Very High Accuracy and Fast Dependency Parsing is not a Contradiction

Bernd Bohnet
University of Stuttgart
Institut fir Maschinelle Sprachverarbeitung
ber nd. bohnet @ ns. uni -stuttgart. de

Abstract systems only have a few hundred milliseconds to

analyze a sentence and machine translation sys-
tems, have to consider in that time some thousand
translation alternatives for the translation of a sen-

tence.

Parsing and training times can be improved
by methods that maintain the accuracy level, or
methods that trade accuracy against better parsing
times. Software developers and researchers are
usually unwilling to reduce the quality of their ap-
plications. Consequently, we have to consider at
first methods to improve a parser, which do not in-
volve an accuracy loss, such as faster algorithms,
faster implementation of algorithms, parallel al-
gorithms that use several CPU cores, and feature
selection that eliminates the features that do not
improve accuracy.

In addition to a high accuracy, short pars-
ing and training times are the most impor-
tant properties of a parser. However, pars-
ing and training times are still relatively
long. To determine why, we analyzed the
time usage of a dependency parser. We il-
lustrate that the mapping of the features
onto their weights in the support vector
machine is the major factor in time com-
plexity. To resolve this problem, we im-
plemented the passive-aggressive percep-
tron algorithm as a Hash Kernel. The
Hash Kernel substantially improves the
parsing times and takes into account the
features of negative examples built dur-
ing the training. This has lead to a higher
accuracy. We could further increase the ~ We employ, as a basis for our parser, the second
parsing and training speed with a paral- order maximum spanning tree dependency pars-
lel feature extraction and a parallel parsing  ing algorithm of Carreras (2007). This algorithm
algorithm. We are convinced thatthe Hash  frequently reaches very good, or even the best la-
Kernel and the parallelization can be ap- beled attachment scores, and was one of the most
plied successful to other NLP applications ~ used parsing algorithms in the shared task 2009
as well such as transition based depen- of the Conference on Natural Language Learning

dency parsers, phrase structrue parsers, (CoNLL) (Hajic et al., 2009). We combined this

and machine translation. parsing algorithm with the passive-aggressive per-
_ ceptron algorithm (Crammer et al., 2003; McDon-
1 Introduction ald et al., 2005; Crammer et al., 2006). A parser

Highly accurate dependency parsers have high ghuild out of these two algorithms provides a good

mands on resources and long parsing times. THR&seline and starting point to improve upon the

training of a parser frequently takes several dayRarsing and training times.

and the parsing of a sentence can take on averageThe rest of the paper is structured as follows. In

up to a minute. The parsing time usage is imporSection 2, we describe related work. In section 3,
tant for many applications. For instance, dialogve analyze the time usage of the components of
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the parser. In Section 4, we introduce a new Kemead and child part-of-speech tag combination.
nel that resolves some of the bottlenecks and im- The transition based parsers have a lower com-
proves the performance. In Section 5, we describgexity. Nevertheless, the reported run times in
the parallel parsing algorithms which nearly althe last shared tasks were similar to the maxi-
lowed us to divide the parsing times by the nummum spanning tree parsers. For a transition based
ber of cores. In Section 6, we determine the optiparser, Gesmundo et al. (2009) reported run times
mal setting for the Non-Projective Approximationbetween 2.2 days for English and 4.7 days for
Algorithm. In Section 7, we conclude with a sum-Czech for the joint training of syntactic and se-

mary and an outline of further research. mantic dependencies. The parsing times were
about one word per second, which speeds up
2 Related Work quickly with a smaller beam-size, although the ac-

