
Coling 2008: Companion volume – Posters and Demonstrations, pages 135–138
Manchester, August 2008

Robust and Efficient Chinese Word Dependency Analysis with
Linear Kernel Support Vector Machines

Yu-Chieh Wu

Dept. of Computer Science and In-
formation Engineering

National Central University
Taoyuan, Taiwan

bcbb@db.csie.ncu.edu.tw

Jie-Chi Yang
Graduate Institute of Network

Learning Technology
National Central University

Taoyuan, Taiwan
yang@cl.ncu.edu.tw

Yue-Shi Lee
Dept. of Computer Science and Infor-

mation Engineering
Ming Chuan University

Taoyuan, Taiwan
{leeys}@mcu.edu.tw

Abstract

Data-driven learning based on shift reduce pars-
ing algorithms has emerged dependency parsing
and shown excellent performance to many Tree-
banks. In this paper, we investigate the extension
of those methods while considerably improved
the runtime and training time efficiency via L2-
SVMs. We also present several properties and
constraints to enhance the parser completeness in
runtime. We further integrate root-level and bot-
tom-level syntactic information by using sequen-
tial taggers. The experimental results show the
positive effect of the root-level and bottom-level
features that improve our parser from 81.17% to
81.41% and 81.16% to 81.57% labeled attach-
ment scores with modified Yamada’s and Nivre’s
method, respectively on the Chinese Treebank. In
comparison to well-known parsers, such as Malt-
Parser (80.74%) and MSTParser (78.08%), our
methods produce not only better accuracy, but
also drastically reduced testing time in 0.07 and
0.11, respectively.

1 Introduction

With the late development of Chinese Treebank
(Xue et al. 2005), parsing Chinese is still an ongo-
ing research issue. The goal of dependency parsing
is to find the head-modifier (labeled) relations in
texts. Though some of the parsing algorithms are
language independent and show state-of-the-art per-
formance on multilingual dependency Treebanks
(Nivre et al., 2007; Buchholz and Marsi, 2006), they
are often too slow for online purpose. Therefore, to
develop an efficient and effective dependency
parser is indispensable.

Over the past few years, several research studies
had addressed the use of shift-reduce and edge-
factored-based approaches attend fairly accurate
performance in Chinese (Cheng et al., 2005; Hall,

© 2008. Licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported license
(http://creativecommons.org/licenses/by-nc-sa/3.0/). Some rights
reserved.

2005; Wang et al., 2006). The former (shift-reduce)
is a linear time algorithm, while the latter involves
n3 for decoding where n is the length of sentence.
Even the shift-reduce approaches seems to be very
efficient, most studies (Hall et al., 2007; Nivre et al.,
2006) yet employ nonlinear kernel methods such as
polynomial kernel support vector machines (SVMs).
Furthermore, there is no research work directly
compare with the two methods with Chinese Tree-
bank. Nevertheless, the empirical training and test-
ing time comparisons of those methods has not been
reported yet.

In this paper, we present an efficient and robust
parser for Chinese based on linear classifiers and
shift-reduce parsing algorithms. We propose several
useful properties to enhance the completeness of the
two well-known shift-reduce algorithms, namely
Nivre’s shift reduce (NSR) (Nivre, 2003) and
Yamada’s shift reduce (YSR) (Yamada and
Matsumoto, 2003) algorithms. To enhance the
performance, we add root and bottom (neighbor)
information by adopting sequential taggers. We also
perform experiments on the Chinese Treebank and
compare with two of the state-of-the-art parsers.

2 Parsing Algorithms

At the beginning, we briefly review the selected two
parsing algorithm as follows. The NSR makes use
of four parse actions to incrementally construct the
dependency graph. By following the same notations
as (Nivre, 2003), NSR initializes with (S, I, A) = (φ ,
W, φ) where S is the stack (represented as a list), I
is the queue initiated with all words, and A is the set
of directed and labeled edges for the dependency
graph. The stack is a list of words whose parent or
child has not been found entirely. NSR incremen-
tally parses a pair of words (one is the top of the
stack and the other is the first word of the queue)
and uses four parse actions to construct the depend-
ency graph. The four parse actions are: {Left-Arc
(LA), Right-Arc (RA), Shift, Reduce}. Both LA and
RA could be parameterized with a dependence rela-

135

tion type. By parsing a pair of words step-by-step,
the parser terminates when the queue is empty.

