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Abstract

We define the task ofincremental or 0-
lag utterance segmentation, that is, the task
of segmenting an ongoing speech recog-
nition stream into utterance units, and
present first results. We use a combination
of hidden event language model, features
from an incremental parser, and acous-
tic / prosodic features to train classifiers on
real-world conversational data (from the
Switchboard corpus). The best classifiers
reach an F-score of around 56%, improv-
ing over baseline and related work.

1 Introduction

Unlike written language, speech—and hence, au-
tomatic speech transcription—does not come seg-
mented into units. Current spoken dialogue sys-
tems simply wait for the speaker to turn silent to
segment their input. This necessarily reduces their
responsiveness, as further processing can only
even commence a certain duration after the turn
has ended (Ward et al., 2005). Moreover, given
the typically simple domains, such work mostly
does not deal with the problem of segmenting the
turn into utterances, i.e. does not distinguish be-
tweenutterance andturn segmentation. However,
as our corpus shows (see below), multi-utterance
turns are the norm in natural dialogues. The work
that does treat intra-turn utterance segmentation
does so in an offline context, namely the post-
processing of automatic transcripts of recorded
speech such as meeting protocols (Fung et al.,
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2007), and relies heavily on right-context pause in-
formation.

In this paper, we define the task ofincremental
or 0-lag utterance segmentation, that is, the task of
segmenting an ongoing speech recognition stream
into utterance units using only left-context infor-
mation.1 This work is done in the context of devel-
oping an incremental dialogue system architecture
(as proposed among others by (Aist et al., 2007)),
where, ideally, a considerable part of the analy-
sis has already been done while the speaker still
speaks. The incremental parser and other compo-
nents of such a system need to be reset at turn-
internal utterance-boundaries with as little delay as
possible. Hence it is of vital importance to predict
the end-of-utterance while the last word of a sen-
tence is processed (or even earlier). We investigate
typical features an incremental system can access,
such as partial parse trees and parser internal in-
formation. These experiments are a first important
step towards online endpointing in an incremental
system.

2 Data

We used section 2 of the Switchboard corpus
(Godfrey et al., 1992) for our experiments. Section
3 was used for training the language models and
the parser that we used. Some of the Switchboard
dialogues are of a very low quality. We excluded
those where transcription notes indicated high rate
of problems due to static noise, echo from the other
speaker or background noise. As our parser be-
came very slow for long sentences, we excluded
sentences that were longer than 25 words from the

10-lag here refers to the time where feature extraction
starts. As the modules on which feature extraction is based
require processing time themselves, a complete absence of
prediction delay is of course not possible.
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analysis (4% of the sentences). We also excluded
back-channel utterances (typically one-word turns)
from the corpus.

Of the remaining corpus we only used the first
100,000 instances to reduce the computational
load for training the classifiers. 80 % of those were
used as a training corpus, and 20 % as a test corpus.
For follow-up experiments that investigated turn-
initial or turn-internal utterance boundaries only
(see below), we used the relevant subsets of the
first 200,000 instances.

3 Feature Extraction

Our features comprise prosodic features, and syn-
tactic features.

Prosodic features arepitch, logarithmized sig-
nal energy and derived features, extracted from the
audio every 10 ms. In order to track changes over
time, we derive features by windowing over past
values of pitch, energy, and energy in voiced re-
gions only, with window sizes ranging from 50 ms
to 5000 ms. We calculate the arithmeticmean and
the range of the values, themean difference be-
tween values within the window and therelative
position of the minimum and maximum. We also
perform a linear regression and use itsslope, the
MSE of the regression and theerror of the regres-
sion for the last value in the window.

As classification was done word-wise (final vs.
non-final word), each word was attributed the
prosodic features of the last corresponding 10-ms-
frame.

