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Abstract 

In this paper, we will describe a search tool 
for a huge set of ngrams. The tool supports 
queries with an arbitrary number of wild-
cards. It takes a fraction of a second for a 
search, and can provide the fillers of the 
wildcards. The system runs on a single 
Linux PC with reasonable size memory (less 
than 4GB) and disk space (less than 400GB). 
This system can be a very useful tool for 
linguistic knowledge discovery and other 
NLP tasks. 

1 Introduction 

Currently, NLP research is shifting towards se-
mantic analysis. In order to understand what a 
sentence means, we require substantial back-
ground knowledge which must be gathered in 
advance. Building such knowledge is not an 
easy task. This is the so-called “knowledge bot-
tleneck” problem, which was one of the major 
reasons for the failure of much AI research in 
the 1980's. However, now, the circumstances 
have quite changed. We have an almost unlim-
ited amount of text and machine power has dras-
tically improved. Using these fortunate assets, 
research on knowledge discovery in NLP is 
booming. The work by (Hearst 92) (Collins and 
Singer 99) (Brin 99) (Hasegawa et al. 04) are 
only a few examples of this research direction. 
Notice that most of these methods use local con-
text. For example, a lexico-syntactic pattern, 
like “NP such as NP” can extract hyponym rela-
tionships (Hearst 92), and contexts between two 
named entities can indicate a relationship be-
tween those names (Hasegawa et al. 04). 
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It is quite natural to believe that the larger the 
corpus, the larger and the more reliable the dis-
covered knowledge can be. However, it leads to 
problems in terms of speed and machine power. 
In order to solve these problems, some people 
use commercial search engines (Chklovski and 
Pantel 04). However, using such search engines 
has serious problems: 1) Only a limited number 
of results available, 2) Only a limited number of 
accesses permitted, 3) Mysterious ranking func-
tion, 4) Unstable results over a long time period, 
5) Slow, as it is over the internet. Another idea 
to overcome this difficulty is to create one's own 
(maybe smaller) search engine (Cafarella and 
Etzioni 05) (Shinzato et al. 08). Although creat-
ing one's own search engine has advantages (one 
of which is the freedom to design the form of 
the query; such as POS and dependency), it is a 
huge, expensive task; not everybody can afford 
to make a search engine. More seriously, not 
everybody can use it as he/she may want. 

In this paper, we will propose an alternative 
solution which should enable researchers with 
modest resources to conduct research using huge 
corpora for knowledge discovery. It is an ngram 
search tool with the following requirements. 

 
Requirements 
1. It searches for ngrams which include an ar-

bitrary number of wildcards, such as “* such 
as * and”, “Mr. * said”, “from * to * by *” 
or “* attack by * * on *”. 

2. It returns the fillers of the wildcards as well 
as ngram frequencies 

3. It produces the results in a fraction of a sec-
ond (for most reasonable queries) 

4. It runs on a single PC 

5. It needs only a reasonable amount of mem-
ory (4GB) for processing 

6. It needs only a reasonable amount of disk 
space (400GB) for indexing 108-109 ngrams 
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2 Algorithm Overview 

There are two reasonable choices for the search 
algorithm. One is “inverted indexing” (used by 
“lucene” and others) and the other is “trie”. We 
used trie. Using inverted indexing, it is easy to 
create an index at the cost of runtime speed. We 
prefer an algorithm which requires more com-
plicated indexing in order to achieve the speed 
in searching. Trie is an indexing tree structure in 
which each node represents a symbol (in our 
case, words) and each link represents the se-
quence of the symbols (in our case n-gram). 
Searching can be done by traversing the tree, 
which is usually done in time constant in the 
size of the corpus. However, it is important to 
mention that the trie structure is order sensitive. 
For example, if the query includes wildcards, 
such as “Mr.  * * said yesterday”, searching the 
trie is not an optimal solution. 

One naive solution is to create a search sys-
tem (or a trie) for each possible combination of 
wildcards. For example, for the query pattern 
“Mr. * * said yesterday”, we should prepare a 
search system for modified ngrams which have 
the first, fourth and fifth words of the original 
ngrams as the first three words. For ngrams of 
length N, the number of possible combinations 
of literals and wildcards is 2N. In theory, if we 
make that many search systems, we can solve 
the problem. However, the number of search 
systems is too large considering the number of 
ngrams we aim to handle (Table 1). Although 
we applied two implementation techniques to 
reduce the size of index (which will be de-
scribed in the next section), it is still likely that 
we could not satisfy requirement #6.  