The two main approaches to dependency parsi@"raoy of the parser degradgg a b_it. Johansson and
are transition based dependency parsing (Nivr&lugues (2008) reported training times of 2.4 days
2003: Yamada and Matsumoto., 2003: Titov andPr English with the high-order parsing algorithm
Henderson, 2007) and maximum spanning tre®f Carreras (2007).
based dependency parsing (Eisner, 1996; Eisney, - -
2000; McDonald and Pereira, 2006). Transitior‘?”r Analysisof Time Usage
based parsers typically have a linear or quadratM/e built a baseline parser to measure the time us-
complexity (Nivre et al., 2004; Attardi, 2006). age. The baseline parser resembles the architec-
Nivre (2009) introduced a transition based nonture of McDonald and Pereira (2006). It consists
projective parsing algorithm that has a worst casef the second order parsing algorithm of Carreras
guadratic complexity and an expected linear parg2007), the non-projective approximation algo-
ing time. Titov and Henderson (2007) combinedithm (McDonald and Pereira, 2006), the passive-
a transition based parsing algorithm, which used aggressive support vector machine, and a feature
beam search with a latent variable machine learrextraction component. The features are listed in
ing technique. Table 4. As in McDonald et al. (2005), the parser
Maximum spanning tree dependency basestores the features of each training example in a
parsers decomposes a dependency structure ifile. In each epoch of the training, the feature
parts known as “factors”. The factors of the firsfiile is read, and the weights are calculated and
order maximum spanning tree parsing algorithnstored in an array. This procedure is up to 5 times
are edges consisting of the head, the dependedmaster than computing the features each time anew.
(child) and the edge label. This algorithm has ®8ut the parser has to maintain large arrays: for
guadratic complexity. The second order parsinghe weights of the sentence and the training file.
algorithm of McDonald and Pereira (2006) uses dherefore, the parser needs 3GB of main memory
separate algorithm for edge labeling. This algofor English and 100GB of disc space for the train-
rithm uses in addition to the first order factors: theng file. The parsing time is approximately 20%
edges to those children which are closest to the d&aster, since some of the values did not have to be
pendent. The second order algorithm of Carreragcalculated.
(2007) uses in addition to McDonald and Pereira Algorithm 1 illustrates the training algorithm in
(2006) the child of the dependent occurring in thggseudo code.r is the set of training examples
sentence between the head and the dependent, avttere an example is a pait,( y;) of a sentence
the an edge to a grandchild. The edge labeling end the corresponding dependency structuge.
an integral part of the algorithm which requiresand @ are weight vectors. The first loop ex-
an additional loop over the labels. This algorithntracts features from the sentenceand maps the
therefore has a complexity of @{). Johansson features to numbers. The numbers are grouped
and Nugues (2008) reduced the needed numberiofo three vectors for the features of all possible
loops over the edge labels by using only the edgesiges¢;, 4, possible edges in combination with
that existed in the training corpus for a distinctsiblings¢y, 4 s and in combination with grandchil-
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| [ texs | &t | tp, ] ta|rest[total]] t. ][ pars.| train.| sent.] feat.| LAS | UAS |
Chinese| 4582 || 748 95 - 3 | 846 || 3298 || 3262 84h | 22277 | 8.76M | 76.88 | 81.27
English | 1509 || 168 | 12.5 20| 15| 202 || 1223 || 1258 | 38.5h | 39279 | 8.47M | 90.14 | 92.45
German| 945 139 | 7.7| 17.8| 15| 166 419 429 | 26.7h | 36020 | 9.16M | 87.64 | 90.03
Spanish| 3329 || 779 36 - 2| 816 | 2518 | 2550 | 16.9h | 14329 | 5.51M | 86.02 | 89.54

Table 1:t., is the elapsed time in milliseconds to extract and storeghtufest,. to read the features
and to calculate the weight arrays,to predict the projective parse treg,to apply the non-projective
approximation algorithnrest is the time to conduct the other parts such as the updatadanttin. is

the total training time per instancg. ¢-t, +t,+rest ), andt. is the elapsed time to extract the features.
The next columns illustrate the parsing time in millisecoper sentence for the test set, training time
in hours, the number of sentences in the training set, thénamber of features in million, the labeled
attachment score of the test set, and the unlabeled attatiscme.