Similar to NSR, YSR constructs the dependency
graph by incrementally parse a pair of no_head
words. The original YSR algorithm (Yamada and
Matsumoto, 2003) makes use of three parse actions
to parse a sentence left-to-right and involves n2
parser transitions. Recently, Chang et al. (2006)
showed that by adding an extra parse action Wait-
Left and performing the “step-back” operation can
accomplish parse in linear time. The step-back
means that after an action determined, the parse pair
moves back with except for Shift action. Wait-Left is
mainly proposed to wait the next word until all its
right children having attached to heads. In this paper,
we employ such modification to form our basic
YSR algorithm.

2.1 Useful Properties

We give more formal definitions of the dependency
graph as follows.

Let R = {r1, r2, r3,…, rN} be the finite set of de-
pendency arc labels with N types. A dependency
graph G =(W, A) where W is the string of words W =
w1, w2, w3, etc. and A is the set of directed labeled
arcs (wx, r, wy) where r∈R, and wx, wy∈W. For a
parse pair wx and wy in a sentence, we introduce the
following notation:

1. wx→wy: wx is the head of wy, and wx←wy: wy is
the head of wx.

2. wx < wy: word wx is on the left hand side of
word wy in the sentence.

3. (wx, r, wy): denotes the word wy is the head of
wx with relation r.

Definition 1: Valid dependency graph
A dependency graph G is well formed and valid iff
the following conditions are true.
 1. G is connected
 2. G is acyclic (cycle free)
 3. G is projective
 4. For each node in G, there is only one parent ex-

cept the root word
 5. G is a single rooted graph
Definition 2: Parse pair
When the parsing algorithm considers a pair of
word (wx, wy), we name the pair “parse pair”.

Definition 1 gives the formal definition of a valid
dependency graph. Condition 3 and condition 5 are
not always true for all languages. For example,
there are multiple roots in Arabic dependency Tree-
bank, while the dependency graph is usually non-
projective according to the linguistic characteristics.
Fortunately the dependency graphs in Chinese are
fully projective and single rooted and thus compati-
ble with Definition 1.

However, we can not always assume the classi-
fier is perfect. During run-time, the classifier might

make incorrect decision which leads to incorrect
parse graph and even constructs an incomplete and
invalid parse graph. For example, for NSR it is usu-
ally retain more than two words that are not at-
tached to their heads in the stack. To solve it, we
propose the following properties to enhance the
completeness of the original NSR/YSR parsers.
Definition 3: One word sentence
If there is only one unparsed word, then it must be
the root.
Proposition 4: Constrained parsing I
For a parse pair (wx, wy), if the head of wx is not
found previously, then the parse action Reduce is
invalid.
Proof. The parse action Reduce will remove wx
from the stack and leads to an unconnected and
multiple roots dependency graph (violates definition
1).
Proposition 5: Unique pair parsing
If there are only two unparsed words in G, then the
parse action of this pair of words is limited to be
{LA, RA}.
Proof. Clearly if the parse action is Reduce, then it
violates Proposition 4 (unconnected graph). Simi-
larly when applying Shift, the state does not change,
i.e., there are still two unparsed words. Nonetheless,
by applying either LA or RA, the two isolated words
will be linked and gives a connected graph.
Proposition 6: Constrained parsing II
For a parse pair (wx, wy), if the head of wx is found,
then the parse action RA is invalid.
Proof. Assume the head of wx is wm. If the parser
predicts RA, then it regards wy as the head of wx.
Therefore it violates Definition 1 (for each word
there should be at most one head in the sentence).
On the other hand, actions Reduce and Shift do not
change the structure of G and is intuitively valid
parsing actions. In the case of LA, by adding the
edge from wx to wy, the dependency graph does not
violate definition 1. Thus, LA is also a valid action.

