main method
waits until all threads are completed and returns
the result. For the parallel algorithms, Table 5
shows the elapsed times depend on the number of

94

Standard Features # Linear Features Linear G. Features Sibling Features
1 l,hf ,hp,d(h,d) 14 l,hp,h+1p,dp,d(h,d) 44 l,gp,dp,d+1p,d(h,d) 99 l,sl,hp,d(h,d)⊕r(h,d)
2 l,hf ,d(h,d) 15 l,hp,d-1p,dp,d(h,d) 45 l,gp,dp,d-1p,d(h,d) 100 l,sl,dp,d(h,d)⊕r(h,d)
3 l,hp,d(h,d) 16 l,hp,dp,d+1p,d(h,d) 46 l,gp,g+1p,d-1p,dp,d(h,d) 101 l,hl,dp,d(h,d)⊕r(h,d)
4 l,df ,dp,d(h,d) 17 l,hp,h+1p,d-1p,dp,d(h,d) 47 l,g-1p,gp,d-1p,dp,d(h,d) 102 l,dl,sp,d(h,d)⊕r(h,d)
5 l,hp,d(h,d) 18 l,h-1p,h+1p,d-1p,dp,d(h,d) 48 l,gp,g+1p,dp,d+1p,d(h,d) 75 l,∀dm,∀sm,d(h,d)
6 l,dp,d(h,d) 19 l,hp,h+1p,dp,d+1p,d(h,d) 49 l,g-1p,gp,dp,d+1p,d(h,d) 76 l,∀hm,∀sm,d(h,s)
7 l,hf ,hp,df ,dp,d(h,d) 20 l,h-1p,hp,dp,d-1p,d(h,d) 50 l,gp,g+1p,hp,d(h,d) Linear S. Features
8 l,hp,df ,dp,d(h,d) Grandchild Features 51 l,gp,g-1p,hp,d(h,d) 58 l,sp,s+1p,hp,d(h,d)
9 l,hf ,df ,dp,d(h,d) 21 l,hp,dp,gp,d(h,d,g) 52 l,gp,hp,h+1p,d(h,d) 59 l,sp,s-1p,hp,d(h,d)
10 l,hf ,hp,df ,d(h,d) 22 l,hp,gp,d(h,d,g) 53 l,gp,hp,h-1p,d(h,d) 60 l,sp,hp,h+1p,d(h,d)
11 l,hf ,df ,hp,d(h,d) 23 l,dp,gp,d(h,d,g) 54 l,gp,g+1p,h-1p,hp,d(h,d) 61 l,sp,hp,h-1p,d(h,d)
12 l,hf ,df ,d(h,d) 24 l,hf ,gf ,d(h,d,g) 55 l,g-1p,gp,h-1p,hp,d(h,d) 62 l,sp,s+1p,h-1p,d(h,d)
13 l,hp,dp,d(h,d) 25 l,df ,gf ,d(h,d,g) 56 l,gp,g+1p,hp,h+1p,d(h,d) 63 l,s-1p,sp,h-1p,d(h,d)
77 l,hl,hp,d(h,d) 26 l,gf ,hp,d(h,d,g) 57 l,g-1p,gp,hp,h+1p,d(h,d) 64 l,sp,s+1p,hp,d(h,d)
78 l,hl,d(h,d) 27 l,gf ,dp,d(h,d,g) Sibling Features 65 l,s-1p,sp,hp,h+1p,d(h,d)
79 l,hp,d(h,d) 28 l,hf ,gp,d(h,d,g) 30 l,hp,dp,sp,d(h,d)⊕r(h,d) 66 l,sp,s+1p,dp,d(h,d)
80 l,dl,dp,d(h,d) 29 l,df ,gp,d(h,d,g) 31 l,hp,sp,d(h,d)⊕r(h,d) 67 l,sp,s-1p,dp,d(h,d)
81 l,dl,d(h,d) 91 l,hl,gl,d(h,d,g) 32 l,dp,sp,d(h,d)⊕r(h,d) 68 sp,dp,d+1p,d(h,d)
82 l,dp,d(h,d) 92 l,dp,gp,d(h,d,g) 33 l,pf ,sf ,d(h,d)⊕r(h,d) 69 sp,dp,d-1p,d(h,d)
83 l,dl,hp,dp,hl,d(h,d) 93 l,gl,hp,d(h,d,g) 34 l,pp,sf ,d(h,d)⊕r(h,d) 70 sp,s+1p,d-1p,dp,d(h,d)
84 l,dl,hp,dp,d(h,d) 94 l,gl,dp,d(h,d,g) 35 l,sf ,pp,d(h,d)⊕r(h,d) 71 s-1p,sp,d-1p,dp,d(h,d)
85 l,hl,dl,dp,d(h,d) 95 l,hl,gp,d(h,d,g) 36 l,sf ,dp,d(h,d)⊕r(h,d) 72 sp,s+1p,dp,d+1p,d(h,d)
86 l,hl,hp,dp,d(h,d) 96 l,dl,gp,d(h,d,g) 37 l,sf ,dp,d(h,d)⊕r(h,d) 73 s-1p,sp,dp,d+1p,d(h,d)
87 l,hl,dl,hp,d(h,d) 74 l,∀dm,∀gm,d(h,d) 38 l,df ,sp,d(h,d)⊕r(h,d) Special Feature
88 l,hl,dl,d(h,d) Linear G. Features 97 l,hl,sl,d(h,d)⊕r(h,d) 39 ∀l,hp,dp,xpbetween h,d
89 l,hp,dp,d(h,d) 42 l,gp,g+1p,dp,d(h,d) 98 l,dl,sl,d(h,d)⊕r(h,d)
41 l,∀hm,∀dm,d(h,d) 43 l,gp,g-1p,dp,d(h,d)