Algorithm 1: Training — baseline algorithm _ gorithm updatesw according to the difference

7 = {(xi, yi) }i=1 // Training data between the predicted dependency structugges
wW=0,7=0 _ _ and the reference structugg. It updates© as
1= ]_El*tg /|/ passive-aggresive update weight well, whereby the algorithm additionally weights
ti;; extract-and-store-features; t5 ; the updates by,. Since the algorithm decreases
for n = 1to E // iteration over the training epochs ~ in each round, the algorithm adapts the weights

for i=1to I // iteration over the training examples ; i
ke (n—1)slti more aggressively at the beginning (Crammer et

~ = Ex 1~ k+ 2/l passive-aggressive weight  al., 2006). After all iterations, the algorithm com-
t;. x; A = read-features-and-calc-arraysi) ; ¢ putes the average af, which reduces the effect

tp : yp = predicte-projective-parse-tregft, of overfitting (Collins, 2002)

ta 1+ Ya = NON-projective-approxy,,A); t; . b ’ o .

updatew, @ according taA(y,, y;) andy We have inserted into the training algorithm
w=v/(E*I) Il average functions to measure the start timegsand the

end timest® for the procedures to compute and
store the features, to read the features, to pre-
dren ¢4, Whereh, d, g, and s are the indexes dict the projective parse, and to calculate the non-
of the words included in;. Finally, the method projective approximation. We calculate the aver-
stores the feature vectors on the hard disc. age elapsed time per instance, as the average over
The next two loops build the main part of theall training examples and epochs:
training algorithm. The outer loop iterates over Bxl e s
the number of training epochs, while the inner ty = ShSloay mk
loop iterates over all training examples. The onyye yse the training set and the test set of the
line training algorithm considers a single trainingcoNLL shared task 2009 for our experiments. Ta-
example in each iteration. The first function in theyje 1 shows the elapsed times i seconds
loop reads the features and computes the weighfsiilliseconds) of the selected languages for the
A for the factors in the sentenag. A is a setof procedure calls in the loops of Algorithm 1. We
weight arrays. had to measure the times for the feature extraction
A= {W ?hd’ o * ?h,d,w W * ?h,d,g} in the parsing algorithm, since in the training al-
gonthm, the time can only be measured together

The parsing algorithm uses the weight arrays . ) .
b g algo g yW|th the time for storing the features. The table
to predict a projective dependency structuge : - , o
S L . contains additional figures for the total training
The non-projective approximation algorithm has.

as input the dependency structure and the weig |{nTehand p§r3|nglscq;ﬁs. itself onl ired. t
arrays. It rearranges the edges and tries to in- € parsing aigorithm 1S€ll only required, 1o

crease the total score of the dependency structufg!" SUTPrIse, 12.5 ms)) for a English sentence

This algorithm builds a dependency structyrge We use a Intel Nehalem i7 CPU 3.33 Ghz. With turbo
which might be non-projective. The training al-mode on, the clock speed was 3.46 Ghz.
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on average, while the feature extraction needsash misses. In such cases the hash algorithm
1223 ms. To extract the features takes abolias to retry to find the value. We counted 87%
100 times longer than to build a projective depenhash misses including misses where the hash had
dency tree. The feature extraction is already imto retry several times. The number of hash misses
plemented efficiently. It uses only numbers to repwas high, because of the additional negative fea-
resent features which it combines to a long integdures. The CPU cache can only store a small
number and then maps by a hash taléea 32bit amount of the data from the hash table. Therefore,
integer number. The parsing algorithm uses théne memory controller has frequently to transfer
integer number as an index to access the weightiata from the main memory into the CPU. This
in the vectorsw and@'. procedure is relatively slow. We traced down the
The complexity of the parsing algorithm is usu-high time consumption to the access of the key
ally considered the reason for long parsing timesand the access of the value. Successive accesses
However, it is not the most time consuming com+o the arrays are fast, but the relative random ac-
ponent as proven by the above analysis. Thereesses via the hash function are very slow. The
fore, we investigated the question further, askintarge number of accesses to the three arrays, be-
what causes the high time consumption of the feaause of the negative features, positive features
ture extraction? and because of the hash misses multiplied by the
In our next experiment, we left out the mappingime needed to transfer the data into the CPU are
of the features to the index of the weight vectorsthe reason for the high time consumption.
The feature extraction takes 88 ms/sentence with- We tried to solve this problem with Bloom fil-
out the mapping and 1223 ms/sentence with thers, larger hash tables and customized hash func-
mapping. The feature—index mapping needs 93%ons to reduce the hash misses. These techniques
of the time to extract the features and 91% of thdid not help much. However, a substantial im-
total parsing time. What causes the high time corprovement did result when we eliminated the hash
sumption of the feature—index mapping? table completely, and directly accessed the weight
The mapping has to provide a number as an irvectorsw and @ with a hash function. This led
dex for the features in the training examples and tos to the use of Hash Kernels.
filter out the features of examples built, while the
parser predicts the dependency structures. The 4- Hash Kernel