We solved the problem by using a single 
search system for different kinds of search pat-
terns, reducing the number of needed search 
systems significantly. It can be observed that a 
pattern with wildcards at suffix positions can be 
searched using the same trie used for patterns 
without those wildcards. Also, we don’t always 
need to start the trie by indexing the first word. 
If we build an alternative trie which starts by 
indexing the second word, we can cover more 
patterns with fewer tries. For example, using the 
trie constructed to search for 5-grams “DEABC” 
(We will call this a “trie pattern”: each letter 
represents a literal, with A representing the first 
token in the original ngram), four “search pat-
terns” (i.e. ngram pattern used in the queries), 
“AB*DE”, “A**DE”, “***DE” and “***D*”, 
can be searched efficiently.  

We found that the minimum number of trie 
patterns needed to cover all possible search pat-
terns of length N is N/2 C N. We have con-
structed minimal sets of patterns for all N up to 
9. Once the system receives a query with one or 
more wildcards, it finds the trie pattern which 
covers the search pattern of the query. 

3 Implementation 

We also implemented two ideas to reduce the 
size of the index. One is related to a common 
technique to reduce the size of trie nodes by de-
leting the index of unique suffixes. In addition, 
we don’t store the remaining data within the trie. 
We just store the ngram ID at the node in order 
to further reduce the size of the index. Because 
there are many search systems, storing the 
ngram data in a single master database saves a 
lot of space. When the user wants to see the 
words of an ngram which was identified by the 
search, the system retrieves the ngram from the 
master database using the ngram ID. The benefit 
of this technique is quite large (more than 50% 
reduction of index size in 9gram), as many 
ngrams have long unique suffixes. 

The other idea is based on the fact that once 
the ngram data is provided, no update will be 
requested (i.e. insertion or replacement proce-
dure in the trie is not necessary). We can elimi-
nate the pointers to the parents and the siblings 
for each node, which contributes to about 30% 
additional reduction in the index size. 

Because the tries are very large, we divide 
them into segments (128 segments for 9-grams 
and 118 for 5-grams), so that an individual trie 
index segment is small enough to fit in a mem-
ory of modest size (requirement #5). Each seg-
ment contains a lexicographically contiguous 
sequence of ngrams. Furthermore, we use 
“mmap” to get the index into memory from the 
disk, so that only the portions of the trie seg-
ment that are actually used will be loaded.  

System Flow 

We will briefly describe the system flow 
1) First, all the words in the input query are 
looked up in the dictionary. If there are out of 
vocabulary words, then there is no ngram which 
matches the query. If all words are known, find 
the appropriate trie pattern for the input query 
based on the locations of wildcards.  
2) Then the appropriate segment(s) of the trie 
data is found for the search query. It was done 
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by searching the table of segment index sorted 
in lexicographic order. 
3) Now, the search in the trie is performed. 
Note that there are 16,128 tries for 9 -gram (128 
segments for 126 trie patterns). If the search 
ends with an internal node, there is more than 
one matched ngram. If the search ends with a 
terminal node, just one ngram matches. If the 
trie ends before the end of query, you have to 
retrieve the ngram from the master database and 
match the retrieved ngram against the query. 
4) Once one or several ngram IDs are identi-
fied as matched ngram(s), the system will output 
the information. There are three output modes. 
a) Only instance and type frequency are printed. 
b) Only ngram IDs are printed. These two types 
can be achieved quickly without consulting the 
ngram master database. c) Ngram instances are 
printed using the ngram master database. 

4 Experiments and Evaluation 

4.1 Ngram data 

We implemented this using two ngram data sets.  
Google 1T Web 5gram 
This is a part of the ngram data provided by 
Google through LDC (Web 1T). The data was 
generated from approximately 1 trillion word 
tokens of publicly accessible Web pages.  

