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Abstract

Computing the similarity between entities
is a core component of many NLP tasks
such as measuring the semantic similarity
of terms for generating a distributional the-
saurus. In this paper, we study the problem
of explaining post-hoc why a set of terms
are similar. Given a set of terms, our task is
to generate a small set of explanations that
best characterizes the similarity of those
terms. Our contributions include: 1) an
information-theoretic objective function
for quantifying the utility of an explana-
tion set; 2) a survey of psycholinguistics
and philosophy for evidence of different
sources of explanations such as descriptive
properties and prototypes; 3) computa-
tional baseline models for automatically
generating various types of explanations;
and 4) a qualitative evaluation of our
explanation generation engine.

1 Introduction
Computing similarity is at the core of many
computer science tasks. Many have developed
algorithms for computing the semantic similarity
of words (Lee, 1999), of expressions to gener-
ate paraphrases (Lin and Pantel, 2001) and of
documents (Salton and McGill, 1983). However,
little investigation has been spent on automatically
explaining why a particular set of elements are
similar to one another.

Explaining similarity is an important part of
various natural language applications such as
question answering and building lexical ontolo-
gies such as WordNet (Fellbaum, 1998). Several
questions must be addressed before one can begin
to explore this topic. First, what constitutes a good
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explanation and what are the sources of these
explanations? Second, how can we automatically
generate these different types of explanations?
Third, how do we empirically evaluate the quality
of an explanation? In this paper, we propose a first
analysis of these questions.

2 Related Work

The task of generating explanations has been stud-
ied in relation to Question Answering (Hirschman
and Gaizauskas, 2001) and Knowledge Represen-
tation and Reasoning (Cohen et al., 1998). Within
Question Answering, explanations have mostly
been viewed from a deductive framework and
have focused on proof trees and inference traces
as sources of explanations (Moldovan and Rus,
2001). Summarization and text generation from
proof trees have also been explored as explanations
in QA systems (Barker et al., 2004). Lester (1997)
proposed explanation design packages, a hybrid
representation for discourse knowledge that
generates multi-sentential explanations.

Detailed psycholinguistic studies into how
people explain things suggests that people explain
similarity using “feature complexes” (Fillenbaum,
1969), a bundle of features semantically related
with a term. This suggests considering explana-
tions of similarity as the shared features among
a set of terms. Another competing idea from
linguistic philosophy is the Prototype theory by
Rosch (1975). It is argued that objects within
a semantic category are represented by another,
more commonly used or much simpler member
of the same semantic category, called a prototype.
And, within this view, explanations for similarity
are prototypes from the same semantic category
as the given terms. Deese (1966) investigated
similarity in terms of stimulus-response word
association experiments providing empirical
evidence to consider other semantically similar
words as explanations.
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3 An Information Theoretic Framework for
Explaining Similarity

In this section, we present an information-theoretic
framework that defines a good explanation using
the intuition that they are highly informative and
reduce the uncertainty in the set of query terms.
For example, consider the set of query terms
{Maybach, Maserati, Renault}. One possible
explanation of their similarity which is very infor-
mative is they are all like a Ford (i.e., a prototype
explanation). Other possible explanations include
they can be driven using a steering wheel and
they have wheels (i.e., descriptive properties as
explanations). Each of these explanations reduces
the uncertainty regarding the semantics of the
original set of terms. In information theory, the
concept of reduction in uncertainty is related to
information gain, and good explanation sets can
be quantified in terms of information gain.

Formally, given a set of query termsQ, and a set
of explanations E, we define the best explanation
set as one which provides maximum information
to the set Q, or in other words,

E = argmaxE′∈φ(Ξ)I(Q;E′) (1)
where Ξ is the set of all explanations (discussed
in detail in Section 4) and φ(X) represents the
power set of X . The problem of choosing the
best explanation set for a given query set is now
reduced to a problem of optimization under I .

3.1 The Information Function

The information function I in Eq. (1) is a set
function which defines the amount of information
contributed by the set of explanations E′ to the
set of query words Q. There are many possible
information functions, but we would like all of
them to have some common properties.

Consistency

The information function should be consis-
tent. For two sets, E and E′, if E ⊆ E′ then
I(Q;E′) ≥ I(Q;E). In other words, given two
explanation sets E and E′, with E′ containing
extra explanations, not in E, the information
function should assign larger values to E′ with
respect to Q than it assigns to E.