gorithm filters out negative features to reduce thg\ Hash Kernel for structured data uses a hash
memory requirement, even if they could improve% . . )

. . . functionh : J — {1...n} to index¢, cf. Shi et
the parsing result. We will call the features built {L..n} ¢

. . ;a (2009). » maps the observation¥ to a fea-
due to the training examples positive features and o space. We defing(z, y) as the numeric fea-

the rest negative features. We counted 5.8 times

. . Ure representation indexed Let ¢ =
more access to negative features than positive fea- P by . Ok (2, y) .
$j(x,y) the hash based feature—index mapping,
tures.

. . . whereh(j) = k. The process of parsing a sen-
We now look more into the implementation de- (:7) : P b 98
tencez; is to find a parse treg, that maximizes

tails of the used hash table to answer the pr%{scoring function argma¥ (;, ). The learning

viously asked question. The hash table for theroblem is to fit the functiorf” so that the errors

feature—index mapping uses three arrays: one f Fthe predicted parse treeare as low as possible.
the keys, one for the values and a status array tIQne scoring function of the Hash Kernel is
indicate the deleted elements. If a program stores

a value then the hash function uses the key to cal- F(z,y) =@ * ¢(z,y)

culate the location of the value. Since the hasfyhere is the weight vector and the size of is
function is a heuristic function, the predicted lo-,_

cation might be wrong, which leads to so-called a|gorithm 2 shows the update function of the
We use the hash tables of theove library: Hash Kernel. We derived the update function
http://sourceforge. net/projects/trovedj. from the update function of MIRA (Crammer et
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Algorithm 2: Update of the Hash Kernel same weight. We call such cases collisions. Col-

1y, = arg max F(z:, ) lisions can reduce the accuracy, since the weights
update(@, 7, x4, ¥i, Yp, ) are changed arbitrarily. This procedure is similar
<= féyfﬁgﬁ) /f number of wrong labeled edges to randomization of weights (features), which
T (B, ys) — B(zi, up)) aims to save space by sharing values in the weight
Y — S E @y F(iup) vector (Blum., 2006; Rahimi and Recht, 2008).
W m+ll‘*7‘—5 The Hash Kernel shares values when collisions
T Ty vr T occur that can be considered as an approximation
return @,

of the kernel function, because a weight might
be adapted due to more than one feature. If the

approximation works well then we would need

al., 2006). The parameters of the function argnly a relatively small weight vector otherwise
the weight vectorsz and 7, the sentencer;, e need a larger weight vector to reduce the

the gold dependency structutg, the predicted chance of collisions. In an experiments, we

dependency structurg,, and the update weight compared two hash functions and different hash
7. The function A calculates the number of gjzes. \We selected for the comparison a standard
wrong labeled edges. The update function Uphash function &;) and a custom hash function
dates the weight vectors, if at least one edge is '%hg). The idea for the custom hash functibp is
beled wrong. It calculates the differenge of the ot 1 overlap the values of the feature sequence
feature vectors of the gold dependency structurg,mpber and the edge label with other values.

¢(xi,y;) and the predicted dependency structur¢hese values are stored at the beginning of a long

(i, yp). Each time, we use the feature represeryymper, which represents a feature.
tation ¢, the hash functiorh maps the features to
integer numbers betweehand |@|. After that

the update function calculates the margirand
updateswt and @ respectively.