9-grams from 82 years of newspaper 
For knowledge discovery purposes, 5-grams 

are generally unsatisfactory. A 5-gram can only 
cover 2 words of context on each side of a single 
word term. So we extracted 9-grams from a 
number of newspaper corpora available to us. 
Including NANTC: LATWP(94-97), NYT, 

REUFF, REUTE, WSJ (94-96), BBN GigaWord 
corpus (news archive only): BBC(99-06), Peo-
ple Daily, Taipei Times, The Hindu (00-06), 
Arab News, Gulf News, India Times (01-06), 
AQUAINT corpus: APW, NYT (98-00), Xinhua 
(96-00), CSR corpus: WSJ (87-94). 

These corpora are cleaned up by several 
methods, because some of them have article du-
plications/minor variants and some of them con-
tain many non-sentences. We use a simple 
method to reduce such noise, which is to “uniq” 
all the sentences for each year of each newspa-
per and count each distinct sentence only once. 
This is not a perfect solution, but it reduces a lot 
of noise to an amount almost unnoticeable for 
the ngram search result. The statistics of the data 
are shown in Table 1. 

 
Corpus Google 1T 82 yrs. News
Original Text 1 T words 1.8 G words 
Ngram 5-gram 9-gram 
Threshold 40 2 
#of ngrams 1,176,470,663 119,456,373 
# of patterns 10 126 
# of nodes 1.4G x 10 160M x 126 
Index size 277GB 322GB 

Table 1 Statistics of the data 

4.2 Example 

Obviously, the tool is useful for knowledge dis-
covery tasks for hyponym relations, binary rela-
tions, name extraction, relations between names 
and so on. It is also useful to extract more spe-
cific relations, such as “what kind of attack oc-
curred by whom on what/when” by searching 
for “* attack on * * by * **”. Figure 1 shows a 
snapshot of the tool’s output on this query. 

 

 
Figure 1 Snapshot of the output for “* attack on * * by * * *” 

183



Importantly, because of the speed, we can mod-
ify the query in an interactive manner. The 
speed is helpful for batch processing, too, when 
we need to search millions of patterns. 

4.3 Evaluation 

The speed evaluation was conducted using 
9grams. We randomly selected 1017 9grams 
from the original data to form a test set, and also 
created another test set in which 1 to 3 words are 
randomly replaced by wildcards in those 9grams. 
We measure the average time to find the ngrams. 
In the case of a query with wildcards, we 
checked if the original ngram is found among all 
returned ngrams to verify the accuracy of the 
tool. The system runs in three output modes (we 
use a file output rather than stdout). Producing 
Ngram output takes a long time if the number of 
ngrams is very large, so we limited the number 
of ngrams to be printed to 100. In the experi-
ment, the number of returned ngrams ranged 
from 1 to 100 with an average of 1.26. The re-
sult is shown in Table 2 and the times are given 
in milliseconds. 
 
Print mode Freq. IDs Ngram
Original 19 19 20 
With wildcards 19 19 29 
Table 2 Speed of search (Newspaper 9gram) 

5 Related Work and Discussion 

One of the most related works is the CMU-
Cambridge Statistical LM toolkit (CMU-
Cambridge). It’s a tool to search ngrams in 
Speech fields. However, it does not handle 
wildcards, which is important for knowledge 
discovery purposes. There are several ngram 
tools in the field of genome sequence analysis 
(MUMmer) (REPuter). However, the size of the 
alphabets are quite different (handful of genome 
bases vs. about 1.08 million words), and their 
main purpose is to discover similarity or repeti-
tion. These systems are not directly useful for 
linguistic knowledge discovery purposes. As a 
document retrieval tool, there is a public domain 
search engine, such as “lucene” (Lucene). 
However, its primary purpose is document re-
trieval and the inverted index algorithm can’t 
handle well very frequent terms. Searching is 
relatively slow. 

It should be noted that creating the index is a 
huge task. It took about 2 months using five 
4GB-memory machines. However, it took only 
about one week with 64GB-memory machine. 

As for the future direction, we are improving 
the tool to show the original sentences from 
which the ngram was extracted. We have some 
evidence that a longer context is needed for the 
knowledge discovery purpose. 

This tool is merely a tool, but we believe it’s 
a very powerful tool for linguistic knowledge 
discovery among other related objectives. The 
next step we would like to take is to apply this 
tool to find linguistic knowledge for NLP appli-
cations.  
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