Definition 3 is very common and intuitively seen
in the case of one word parsing at the final stage.
The Proposition 4 limits the parser actions that
bring about a single-rooted dependency graph.
Proposition 5 is particularly useful when there are
only two unparsed words in the stack for the NSR.
On the basis of the original NSR algorithm, the
parse work is done when the input queue is empty.
However, words will be shift and put onto the stack
if their heads are not found currently. Finally if the
queue is empty and these words are still retained in
the stack, then it will produce multiple roots and
lead to an unconnected graph. Proposition 6 is pro-
posed to avoid the case of multiple heads in the sen-
tence when there are two no-head words. To handle
more than two words on the stack, the “step-back”
operation is used.

136

Some of the above properties can also be applied
to YSR with slightly modifications. We skip the
details here owing to the space constraints.

全
(chiuan)

甲
(ace)

級
(class)

群雄
(heros)

,
(,)

比賽
(game)

高潮迭起
(cliffhanger)

。
(.)

聯賽
(league cup)

紛爭
(struggle)

P
P
Sub

VMod

VMod

SubNMod AMod NMod

NMod

國
(guo)

全
(chiuan)

甲
(ace)

級
(class)

群雄
(heros)

,
(,)

比賽
(game)

高潮迭起
(cliffhanger)

。
(.)

聯賽
(league cup)

紛爭
(struggle)

P
P
Sub

VMod

VMod

SubNMod AMod NMod

NMod

國
(guo)

Figure 1: An example of Chinese dependency graph

3 Root and Neighbor Information

In general, the shift-reduce parsing algorithm in-
crementally parse a pair of words until the final
parse graph has built. However, it is usually the case
that when an error decision made at earlier stage,
the real heads of the following words will be mis-
attached. In particular the head is nearby the current
pair of words. Similarly if the root word is misclas-
sified as a child of other word, then the all nodes
immediately modified by the root will attached to
the wrong root.

One solution to improve this problem is to en-
hance the root and bottom (neighbor) information
during parse. To obtain such information, we em-
ploy the sequential taggers to predict. That is one
sequential tagger learns to determine whether the
current word is the child of its left/right word or
none of them while the other is to recognize the root
word. For example, if the word is labeled as “left-
Mod”, then it means its left word is the head of it
and the relation tag is “Mod”.

Finding root in Chinese is even simpler, since
there is only one root word in the same sentence in
Chinese Treebank. Here, we adopt the same tech-
nology to label the root by using sequential taggers.
Such solution had also been applied to English
Treebank where a polynomial kernel SVM was used
(Isozaki et al., 2004). However, there are two differ-
ences to our method. First, we enable our root tag-
ger to incorporate bottom-level features. More pre-
cisely, the two taggers are cascaded combined. Sec-
ond, to enhance the top-level syntactic information,
our root tagger does not only recognize the root
word, but also the words which belong to the im-
mediate child of it. We give the following property
to prove that attaching all root children to the root
still leads to a valid dependency graph.
Proposition 7: Cycle-free for root tagger
The dependency graph is a cycle-free graph by link-
ing root child to the root words.
Proof. The minimum cycle length in a valid de-
pendency graph is two (two edges for two words by
linked each other). Assume there are K children for
a root. By attaching all children to the root, it leads
to the out-degree of each child is 1, while the in-
degree of the root is K. According to the Definition
1, the root word does not have any parent (out-

degree of the root is exactly zero) and will never
attach to any word in the sentence (include its chil-
dren).