Algorithm 3 shows the training algorithm for
the Hash Kernel in pseudo code. A main dif-
ference to the baseline algorithm is that it does
not store the features because of the required time
which is needed to store the additional negative
features. Accordingly, the algorithm first extracts [ vectorsize] ki | #(h1) | ho | #(h2) ]
the features for each training instance, then maps 411527| 85.67 | 0.41| 85.74| 0.41
the features to indexes for the weight vector with 13%3%‘52? g;:% g:é; g;:g; g??
the hash function and calculates the weight arrays. 21006137| 88.19 | 12.68 | 88.41 | 12.53
42012281 88.32 | 12.45| 88.34| 15.27

179669557| 88.34 | 17.65| 88.28 | 17.84

hy « |(1 wor (1 v OXFFO0000000 >> 32))% size?

ha « |(l zor ((I >> 13) Vv Oxffffffffffffe000 ) zor
((I >> 24) Vv OXxffffffffffff0000 ) zor
((I >> 33) Vv Oxfffffffffffc0000 ) zor
((I >> 40) Vv OXfffffffffff00000 )) % size|

for n«+ 1to E // iteration over the training epochs
for i «+ 1to I // iteration over the training exmaples
k< (n—-1)xI+1
v+ E x I — k + 2/l passive-aggressive weight
2 1 A+ extr.-featuresk-calc-arrays(iw) ; £
ty.x Yp < predicte-projective-parse-tre€)it,
t, 1.; Ya < NON-projective-approxy,,A); te
upﬁa%eﬁ, = acréorlding toﬁ?li, ;y)g anzh * Table 2 shows the labeled attachment scores for
w =v/(E « I) Il average selected weight vector sizes and the number of
nonzero weights. Most of the numbers in Table
2 are primes, since they are frequently used to ob-

tain a better distribution of the content in hash ta-

Table 2: The labeled attachment scores for differ-
ent weight vector sizes and the number of nonzero
values in the feature vectors in millions.Not a
prime number.

For differentj, the hash functiorh(j) might
generate the same valie This means that the
hash function maps more than one feature to the 3>> n shifts n bits right, and is the modulo operation.
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bles. hy has more nonzero weights than. Nev- the Hash Kernel compared to the baseline parser.
ertheless, we did not observe any clear improvd-or instance, we counted for English 17.34 Mil-
ment of the accuracy scores. The values do néibns nonzero weights in the Hash Kernel and 8.47
change significantly for a weight vector size of 1Millions in baseline parser and for Chinese 18.28
million and more elements. We choose a weightlillions nonzero weights in the Hash Kernel and
vector size of 115911564 values for further exper8.76 Millions in the baseline parser. Table 6 shows
iments since we get more non zero weights antthe scores for all languages of the shared task
therefore fewer collisions. 2009. The attachment scores increased for all lan-
_ guages. It increased most for Catalan and Span-
| | te] ] ta| r]tofal]] par]trai] ish. These two corpora have the smallest training
Chinese] 1308] - | 200] 3| 1511 1184] 93h
English| 379|213| 18.2| 15| 420]| 354] 46n| Sets. We searched for the reason and found that
German| 209] 12]153[1.7] 238] 126 24h| the Hash Kernel provides an overproportional ac-
Spanish| 1056] -] 39] 2]1097]1044] 44h| cyracy gain with less training data compared to
MIRA. Figure 1 shows the difference between the
Table 3: The time in milliseconds for the featurggpeled attachment score of the parser with MIRA
extraction, projective parsing, non-projective apand the Hash Kernel for Spanish. The decreasing
proximation, rest (r), the total training time percyrve shows clearly that the Hash Kernel provides
instance, the average parsing (par.) time in milyn overproportional accuracy gain with less train-
liseconds for the test set and the training time iqhg data compared to the baseline. This provides
hours an advantage for small training corpora.
—+Spanish However, this is probably not the main rea-
son for the high improvement, since for languages

3 \/\s-’\ with only slightly larger training sets such as Chi-

2 nese the improvement is much lower and the gra-
dient at the end of the curve is so that a huge
L amount of training data would be needed to make
0 the curve reach zero.

