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Abstract where[x : y = z : t] denotes aanalogical pro-

portion, that is a relation between these four items,
Recent years have witnessed a growing in- meaning thatX istoy asz is tot”, in a sense to
terest in analogical learning for NLP ap-  be specified. See (Lepage, 1998) or (Stroppa and
plications. If the principle of analogical Yvon, 2005) for possible interpretations.
learning is quite simple, it does involve Analogical learning has recently regained some
complex steps that seriously limit its ap-  interest in the NLP community. Lepage and De-
plicability, the most computationally de-  noual (2005) proposed a machine translation sys-
manding one being the identification of  tem entirely based on the conceptfofmal anal-
analogies in the input space. In this study, ogy, that is, analogy on forms. Stroppa and
we investigate different strategies for ef-  Yvon (2005) applied analogical learning to sev-
ficiently solving this problem and study  eral morphological tasks also involving analogies

their scalability. on words. Langlais and Patry (2007) applied it to
the task of translating unknown words in several
1 Introduction European languages, an idea investigated as well

. . o by Denoual (2007) for a Japanese to English trans-
Analogical learning (Pirrelli and Yvon, 1999) be'lation task.

longs to the family of lazy learning techniques
(Aha, 1997). It allows to map forms belong-
ing to aninput spaceZ into forms of anoutput

If the principle of analogical learning is quite
simple, it does involve complex steps that seriously
.___limit its applicability. As a matter of fact, we are
space(”)z thank§ to a set of known observatlonsomy aware of studies where analogical learning is
£ = {(,0) : i € I,0 € O}. I(u) andO(u) applied to restricted tasks, either because they ar-
re spec't ively def“"e the projection of an Observ_EEitrarin concentrate on words (Stroppa and Yvon,
tion u.lntO the input spgce and output space: i 005; Langlais and Patry, 2007; Denoual, 2007)
u= (7, 0), then!(u) = anQO(u) =9 Foran or because they focus on limited data (Lepage and
incomplete observation = (i, 7), the inference of Denoual, 2005; Denoual, 2007).

O(u) involves the following steps: In this study, we investigate different strategies

for making step 1 of analogical learning tractable.
We propose a data-structure and algorithms that
allow to control the balance between speed and
recall. For very high-dimensional input spaces

2. building the set of solutions to the target equa(hundreds of thousand of elements), we propose

tions formed by projecting source tripletS'a heuristic which reduces computation time with a
‘limited impact on recall.

Eo(u) ={t € O : [O(s) : O(v) = O(w) :
t] ,\V(s,v,w) € Ex(u)}

1. building &z(u) the set of analogical triplets
of I'(u), that is&z(u) = {(s,v,w) € L3 :
[I(s) : I(v) = I(w) : I(w)]}

2 ldentifying input analogical relations

3. selecting candidates amo#g (). 2.1 Existing approaches

(©2008.  Licensed under thereative Commons A prute-force approach for identifying the input
Attribution-Noncommercial-Share Alike 3.0 Unporteld ivlets that defi | ith the | let
cense (http://creativecommons.org/Iicenses/by-nc-sa/S.O]if.Ip ets _a eline an ana Og_y W'_ e mcomp ete
Some rights reserved. observationu = (t,?) consists in enumerating
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triplets in the input space and checking for an anafhis strategy will only work if (i) the number
logical relation with the unknown form of quadruplets to check is much smaller than the
: number of triplets we can form in the input space
Er(u)={(xy,2) : (xy,2) €T, (which happens to be the case in practice), and if

x:y=z:1} (ii) we can efficiently identify the pairgy, z) that
This amounts to check(|Z|?) analogies, which is Satisfy a set of constraints on character counts. To
manageable for toy problems only. this end, we propose to organize the input space

Langlais and Patry (2007) deal with an inpulthanks to a data structure calledrae-count(see
space in the order of tens of thousand forms (theection 3), which is easy to built and supports effi-
typical size of a vocabulary) using following strat-Cient runtime retrieval.
egy for &z(u). It consists in solving analogical
equationsly : x = t : ?] for some pairsx, y)
belonging to the neighborhobaf I(u), denoted As shown in (Langlais and Yvon, 2008), using
N (t). Those solutions that belong to the inputree-count to constraint the search allowsete

2.3 Sampled tree-count search

space are the-forms retained. haustivelysolve step 1 for reasonably large input
; spaces. Computing analogies in very large input
&r(u) ={ (x.y,2) = {x,y) € N(1)%, space (hundreds of thousand forms) however re-
y:x=t:2]} mains computationally demanding, as the retrieval

This strategy (hereafter named) directly fol-  algorithm must be carried ow{(Z) times. In this
lows from a symmetrical property of an analogycase, we propose to sample théorms:
(x:y=2z:t] < [y:x=t:z]),and reduces
the search procedure to the resolution of a number €z(u) ={ (x,y,z) : x € N (1),

of analogical equations which is quadratic with the (y.z) € C({x, 1)),
number of pairgx, y) sampled. [x:y=t:2] }
2.2 Exhaustive tree-count search There is unfortunately no obvious way of se-