Table 4: Features Groups.l represents the label,h the head, d the dependent,s a sibling, andg a
grandchild,d(x,y,[,z]) the order of words, andr(x,y) the distance.

used cores. The parsing time is 1.9 times faster
on two cores and 3.4 times faster on 4 cores. Hy-
per threading can improve the parsing times again
and we get with hyper threading 4.6 faster parsing
times. Hyper threading possibly reduces the over-
head of threads, which contains already our single
core version.

Algorithm 4: Parallel Feature Extraction
A // weight arrays
extract-features-and-calc-arrays(xi)

data-list← {} // thread-save data list
for w1 ← 1 to |xi|

for w2 ← 1 to |xi|
data-list← data-list∪{(w1, w2)}

c← number of CPU cores
for t← 1 to c
Tt ← create-array-thread(t, xi,data-list)
start array-threadTt// start thread t

for t← 1 to c
join Tt// wait until threadt is finished
A← A ∪ collect-result(Tt)

return A
//
array-thread T

d← remove-first-element(data-list)
if d is emptythen end-thread
... // extract features and calculate partd of A

Cores te tp ta rest total pars. train.
1 379 21.3 18.2 1.5 420 354 45.8h
2 196 11.7 9.2 2.1 219 187 23.9h
3 138 8.9 6.5 1.6 155 126 16.6h
4 106 8.2 5.2 1.6 121 105 13.2h

4+4h 73.3 8.8 4.8 1.3 88.2 77 9.6h

Table 5: Elapsed times in milliseconds for differ-
ent numbers of cores. The parsing time (pars.)
are expressed in milliseconds per sentence and
the training (train.) time in hours. The last row
shows the times for 8 threads on a 4 core CPU
with Hyper-threading. For these experiment, we
set the clock speed to 3.46 Ghz in order to have
the same clock speed for all experiments.

6 Non-Projective Approximation
Threshold

For non-projective parsing, we use the Non-
Projective Approximation Algorithm of McDon-
ald and Pereira (2006). The algorithm rearranges
edges in a dependency tree when they improve
the score. Bohnet (2009) extended the algorithm
by a threshold which biases the rearrangement of
the edges. With a threshold, it is possible to gain
a higher percentage of correct dependency links.
We determined a threshold in experiments for
Czech, English and German. In the experiment,
we use the Hash Kernel and increase the thresh-

95

System Average Catalan Chinese Czech English German Japanese Spanish

Top CoNLL 09 85.77(1) 87.86(1) 79.19(4) 80.38(1) 89.88(2) 87.48(2) 92.57(3) 87.64(1)

Baseline Parser 85.10 85.70 76.88 76.93 90.14 87.64 92.26 86.12
this work 86.33 87.45 76.99 80.96 90.33 88.06 92.47 88.13