Figure 2: Attaching neighbor relations with sequental
taggers

Figure 3: Attaching root words with sequential taggers

The sequential tagger used in this paper is

CRF++ (Kudo et al., 2004). One advantage of con-
ditional random fields (CRF) is that it is a structural
learning method and can search optimal tag se-
quence with efficient Viterbi search algorithm.
Features used for the two taggers include word,
part-of-speech tag, and prefix/suffix Chinese char-
acters with context window = 3. Features that oc-
curs less than twice in the training data is removed.
Figure 1 shows an example of Chinese dependency
graph. Figure 2 illustrates the sample of attaching
neighbors with CRF++ by using the same sentence
as in Figure 1. Figure 3 shows the example of iden-
tifying root and its children with CRF++.

 Table 1: Feature set used for NSR and YSR
Feature type Stack position Queue position

Word
POS

BiWord
BiPOS

Neighbor (NSR)
Root (NSR)

Neighbor (YSR)
Root (YSR)

History
Child (Word)
Child (POS)

-1,0
-1,0

(-2,-1),(-1,0),(-2,0),(-1,+1)
(-2,-1),(-1,0),(-2,0),(-1,+1)

-2,-1,0
-1,0

0
0

-2,-1
0
0

0,+1,+2,+3
0,+1,+2,+3

(0,1),(1,2),(2,3),(0,2),(1,3)
(0,1),(1,2),(2,3),(0,2),(1,3)

0,+1,+2

0

0
0

4 Experiments

We randomly select 90% of the Chinese Treebank
5.1 corpus for training and the remaining 10% is
used for testing. Totally there are 0.45 million
words in the training data and 50144 words for test-
ing. By following (Hall et al., 2006), we use the
same headword table to convert the CTB into de-
pendency structure. The gold-tagged POS tags are

137

used in the experiments. All experimental results
are evaluated by LAS (label attachment score), UAS
(unlabeled attachment score), and root accuracy.

4.1 Settings

In this paper, we employ the MSTParser (McDon-
ald et al., 2006) and MaltParser (Nivre, 2003) for
comparison. We adopt the best settings for Malt-
Parser with SVM and MBL learners as reported by
(Hall et al., 2006)2. For MSTParser, the Eisner’s
decoding algorithm is used.

The learner we used in this paper is L2-SVM with
linear kernel (Keerthi and DeCoste, 2005). The one-
versus-all (OVA) strategy is applied to handle mul-
ticlass problems. Features that appear less than
twice are removed from the feature set. Table 4 lists
the feature set for the NSR and YSR.

4.2 Results

Table 2 summarizes overall experimental results.
The final two rows list the entire training and testing
time of the corresponding methods. From this table,
we can see that our method (both NSR and YSR)
achieve the best and second best parsing accuracy in
terms of LAS, UAS, and root accuracy. For testing
time efficiency, both our NSR and YSR also outper-
form the other methods. Meanwhile there is no sig-
nificant difference between NSR and YSR from the
aspect of run time efficiency view. In comparison to
MaltParser, NSR yields 14 times faster in parsing
speed.

Next, we analyze the effect of the two sequential
taggers. The pure system performance of the
neighbor tagger is 88.54 in F(β) rate, while the root
tagger only achieves 61.67 F(β) score. The entire
training time of the two taggers takes about 10
hours. Table 3 shows the compared results. It is
clear that adding the two taggers leads better pars-
ing accuracy than pure NSR and YSR. For example,
it enhances the LAS score from 81.17 to 81.41 for
NSR. Furthermore, the pure NSR and YSR still
produce better parsing accuracy than MaltParser and
MSTParser.

5 Conclusion

This paper presents an efficient and robust Chinese
dependency parsing based on shift reduce parsing
algorithms. We employ two sequential taggers to
label the root and neighbor information as features.
Experimental results show that our methods outper-
form two top-performed parsers, MaltParser and
MSTParser in both accuracy and run-time efficiency.
In the future, we will to investigate the effect of full
parsing Chinese by applying shift-reduce-like ap-
proaches.