The strategy we propose here exploits a prop€cting @ good subset/(1) of input forms, as

erty on character counts that an analogical relatigi"@/0gies does not necessarily entail the similar-
must fulfill (Lepage, 1998): ity of “diagonal” forms, as illustrated by the anal-

ogy [une pomme verte : des pommes vertes =
x:y=2z:t]= |x|c+]|tle = |y|lc+|z|lc Vc€ A une voiture rouge : des voitures rouges], which

where A is the alphabet on which the forms aremvolves singular/plural commutations in French

built, and |x|. stands for the number of occur-non.]Inal groups. In th'.s situation, randomly se

. lecting a subset of the input space seems to be a
rences of characterin x. In the sequel, we de-

9 reasonable strategy (hereafttND).
noteC((x,t)) = {{y,z) € Z* : |xX|c+ |t|]c = : ,
; . For some analogies however, the first and

lyle + |z|c Ve € A} the set of pairs that satisfy

. last forms share some sequences of charac-
the count property with respect{e, t) . . . :

gl ers. This is obvious ifdream : dreamer =

The strategy we propose consists in first select-
. ; . . dreams : dreamers]|, but can be more subtle, as
ing anx-form in the input space. This enforces E%n our first example Thi drinks t h
set of necessary constraints on the counts of ch pleThis guy drinks too much :

[- . .
acters that any two formg andz must satisfy for a,f,ils b(;)at Stmks k_ aﬁ Sf gu}{ ﬁ dmgik toonmluc? r'm
[x : y =z : t] to be true. By considering all forms ese boats sank| ere fhe diagonal ferms

, 5 : . share some n-grams reminiscent of the number
x in turn/ we collect a set of candidate triplets for This/Th nd ten nk/drank) commut
t. A verification of those that define witha anal- (This/These) and tense drink/drank) commuta

. ... tions involved.
ogy must then be carried out. Formally, we built: _
We thus propose a sampling strategy (hereafter

Er(u) ={(x,y,z) : x€I, EV) which selectsc-forms that share with some
(y,z) € C({x,t)), sequences of characters. To this end, input forms
x:y=2z:t] } are represented in a vector space whose dimen-

sions are frequent characteigrams, retaining the

1The authors proposed to samplandy among the clos- .
est forms in terms of edit-distance k@). k-most frequent-grams, where, € [min; max].

2Anagram forms do not have to be considered separatelA form is thus encoded as a binary vector of
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dimensionk, in which ith coefficient indicates
whether the form contains an occurrence ofithe
n-gram?® At runtime, we select th&l forms that

are the closest to a given form according to a
distancé. Figure 1 illustrates some forms selected

by this process. For comparison purposes, we also 1
tested a sampling strategy which consists in select-
ing thex-forms that are closest to the source form
t, according to the usual edit-distance (hereafte
ED). 1

establish a report — order to establish a — has
tabled this report — is about the report — basis
of the report — other problem is that — problem
that arises — problem is that those

Figure 1. The 8 nearest neighborstofestablish Figure 2: The tree-count encoding the set:
a reportin a vector space computed from an inpui{ soup(a), gods(b), odds(c), sos(d), solo(e),
space of over a million phrases. tokyo(f), moot(g), moto(h), kyoto(i), oslo(j),
dogs(Kk), opus(l), os(m), a(n)}. The character la-
beling a node is represented in a box; the counts of
each character labels each vertice. Roman letters
A tree-count is a tree which encodes a set of form#) nodes represent pointers to input forms; greek
Nodes are labeled by an alphabetical symbol argymbols label internal nodes.

contain a (possibly empty) set of pointers to forms.

A vertice from a node: labeledc to a nodem i ree. The lack of space prevents us to report the
weighted by the count of in the forms encoded ¢onstryction algorithm (see (Langlais and Yvon,
by m, that is, the set of forms that can be reachegnogy), put it is important to note that it only in-
from this node and its descendants. Thus, a pafyyes a simple traversal of the input forms and is
in a tree-count represents a set of constraints QRerefore time efficient. Also worth mentioning,
the counts of the characters encountered along thigr construction procedure only stores necessary
path. This structure allows for instance the identingges  This means that when enumerating char-
fication of anagrams in a set of forms: it suffices tQcters in order, we only store zero-count nodes as
search the tree-count for nodes that contain MOBquired. As a result, the depth of a tree-count is

than one pointer to forms in the vocabulary.  ypically much lower than the size of the alphabet.
An example of a tree-count is provided in Fig-

ure 2 for a small set of forms. The node doubl&.2 Retrieval time

circled in this figure is labeled by the character The retrieval ofC((x,t)) can be performed by
and encodes the 6 input forms that contain 1 0Graversing the tree-count while maintainingran-
currence of 6" and 1 occurrence ofs’. One form  tier, that is, the set of pairs of nodes in the tree-
is os, referenced by the pointen, the other five count that satisfy the constraints on counts encoun-
forms are found by descending the tree from thigered so far. Imagine, for instance, that we are
node; among whiclgods anddogs, two anagrams |goking for the pairs of forms that contain exactly
encoded by the leave which set of pointerd,i. 3 occurrences of characteos 2 of characters
and 1 charactet, and no other character. Start-
ing from the root node labelled hy, there is only
The construction of a tree-count from a set opne pair of nodes that satisfy the constraintcon
forms only needs an arbitrary order on the chakhe frontier is thereforg(v,6)}. The constraint
acters of the alphabet. This is the order in whicly,, 5 jeads to the frontief (d, )} (since the count
we will encounter them while descending theyf ¢ must be null). Finally, descending this node