Table 6: Top LAS of the CoNLL 2009 of (1) Gesmundo et al. (2009), (2) Bohnet (2009), (3) Che et
al. (2009), and (4) Ren et al. (2009); LAS of the baseline parser and the parser with Hash Kernel. The
numbers in bold face mark the top scores. We used for Catalan,Chinese, Japanese and Spanish the
projective parsing algorithm.

old at the beginning in small steps by 0.1 and later
in larger steps by 0.5 and 1.0. Figure 2 shows
the labeled attachment scores for the Czech, En-
glish and German development set in relation to
the rearrangement threshold. The curves for all
languages are a bit volatile. The English curve
is rather flat. It increases a bit until about 0.3
and remains relative stable before it slightly de-
creases. The labeled attachment score for Ger-
man and Czech increases until 0.3 as well and then
both scores start to decrease. For English a thresh-
old between 0.3 and about 2.0 would work well.
For German and Czech, a threshold of about 0.3
is the best choice. We selected for all three lan-
guages a threshold of 0.3.

74

76

78

80

82

84

86

88

0 1 2 3 4 5

Czech English German

Figure 2: English, German, and Czech labeled at-
tachment score (y-axis) for the development set in
relation to the rearrangement threshold (x-axis).

7 Conclusion and Future Work

We have developed a very fast parser with ex-
cellent attachment scores. For the languages of
the 2009 CoNLL Shared Task, the parser could
reach higher accuracy scores on average than the
top performing systems. The scores for Catalan,
Chinese and Japanese are still lower than the top

scores. However, the parser would have ranked
second for these languages. For Catalan and
Chinese, the top results obtained transition-based
parsers. Therefore, the integration of both tech-
niques as in Nivre and McDonald (2008) seems
to be very promising. For instance, to improve
the accuracy further, more global constrains cap-
turing the subcategorization correct could be inte-
grated as in Riedel and Clarke (2006). Our faster
algorithms may make it feasible to consider fur-
ther higher order factors.

In this paper, we have investigated possibilities
for increasing parsing speed without any accuracy
loss. The parsing time is 3.5 times faster on a sin-
gle CPU core than the baseline parser which has
an typical architecture for a maximum spanning
tree parser. The improvement is due solely to the
Hash Kernel. The Hash Kernel was also a prereq-
uisite for the parallelization of the parser because
it requires much less memory bandwidth which is
nowadays a bottleneck of parsers and many other
applications.

By using parallel algorithms, we could further
increase the parsing time by a factor of 3.4 on a
4 core CPU and including hyper threading by a
factor of 4.6. The parsing speed is 16 times faster
for the English test set than the conventional ap-
proach. The parser needs only 77 millisecond in
average to parse a sentence and the speed will
scale with the number of cores that become avail-
able in future. To gain even faster parsing times, it
may be possible to trade accuracy against speed.
In a pilot experiment, we have shown that it is
possible to reduce the parsing time in this way to
as little as 9 milliseconds. We are convinced that
the Hash Kernel can be applied successful to tran-
sition based dependency parsers, phrase structure
parsers and many other NLP applications.4

4We provide the Parser and Hash Kernel as open source
for download from http://code.google.com/p/mate-tools.

96

References

Attardi, G. 2006. Experiments with a Multilanguage
Non-Projective Dependency Parser. InProceedings
of CoNLL, pages 166–170.

Blum., A. 2006. Random Projection, Margins, Ker-
nels, and Feature-Selection. InLNCS, pages 52–68.
Springer.

Bohnet, B. 2009. Efficient Parsing of Syntactic and
Semantic Dependency Structures. InProceedings
of the 13th Conference on Computational Natural
Language Learning (CoNLL-2009).

Carreras, X. 2007. Experiments with a Higher-order
Projective Dependency Parser. InEMNLP/CoNLL.

Che, W., Li Z., Li Y., Guo Y., Qin B., and Liu T. 2009.
Multilingual Dependency-based Syntactic and Se-
mantic Parsing. InProceedings of the 13th Confer-
ence on Computational Natural Language Learning
(CoNLL-2009).

Collins, M. 2002. Discriminative Training Methods
for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. InEMNLP.