For the extraction ofsyntactic features we used
both n-gram models and a parser. The parser
was a modified version of Amit Dubey’ssleepy
parser,2 which can produce syntactic structure in-
crementally online. The n-gram model was a
hidden event model as typically used in the sen-
tence unit detection literature (see e.g. (Fung et
al., 2007)). For the time being, all features based
on word identities are computed on gold stan-
dard transcriptions. We trained n-gram models
both based on words and on words plus POS-
information that was incrementally obtained from
the parser.3 We calculated the log-probability of
trigrams with the last token in the n-gram being
a place-holder for end-of-utterance (i.e. the prob-

2http://homepages.inf.ed.ac.uk/adubey/
software/

3The models were trained using the SRILM-tools (Stol-
cke, 2002) forn = 3 using Chen and Goodman’s modified
Kneser-Ney discounting (Chen and Goodman, 1998).

ability of (I,would,end-of-utterance) or (Thank,you,end-

of-utterance). We also calculated log probabili-
ties for trigrams such as (I, end-of-utterance-1,end-

of-utterance). Thirdly, the log probability was also
computed for a string consisting of 4 word/POS-
pairs followed by an end marker.

Further syntactic features can be roughly di-
vided into two classes:parser-based features,
which are related to internal states of the parser,
andstructure-based features which refer to prop-
erties of the syntactic tree. The former try to cap-
ture the expectation of there being more incom-
plete edges towards the beginning of a sentence
than towards the end. We also might expect a rel-
ative decrease in the overall number of edges to-
wards the end of a sentence. Therefore we track a
selection of numbers referring to the various kinds
of edges stored in the chart. Moreover, we utilize
some of the parser’s information about the best in-
termediate edge, and use the category after the dot
of this edge as an estimate for the most probable
category to come next. Furthermore, we use the
forward probability of the best tree as a rounded
log probability.

The structure-based features are simple features
such as the part-of-speech category of the current
word and the number of the word in the current
utterance, and more complex features that try to
(roughly) approximate semantic notions of com-
pleteness by counting the number of verbs or num-
ber of nominal phrases encountered, as we would
usually expect a sentence to be incomplete if we
haven’t heard a verb or nominal phrase yet. For
example, in sentences of the structure(NP) (VP (V
NP)) or (NP) (VP (V NP (N PP))), humans would
typically be aware that the last phrase has probably
been reached during the last noun phrase or prepo-
sitional phrase (cf. (Grosjean, 1983)). However,
the length and internal structure of these phrases
can vary a great deal. We try to capture some of
this variation by features referring to the last non-
terminal seen, the second-to-last non-terminal seen
and the number of words seen since the last non-
terminal. A number of features (thecount fea-
tures) are simple features that record the number
of words since the turn or utterance started and the
time elapsed since the utterance started. They are
also subsumed under syntactic features.

We also used dialogue act features like the pre-
vious dialogue act, and the previous dialogue act
of the last speaker. Those currently come from
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the gold standard. We assume that in a dialogue
system the system would at least have information
about its own dialogue acts.

4 Experimental Settings

We tested a number of classifiers as implemented
in the Weka toolkit (Witten and Frank, 2005),
and found that the JRip-classifier, an implementa-
tion of the RIPPER-algorithm (Cohen, 1995), per-
formed best. A number of attribute selection algo-
rithms also did not result in a significant change of
performance. Therefore, we only report the plain
results by JRip. We also tested the impact each of
our information sources had on the results. The
aim was to find out how important parser, part-of-
speech information and pitch and energy features
are, respectively.

As turn-internal utterance-ends might be more
difficult to detect than those that coincide with
turn-ends, we repeat the experiment with turn-
internal utterances only. Deleting turn-final utter-
ances from our initial 200,000-instance corpus re-
sulted in 128,686 remaining word instances, 80 %
of which were used for training. For a third ex-
periment, where we look at turn-initial utterances,
we use again a subset of those 200,000 word-
instances.

For clarity, we simply use precision/recall for
evaluation; see (Liu and Shriberg, 2007) for a dis-
cussion of other metrics. As a baseline we assume
non-existent utterance segmentation, which results
in a recall of 0 and a precision of 100 %.

5 Results

Precision Recall F
baseline 100 0 0
all features 73.8 45.0 55.9
all syntactic features 74.8 44.0 55.4
word/POS n-gram features 73.4 45.8 56.4
word n-gram features 66.9 34.7 45.7
only count features 59.3 7.7 13.6
prosodic features only 49.5 8.3 14.2
pitch features 100 0 0
energy features 48.2 7.4 12.8

Table 1: Results for end-of-utterance classification
for all utterances.