0 5000 10000 1500

0
5 Paralleization

Figure 1: The difference of the labeled attachmerfeurrent CPUs have up to 12 cores and we will
score between the baseline parser and the pars&e soon CPUs with more cores. Also graphic
with the Hash Kernel (y-axis) for increasing largecards provide many simple cores. Parsing algo-
training sets (x-axis). rithms can use several cores. Especially, the tasks
to extract the features and to calculate the weight
Table 3 contains the measured times for tharrays can be well implemented as parallel algo-
Hash Kernel as used in Algorithm 2. The parserithm. We could also successful parallelize the
needs 0.354 seconds in average to parse a s@mejective parsing and the non-projective approx-
tence of the English test set. This is 3.5 timegmation algorithm. Algorithm 4 shows the paral-
faster than the baseline parser. The reason for tHat feature extraction in pseudo code. The main
is the faster feature mapping of the Hash Kernemethod prepares a list of tasks which can be per-
Therefore, the measured timefor the feature ex- formed in parallel and afterwards it creates the
traction and the calculation of the weight arrayshreads that perform the tasks. Each thread re-
are much lower than for the baseline parser. Themoves from the task list an element, carries out
training is about 19% slower since we could ndhe task and stores the result. This procedure is
longer use a file to store the feature indexes akpeated until the list is empty. The main method
the training examples because of the large numbesaits until all threads are completed and returns
of negative features. We counted about twice thihe result. For the parallel algorithms, Table 5
number of nonzero weights in the weight vector oshows the elapsed times depend on the number of
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# [ Standard Features [ # [ Linear Features Linear G. Features Sibling Features

T [T,h;,h,,d(n,d) 14 T,h,,h+L,,d,,d(n,d) 247T,9,,d,,0+L,,d(h,d) 99 [T,5,h,,d(R,dJor(n,d

2 I,h;,dzgh,d 15 |,h§,d-11,f”,dp,d($1,oc|? 45 I,gZ,di,d-];zd(%,d) 100 I,s;,cf,d h.djer(h.d

3 | I'h,.d(h.d 16 I,hp,dp,d+§,),d(h, ) 46 |19,,0%1,d-1,.0, di ) | 101 | L d,.dindierth,

2 |Ldr.dydh) 17| Ly, - de) |47 16-5y,0,.04, dpd(hd) | 102 s, d(n djorthd

5 | 1hy.d(h, 18| I:h-1,,h+1,,d-1,.d,,d(h.d)| 48 | I.g,,0+ 1, dy,d+1,, (heh| 75 | 176l v5,.d(h.d

6 |l.d,.d(h.d 19| Ih,,h*1,.dr,d+1,.d(h,d) | 49 | 1.91,,0,.0.0+1,.d(h,d) [ 76 | I vh,,.¥sm.d(h.s

7| Lhrhydr gy din)| 20| L,y d, -3, dnA) | 50 1.0y, 0+ 1.1, d(,d) Linear S. Features

8 | I,hy,df,dy,d(h, Grandchild Features 51 I,gp,%-lﬁ,h ,a( dc? 58 I,sp,s+:lp,hp,d$1h,d)

9 [Inrdrdidihd) | 21| Lhy.dy.g,d(h,d.g) 52 | I.g,.hy.h+1,.d(h,d) 59 | ls,is-Ip hy. )

10| Lhyhydrdind) |22 I,hp,gp,dph,d,gg 53 | 1.gy.hy.h-1,,d(h,d) 80 | Lsyhyhred, i,

L| Lhyidrhydid) | 23 1d, g,.d(n.d g 54| 19,0+, A-L,1, dih) | 61 | Ls, by -ty )

12| Ihy.dy. ,d; 24| Ihy.grd(hdg 55 | 1.g-1,,g,,h-1,.h,.d(h,d) | 62 |I's,.s+1,.h-L,,d(h,d)
13| Ihy.d,.d(h.d 25| 1.dy.gs.d(h.d.g 56 | 1.0p,9+ 1,0y .h+1, . d(h,d) | 63 | 1's-1,,5,.h-1,.d(h,d)
77| Uheh,.d(h,d) 26 | 1.as.hy.d(h.d.g 57 | .g-1,.0,.h, h+1,.d(h,d) | 64 | Is,,5+1,.h, d(h,d)