Crammer, K., O. Dekel, S. Shalev-Shwartz, and
Y. Singer. 2003. Online Passive-Aggressive Algo-
rithms. InSixteenth Annual Conference on Neural
Information Processing Systems (NIPS).

Crammer, K., O. Dekel, S. Shalev-Shwartz, and
Y. Singer. 2006. Online Passive-Aggressive Al-
gorithms. Journal of Machine Learning Research,
7:551–585.

Eisner, J. 1996. Three New Probabilistic Models for
Dependency Parsing: An Exploration. InProceed-
ings of the 16th International Conference on Com-
putational Linguistics (COLING-96), pages 340–
345, Copenhaen.

Eisner, J., 2000.Bilexical Grammars and their Cubic-
time Parsing Algorithms, pages 29–62. Kluwer
Academic Publishers.

Gesmundo, A., J. Henderson, P. Merlo, and I. Titov.
2009. A Latent Variable Model of Syn-
chronous Syntactic-Semantic Parsing for Multiple
Languages. InProceedings of the 13th Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), Boulder, Colorado, USA., June 4-5.

Hajič, J., M. Ciaramita, R. Johansson, D. Kawahara,
M. Antònia Martı́, L. Màrquez, A. Meyers, J. Nivre,
S. Padó, J.Štěpánek, P. Straňák, M. Surdeanu,
N. Xue, and Y. Zhang. 2009. The CoNLL-2009
Shared Task: Syntactic and Semantic Dependencies
in Multiple Languages. InProceedings of the 13th
CoNLL-2009, June 4-5, Boulder, Colorado, USA.

Johansson, R. and P. Nugues. 2008. Dependency-
based Syntactic–Semantic Analysis with PropBank
and NomBank. InProceedings of the Shared Task
Session of CoNLL-2008, Manchester, UK.

McDonald, R. and F. Pereira. 2006. Online Learning
of Approximate Dependency Parsing Algorithms.
In In Proc. of EACL, pages 81–88.

McDonald, R., K. Crammer, and F. Pereira. 2005. On-
line Large-margin Training of Dependency Parsers.
In Proc. ACL, pages 91–98.

Nivre, J. and R. McDonald. 2008. Integrating Graph-
Based and Transition-Based Dependency Parsers.
In ACL-08, pages 950–958, Columbus, Ohio.

Nivre, J., J. Hall, and J. Nilsson. 2004. Memory-
Based Dependency Parsing. InProceedings of the
8th CoNLL, pages 49–56, Boston, Massachusetts.

Nivre, J. 2003. An Efficient Algorithm for Pro-
jective Dependency Parsing. In8th International
Workshop on Parsing Technologies, pages 149–160,
Nancy, France.

Nivre, J. 2009. Non-Projective Dependency Parsing in
Expected Linear Time. InProceedings of the 47th
Annual Meeting of the ACL and the 4th IJCNLP of
the AFNLP, pages 351–359, Suntec, Singapore.

Rahimi, A. and B. Recht. 2008. Random Features
for Large-Scale Kernel Machines. In Platt, J.C.,
D. Koller, Y. Singer, and S. Roweis, editors,Ad-
vances in Neural Information Processing Systems,
volume 20. MIT Press, Cambridge, MA.

Ren, H., D. Ji Jing Wan, and M. Zhang. 2009. Pars-
ing Syntactic and Semantic Dependencies for Mul-
tiple Languages with a Pipeline Approach. InPro-
ceedings of the 13th Conference on Computational
Natural Language Learning (CoNLL-2009), Boul-
der, Colorado, USA., June 4-5.

Riedel, S. and J. Clarke. 2006. Incremental Inte-
ger Linear Programming for Non-projective Depen-
dency Parsing. InProceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing, pages 129–137, Sydney, Australia, July.
Association for Computational Linguistics.

Shi, Q., J. Petterson, G. Dror, J. Langford, A. Smola,
and S.V.N. Vishwanathan. 2009. Hash Kernels for
Structured Data. InJournal of Machine Learning.

Titov, I. and J. Henderson. 2007. A Latent Variable
Model for Generative Dependency Parsing. InPro-
ceedings of IWPT, pages 144–155.

Yamada, H. and Y. Matsumoto. 2003. Statistical De-
pendency Analysis with Support Vector Machines.
In Proceedings of IWPT, pages 195–206.

97