Tables 1 and 2 show the results for the experi-
mental settings described above. Dialogue act fea-
tures were included in the syntactic features, but
JRip did not use them in its rules eventually. Ta-
ble 1 shows that the overall F-score is best when

n-grams with POS information are used. Adding
a parser, however, increases precision. Prosody
features in general do not seem to have much of
an influence on end-of-utterance prediction in our
data, with energy features contributing more than
pitch features. Table 2 indicates, as expected, that

Precision Recall F
baseline 100 0 0
all features 71.2 40.3 51.4
all syntactic features 72.7 38.2 50.0
word/POS n-gram features 70.5 41.1 51.9
word n-gram features 70.9 26.4 38.5
only count features 60.4 1.0 2.0
prosodic features only 41.7 1.7 3.3
pitch features 100 0 0
energy features 31.6 1.2 2.3

Table 2: Results for end-of-utterance classification
for utterances which are not turn-final.

the end of an utterance is harder to predict when
it is not turn-final. Performance drops compared
to the results shown in Table 1. Note that some
of the performance drop must be attributed to the
use of a different data set. However, the perfor-
mance drop is much more dramatic for the exper-
iments where only prosody is used than for those
where syntax is used. We speculate that the count
features also loose their impact because one-word
utterances like ’Okay’ are usually turn-initial.

The results shown in Tables 1 and 2 can be re-
garded as an upper bound for a dialogue system,
because our experiments so far work with gold
standard sentence boundaries for creating syntac-
tic features (e.g., for resetting our parser). Strictly
speaking, they are only realistic for turn-initial ut-
terances. For the remaining 14,737 of our 26,401
utterances, we therefore report a lower bound,
where we use only features that do not have knowl-
edge about the beginning of the sentence (Table 3).
No count and parser-based features were used for
this experiment, only n-gram (word-based without
POS information) and pitch features. The Table
also shows the results for the 11,664 turn-initial
utterances, where we use all features.4 We then
derive the overall performance from the fractions
of initial and non-initial utterances.

Future work aims at putting together a sys-
tem where the parser is restarted using predictions
based on its own output.

4Note that turn-initial utterances can at the same time be
turn-final.
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Precision Recall F
non-initial 65.0 28.6 39.7
initial 74.5 55.1 63.3
overall 70.4 40.3 51.3

Table 3: Results for end-of-utterance classification
for utterances which are not turn-initial (reduced
feature set), and utterances that are turn-initial (full
feature set) and the derived overall performance.

6 Related Work

(Fuentes et al., 2007) report F-measures of 84%
using prosodic features only, but they use left–
right-windows for feature calculation, where our
processing is truly incremental and more suitable
for real-time usage in a dialogue system. More-
over, they only seem to use one-utterance turns,
which makes the task easier when prosodic fea-
tures are used. In our dialogue corpus (Switch-
board, section 2), however, each turn contains
on average 2.5 utterances, and turn-internal ut-
terances also need to be recognized. (Fung et
al., 2007) reach an F-score of 75.3% , but report
that the best feature was pause-duration—a fea-
ture we don’t use because we want to find out
how well we can predict the end of a sentence
before a pause makes this clear. Similarly, (Fer-
rer et al., 2002) rely largely on pause features.
(Schlangen, 2006) investigates incremental predic-
tion of end-of-utterance and end-of-turn for var-
ious pause-lengths, and achieves an F-score of
35.5% for pause length 0, on which we can im-
prove here.

7 Discussion and Conclusion

We investigated0-lag end-of-utterance detection
for incremental dialogue systems. In our setup,
we aim to recognise the end of an utterance as
soon as possible, while the potentially last word is
processed, without the help of information about
subsequent silence. We investigate a number of
features an incremental system would be able to
access, such as information from an incremen-
tal parser. We find that remaining (non-pause)
prosodic information is not as helpful as in non-
incremental studies, especially for non-turn-final
utterances. Syntactic information, on the other
hand, increases performance. Future work aims at
more sophisticated prosodic modelling and at test-
ing the impact of using real or simulated speech
recognition output. We also intend to implement

end-of-utterance prediction in the context of a real
incremental system we are building.
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