78 |,hl,d’Zh,c2 27| .g;.d,.d(h.d.g $ibling Features 65 |1's-1,,5,.n,,h+1,.d(h,d)
79| Ih,,,d(h,d) 28| Ilhy.g,.d(h.d.g 30| Eh.dps, dhd)erng) | 88 |1, i,i,nw,d)
80| did, d(hd) 29 | 1.dy.gy.d(h.d. 31| Lh,s,.d(h,dybr(h,d 67 | Lsp.s-1, . dth.c

81 I,dl,d?h,(? o1 | bhr.gudfh, B 32| I, s, .d(h.dypr(h.d 68 | S,,0p,d+1,,d(h,d)

82 | I.d,,,d(h,d) 92| 1dy.g, dih g 33| I'py.sy.d(h.dyer(h, 69 sp,dﬁ,d-Jaa,d( d)

83 | 1.d; hy,dy.hy,d(h,d) | 93 | 1.gr.hy.d(h,d,g 34| I'py.s;.d(h.dfer(h.d 70 | 5,.5+1,,d-1,,d,.d(h,d)
84| Idihy.dd(h,d) | 94| 1g,.d.d(h.d.g 35| I'sy.pp.d(h.dypr(h.d | sl sd-d, ddh
85 | I'h,.d/.d,d(h,d 95 | I:hu.g,.d(h.d.g 36 | I:sy.dy.d(h.dyer(h.d 72 |58 i,d 'd+1,.d(h,d)
86| Lhuhd, dinic) | 98 Ldng, dnicig 37| I'sy.d..d(h.dyer(h.d 73 | s1,,5,.dy.d+1,.d(h,d)
87 | Lhidih,.dhd) | 74 | [Vdy,. Vg d(h,d) 38| l.dss,.d(h.dyerth.d ecial Feature

88 I,hl,dl,dph,d) Linear G. Features 97| I,h;,s,d(h,d)dr(h,d 39 | Vlh,,d, x,between h,d
89 | I'h,,.d,,d(h,d) 42 |19,.9+L, 4y dihc) 98 | I.d;.s.d(h.dyerch.d

41 | Ivh, vd,.d(hd) | 43] 1g,.9-1.dp.d(h,d)

Table 4. Features Groupd.represents the labeh the head, d the dependemsta sibling, andg a
grandchild,d(x,y,[,z]) the order of words, andx,y) the distance.

used cores. The parsing time is 1.9 times faste€ores| fc | ¢ [ o | rest] total[| pars.| train. |

on two cores and 3.4 times faster on 4 cores. Hy-
per threading can improve the parsing times again 3| 138| 89| 65| 1.6| 155| 126/ 16.6h
and we get with hyper threading 4.6 faster parsing 4| 106| 82| 52| 1.6 121} 105 13.2h
times. Hyper threading possibly reduces the ove

1] 379(21.3|18.2| 1.5| 420|| 354]| 45.8h
2| 196|117 9.2| 21| 219| 187 | 23.9h

4+4h| 73.3| 8.8| 4.8| 13| 88.2 77| 9.6h

head of threads, which contains already our singlgaple 5: Elapsed times in milliseconds for differ-

core version.

Algorithm 4: Parallel Feature Extraction

A [l weight arrays
extract-features-and-calc-arrays(z;)
data-list« {} // thread-save data list
for wi < 110 ||
for wo « 110 |z
data-list« data-listU{ (w1, w2)}
¢ < number of CPU cores
fort < 1toc
T: < create-array-threati(z,,data-list)
start array-thread?// start thread t
fort+ 1toc
join T3/l wait until thread: is finished
A + AU collect-result(})
return A
)
array-thread T
d + remove-first-element(data-list)
if d is emptythen end-thread
... Il extract features and calculate padf A

ent numbers of cores. The parsing time (pars.)
are expressed in milliseconds per sentence and
the training (train.) time in hours. The last row
shows the times for 8 threads on a 4 core CPU
with Hyper-threading. For these experiment, we
set the clock speed to 3.46 Ghz in order to have
the same clock speed for all experiments.