Explanation Set Cardinality

Another important requirement regarding I , is
the size of the explanation sets. Any consistent
information function would assign larger values
to larger sets of explanations. This leads to a
problem where the optimal solution is always the
set of all explanations. We overcome this by fixing
an upper bound for the size of explanation sets
that are generated by the function I .

Redundancy and Joint Information
Many explanations in an explanation set might

overlap semantically and the information function
has to account for such overlaps. However,
information functions which take such semantic
overlap into account are computationally hard
to optimize. One approach to this problem is to
find approximate solutions using heuristic search
techniques, however, relaxing this constraint lets
us use common association measures such as
mutual information (Cover and Thomas, 1991) as
information functions.

3.2 Marginal Formulation of the Information
Function

Another equivalent formulation of Eq. (1) is to
use marginal information gains. This formulation
also gives a simple greedy algorithm to the op-
timization problem when the size of explanation
set is fixed. Let us define the marginal gain in
information to the set Q, when the explanation e
is added to the set of explanations E as:

IGQ;E(e) = I(Q;E ∪ {e})− I(Q;E)
Then, the best set of explanations of size k can be
recursively defined as

E0 = {}
En = En−1 ∪ {e}

such that
e = argmaxe′∈ΞIGQ;En−1(e′)

and

|En| ≤ k
If our marginal information gain is independent

of the set of explanations to which it is added,
we can rank explanations by their marginal
information gains as added to the empty set. Then,
choosing the top k explanations gives us the k-best
explanation set for the query.

4 Sources for Similarity Explanations
In Section 3, we presented a framework for
quantifying a good explanation set. In this section
we present two sources of explanations, using
descriptive properties and using prototypes.

4.1 Explanations from Descriptive Properties
The concept of essence as discussed by early
empiricists was the first study of using descriptive
properties to explain the similarity of a set of
terms. Descriptive properties are the shared
essential attributes of a set of similar terms and
one way of explaining the similarity of a set of
terms is to generate descriptive properties.

Within our framework in Section 3, let the query
set Q be a set of similar words, and let Ξ, the
set of all explanations be the set of all properties
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that are shared by all the words within the query
set. Using mutual information as our measure of
association between properties and terms we can
rewrite our information function I as:

I(Q;E) =
∑
q∈Q

p(q)
∑
e∈E

p(e | q) log
p(e | q)
p(e)

The marginal information gain for a single
explanation e is:

IGQ;E(e) =
∑
q∈Q

p(q) · p(e | q) log
p(e | q)
p(e)

Since the information gain is independent of
the explanation set E, we can find the best set of
size k by greedily choosing explanations until our
explanation set reaches the desired size.

4.2 Explanations from Prototypes

As discussed in Section 2 given a set of query
terms, people can represent their meaning using
other common members from the same semantic
category, called prototypes. Within the framework
of Section 3, let Q be our set of query terms.
To generate the set of all explanations Ξ, we use
clusters in the CBC resource (Pantel and Lin,
2002) as an approximation to semantic categories
and we collect all possible words that belong to
that cluster which then becomes our candidate set.

Let Cq denote the cluster to which the query
term q belongs to. Also let the set C(Q) be the
set of all clusters to which the query terms of Q
belong to. Then

Ξ = {w|Cw ∈ C(Q)}
Now our information function can be written as:

I(Q;E) =
∑
q∈Q

p(Cq)
∑
e∈E

p(e | Cq) log
p(e | Cq)
p(e)

The marginal formulation of the above function is:

IQ;E(e) =
∑
q∈Q

p(Cq) · p(e | Cq) log
p(e | Cq)
p(e)

We can find the optimal set of explanations of size
k using a greedy algorithm as in Section 4.1.

5 Experimental Results

5.1 Experimental Setup

For each source of explanation discussed in
Section 4, we estimated the model probabilities
using corpus statistics extracted from the 1999
AP newswire collection (part of the TREC-2002
Aquaint collection).