3Typical values arenin=max=3 andk=20000 . yields the frontier{(m, (e, j))}, which identifies
“We used the Manhattan distance in this study. the pairs(os, solo) and (os, oslo) to be the only

3 The tree-count data-structure

3.1 Construction time
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ones satisfying the initial set of constraints. 17 input analogies for 38% of the test-phrases (at
The complexity of retrieval is mainly dominatedan average response time of 9 seconds), while with
by the size of the frontier built while traversing aev, an average 46 analogies could be identified for
tree-count. In practice, because of the sparsity a5% of the test-phrases (in 3 seconds on average).
the space we manipulate in NLP applications, re- Finally, we checked that the approach we pro-
trieval is also a fast operation. posed scales to very large datasets (several mil-
lions of input phrases), which to the best of our
knowledge is simply out of the reach of existing

Stroppa (2005) provides a dynamic programmingPproaches. This opens up interesting prospects
algorithm for checking that a quadruplet is an analfor analogical learning, such as enriching a phrase-
ogy, whose complexity is(|x| x |y| x |z| x |t|).5 based table of the kind being used in statistical ma-
Depending on the application, a large number ghine translation.

calls to this algorithm must be performed during

step 1 of analogical learning. The following prop_AcknOWIedgment

4 Checking for an analogy

erty helps cutting down the computations: This study has been accomplished while the first
X:y=2z:1= author was visiting €lécom ParisTech.
(x[1] e {y[1},2[1]}) v (¢[1] € {y[1],2[1]})
(x[8] € (y(8).2181) v (8] € {¥(81.25]})  References

wheree[3] denotes the last charactereofA simple  Ana pavid A. 1997. Editorial Artificial Intelligence

and efficient trick consists in calling the analogy Review11(1-5):7-10. Special Issue on Lazy Learn-
checking routine only for those triplets that pass ing.

this test. Denoual, Etienne. 2007. Analogical translation of

unknown words in a statistical machine translation
framework. InMachine Translation Summit, Xl
Copenhagen, Sept. 10-14.

5 Discussion

We investigated the aforementioned search strate-
gies by translating 1 000 new words (resp. phrasesanglais, Philippe and Alexandre Patry. 2007. Trans-
thanks to a translation table populated with pairs of lating unknown words by analogical learning. In
words (resp. pairs of phrases). We studied the scal- EMNLP-CONLL pages 877-886, Prague, Czech Re-
ability of each strategy by varying the size of the public, June.

transfer table (small, medium, large). Precise figkanglais, Philippe and Frangois Yvon. 2008. Scaling
ures can be found in (Langlais and Yvon, 2008); grr)a?]rézlogles. Technical reportgfécom ParisTech,
we summarize here the main outcomes. '

On theword-task, we compared the tree-count.epage, Yves andtienne Denoual. 2005. Purest
search strategy to the> one. On the largest word- ~ €ver example-based machine translation: Detailed
set (84 OOQ input words), the forme_r (exact) strat- ggf;gggtg); and assessmeMtachine Translation
egy could find an average of 34 597 input analogies
for 964 test-words at an average response time bgpage, Yves. 1998. Solving analogies on words: an
1.2 seconds per word, while with the latter strat- {arlézj;ntg;nﬁahnaCOLlNG-ACL pages 728-734, Mon-
egy, an average of 56 analogies could be identified ’ '
for 890 test-words, in an average of 6.3 seconds.Pirrelli, Vitto and Francois Yvon. 1999. The hidden

On the sequencdask, where input spaces are dimension: apar_adigmatic view of qlata-dri_v_en NLP.

. . Journal of Experimental & Theroretical Artifical In-
much larger, we compared the various sampling telligence 11:391-408.
strategies presented in Section 2.3. WeNédhe
number of sampled input forms, t03 for all Stroppa, Nicolas and Francois Yvon. 2005. An ana-

. . . . logical learner for morphological analysis. @th
sampling strategies. On the medium size datas‘etConf. on Computational Natural Language Learning

(293000 input phrases), bo#D and RAND per- (CoNLL), pages 120-127, Ann Arbor, MI, June.
form badly compared t&v. With the two for-

mer filtering strategies, we could at best iden,[n,)ﬁtroppa, Nicolas. 2009éfinitions et cara@risations

de moelesa base d’analogies pour I'apprentissage
SIn this study, we used the definition of a formal analogy automatique des langues naturelle$h.D. thesis,

provided by Stroppa and Yvon (2005). Lepage (1998) pro- ENST, Paris, France, Nov.

poses a less general definition, which is faster to check.
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