6 Non-Projective Approximation
Threshold

For non-projective parsing, we use the Non-
Projective Approximation Algorithm of McDon-
ald and Pereira (2006). The algorithm rearranges
edges in a dependency tree when they improve
the score. Bohnet (2009) extended the algorithm
by a threshold which biases the rearrangement of
the edges. With a threshold, it is possible to gain
a higher percentage of correct dependency links.
We determined a threshold in experiments for
Czech, English and German. In the experiment,
we use the Hash Kernel and increase the thresh-
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[ System | Average | Catalan | Chinese| Czech [ English | German | Japanesd Spanish |

Top CoNLL 09 | 85.77D | 87.8610 | 79.19™ [ 80.38V | 89.88% | 87.48% [ 92.57® [ 87.64Y
Baseline Parsef 85.10 | 85.70 | 76.88 | 76.93 | 90.14 | 87.64 | 92.26 86.12
this work 86.33 87.45 | 76.99 | 80.96 90.33 88.06 92.47 88.13

Table 6: Top LAS of the CoNLL 2009 of (1) Gesmundo et al. (20@2) Bohnet (2009), (3) Che et
al. (2009), and (4) Ren et al. (2009); LAS of the baselinegqraaad the parser with Hash Kernel. The
numbers in bold face mark the top scores. We used for Cat@himese, Japanese and Spanish the
projective parsing algorithm.
old at the beginning in small steps by 0.1 and latescores. However, the parser would have ranked
in larger steps by 0.5 and 1.0. Figure 2 showsecond for these languages. For Catalan and
the labeled attachment scores for the Czech, E&hinese, the top results obtained transition-based
glish and German development set in relation tparsers. Therefore, the integration of both tech-
the rearrangement threshold. The curves for afliques as in Nivre and McDonald (2008) seems
languages are a bit volatile. The English curvéo be very promising. For instance, to improve
is rather flat. It increases a bit until about 0.2he accuracy further, more global constrains cap-
and remains relative stable before it slightly deturing the subcategorization correct could be inte-
creases. The labeled attachment score for Gagrated as in Riedel and Clarke (2006). Our faster
man and Czech increases until 0.3 as well and therigorithms may make it feasible to consider fur-
both scores start to decrease. For English a thredher higher order factors.
old between 0.3 and about 2.0 would work well. In this paper, we have investigated possibilities
For German and Czech, a threshold of about 0f8r increasing parsing speed without any accuracy
is the best choice. We selected for all three larloss. The parsing time is 3.5 times faster on a sin-
guages a threshold of 0.3. gle CPU core than the baseline parser which has
——Czech —+-English —e=German an typical architecture for a maximum spanning
———————— 4 . . tree parser. The improvement is due solely to the
® e S "~ Hash Kernel. The Hash Kernel was also a prereg-
86 WN\_\*\._._.__. uisite for the parallelization of the parser because
it requires much less memory bandwidth which is
nowadays a bottleneck of parsers and many other
82 applications.
80 By using parallel algorithms, we could further
increase the parsing time by a factor of 3.4 on a
4 core CPU and including hyper threading by a

84

78

76 factor of 4.6. The parsing speed is 16 times faster
7a for the English test set than the conventional ap-
0 1 2 3 4 5 proach. The parser needs only 77 millisecond in

average to parse a sentence and the speed will
Figure 2: English, German, and Czech labeled ascale with the number of cores that become avail-
tachment score (y-axis) for the development set iéble in future. To gain even faster parsing times, it
relation to the rearrangement threshold (x-axis). may be possible to trade accuracy against speed.
In a pilot experiment, we have shown that it is
possible to reduce the parsing time in this way to

We have developed a very fast parser with ex@S little as 9 milliseconds. We are convinced that
cellent attachment scores. For the languages Bi€ Hash Kerel can be applied successful to tran-
the 2009 CoNLL Shared Task, the parser couldition based dependency parsers, phrase structure
reach higher accuracy scores on average than tR@rsers and many other NLP applicatiofs.

top performing systems. The scores for Catalan,

i ] *We provide the Parser and Hash Kernel as open source
Chinese and Japanese are still lower than the tag download from http://code.google.com/p/mate-tools.

7 Conclusion and Future Work
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