In order to obtain a representative set of similar
terms as queries to our systems, we randomly
chose 100 concepts from the CBC collection (Pan-
tel and Lin, 2002) consisting of 1628 clusters of
nouns. For each of these concepts, we randomly
chose a set of cluster instances (nouns), where the

size of each set was randomly chosen to consist of
two to five nouns.

Each of these samples forms a query. For
each explanation source described in Section 4,
we generated explanation sets for the random
samples and in the next section we show a random
selection of these system outputs.

5.2 Examples of Explanations using Descrip-
tive Properties

For the algorithm discussed in Section 4.1, we
derived our descriptive properties using the output
of the dependency analysis generated by the
Minipar (Lin, 1994) dependency parser. We use
syntactic dependencies between words to model
their semantic properties. The assumption here is
that some grammatical relations, such as subject
and object can yield semantic properties of terms.
For example, from a phrase like ”students eat
many apples”, we can infer the properties can-be-
eaten for apples and can-eat for students. In this
paper, we use a combination of corpus statistics
and manual filters for grammatical relations to
uncover candidate semantic properties.

Table 1: Explanations generated using descriptive
properties.

Query Sets Explanations
Palestinian-Israeli,
India-Pakistan

talks(NN), conflict(NN),
dialogue(NN),
relation(NN), peace(NN).

TV, television-station cable(NN), watch(obj),
see(ON), channel(NN),
local(ADJ-MOD)

Britney
Spears, Janet Jackson

like(OBJ),
concert(NN), video(NN),
fan(NN), album(GEN)

Crisis,
Uncertainty, Difficulty

face(OBJ), resolve(OBJ),
overcome(OBJ),
financial(ADJ-MOD),
political(ADJ-MOD)

Intuitively, one would prefer adjectival modi-
fiers and verbal propositions as good descriptive
properties for explanations, and from the exam-
ples, we can see our algorithm generates such
descriptive properties because of the high infor-
mation contribution of such properties to the query
set. However, our algorithm does not try to reduce
the redundancy within the sets of explanations. We
can see redundant explanations for examples in Ta-
ble 1. The reason is that each explanation added to
the set is independent of the ones already present
in the set. In Pantel and Vyas (2008) we propose a
joint information model to overcome this problem.

5.3 Explanations using Prototypes
The algorithm discussed in Section 4.2 uses words
that share the semantic category with words within
the query set as the set of candidate explanations.
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We can approximate the notion of semantic
categories using clusters of semantically similar
words. For this we used the CBC collection (Pan-
tel and Lin 2002) of nouns. Using these clusters as
semantic categories, the candidate set of all expla-
nations is the set of all the words that belong to the
same cluster. Table 2 shows some system outputs.

Table 2: Explanations generated using prototypes.
Query Sets Explanations
TV, television
station

station, network, radio, channel,
television

Budweiser, Coors
Light

Anheuser-Busch, Heineken, Coors,
San Miguel, Lion Nathan

atom, elec-
tron,photon

particle, molecule, proton, Ion,
isotope

Temple Univer-
sity,Michigan State
University

University of Texas, University of
Massachusetts, University of North
Carolina,University of Virginia,
University of Minnesota

6 Conclusions and Future Work

Computing the similarity between entities forms
the basis of many computer science algorithms.
However, we have little understanding of what
constitutes the underlying similarity. In this
paper, we investigated the problem of explaining
why a set of terms are similar. We proposed
an information-theoretic objective function for
quantifying the utility of an explanation set, by
capturing the intuition that the best explanation
will be the one that is highly informative to the
original query terms. We also explored various
sources of explanations such as descriptive prop-
erties and prototypes. We then proposed baseline
algorithms to automatically generate these types
of explanations and we presented a qualitative
evaluation of the baselines.

However, many other explanation sources were
not addressed. Hypernyms and other hierarchical
relations among words also form good explanation
sources; for example the similarity of the terms
{Ford, Toyota} can be explained using the term
car, a hypernym. Also our current explanation
types would fail for query sets consisting of related
terms such as {bus, road}. More appropriate for
these queries would be identifying the relation
linking the terms or giving analogies such as
{boat, water}. We are working on algorithms
to generate these explanation types within our
information-theoretic framework. We are also
investigating application-level quantitative evalu-
ation methodologies. Candidate applications in-
clude providing answer support by explaining the
answers generated by a QA system and explaining
why a document was returned in an IR system.
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