2 http://w3.msi.vxu.se/~nivre/research/chiMaltSVM.html

Table 2: Parsing accuracy of each parsing algorithm

this paper Evaluation
Metrics

MaltParser
(SVM)

MaltParser
(MBT) MST

NSR YSR
LAS 80.74 73.53 78.08 81.41 81.57
UAS 81.98 75.40 79.53 82.60 82.76
LAC 91.28 86.26 89.21 92.26 92.37
Root
A

65.88 69.36 73.71 74.93 77.61
Sentence
A

33.12 25.67 24.07 32.85 33.44
TrainTime 6.74hr 3.42min 7.51hr 2.76hr 2.24hr
TestTime 15.92min 3.22min 10.15min 1.12min 1.15min

Table 3: Effective of the additional root and neighbor
information

Improvement rate NSR YSR
LAS 81.17→81.41 81.16→81.57
UAS 82.33→82.60 82.37→82.76
LAC 92.07→92.26 92.15→92.37
Root_ Accuracy 74.14→74.93 76.24→77.61

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X Shared Task on

Multilingual Dependency Parsing. In Proc. of CoNLL, pp. 149-164.
Ming-Wei Chang, Quang Do, and Dan Roth. 2006. Multilingual depend-

ency parsing: a pipeline approach. Recent Advances in Natural Lan-
guage Processing, pp. 195-204.

Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2005. Chinese
deterministic dependency analyzer: examining effects of global fea-
tures and root node finder. In Proc. of SIGHAN, pp. 17-24.

Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2006. Multi-
lingual Dependency Parsing at NAIST. In Proc. of CoNLL, pp. 191-
195.

Jason Eisner. 1996. Three New Probabilistic Models for Dependency
Parsing: An Exploration. In Proc. of COLING, pp. 340-345.

Johan Hall, Joakim Nivre, and Jens Nilsson. 2006. Discriminative Classi-
fiers for Deterministic Dependency Parsing. In Proc. of COLING-
ACL Main Conference Poster Sessions, pp. 316-323.

Hideki Isozaki, Hideto Kazawa, and Tsutomu Hirao. 2004. A determinis-
tic word dependency analyzer enhanced with preference learning. In
Proc. of COLING, pp. 275-281.

Sathiya Keerthi and Dennis DeCoste. 2005. A modified finite Newton
method for fast solution of large scale linear SVMs, JMLR, 6: 341-
361.

Taku Kudo and Yuji Matsumoto. 2003. Fast methods for kernel-based
text analysis. In Proc. of ACL, pp. 24-31.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. 2004. Applying
conditional random fields to Japanese morphological analysis, In
Proc. of EMNLP, pp. 230-237.

Ryan McDonald, Kevin Lerman, and Fernando Pereira. 2006. Multilin-
gual dependency analysis with a two-stage discriminative. In Proc. of
CoNLL, pp. 216-220.

Joakim Nivre. 2003. An efficient algorithm for projective dependency
parsing. In Proc. of IWPT, pp. 149-160.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryigit, and Svetoslav
Marinov. 2006. Labeled pseudo-projective dependency parsing with
support vector machines. In Proc. of CoNLL, pp. 221-226.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson,
Sebastian Riedel, and Deniz Yuret. 2007. The CoNLL 2007 shared
task on dependency parsing. In Proc. of EMNLP-CoNLL, pp. 915-
932.

Qin Iris Wang, Dekang Lin, and Dale Schuurmans. 2007. Simple training
of dependency parsers via structured boosting. In Proc. of IJCAI, pp.
1756-1762.

Yu-Chieh Wu, Jie-Chi Yang, and Yue-Shi Lee. 2007. Multilingual de-
terministic dependency parsing framework using modified finite
Newton method support vector machines. In Proc. of EMNLP-
CoNLL, pp. 1175-1181.

Nianwen Xue, Fei Xia, Fu-Dong Chiou and Martha Palmer. 2005. The
Penn Chinese Treebank: phrase structure annotation of a large corpus.
Natural Language Engineering, 11(2):207-238.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency
analysis with support vector machines. In Proc. of IWPT, pp. 195-
206.

138

