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Abstract

We present a HMM part-of-speech tag-
ging method which is particularly suited
for POS tagsets with a large number of
fine-grained tags. It is based on three ideas:
(1) splitting of the POS tags into attribute
vectors and decomposition of the contex-
tual POS probabilities of the HMM into a
product of attribute probabilities, (2) esti-
mation of the contextual probabilities with
decision trees, and (3) use of high-order
HMMs. In experiments on German and
Czech data, our tagger outperformed state-
of-the-art POS taggers.

1 Introduction

A Hidden-Markov-Model part-of-speech tagger
(Brants, 2000, e.g.) computes the most probable
POS tag sequence t̂N1 = t̂1, ..., t̂N for a given word
sequence wN

1 .

t̂N1 = arg max
tN1

p(tN1 , wN
1 )

The joint probability of the two sequences is de-
fined as the product of context probabilities and
lexical probabilities over all POS tags:

p(tN1 , wN
1 ) =

N∏
i=1

p(ti|ti−1
i−k)︸ ︷︷ ︸

context prob.

p(wi|ti)︸ ︷︷ ︸
lexical prob.

(1)

HMM taggers are fast and were successfully ap-
plied to a wide range of languages and training cor-
pora.
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Attribution-Noncommercial-Share Alike 3.0 Unported li-
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Some rights reserved.

POS taggers are usually trained on corpora with
between 50 and 150 different POS tags. Tagsets
of this size contain little or no information about
number, gender, case and similar morphosyntac-
tic features. For languages with a rich morphol-
ogy such as German or Czech, more fine-grained
tagsets are often considered more appropriate. The
additional information may also help to disam-
biguate the (base) part of speech. Without gender
information, for instance, it is difficult for a tagger
to correctly disambiguate the German sentence Ist
das Realität? (Is that reality?). The word das is
ambiguous between an article and a demonstrative.
Because of the lack of gender agreement between
das (neuter) and the noun Realität (feminine), the
article reading must be wrong.

The German Tiger treebank (Brants et al., 2002)
is an example of a corpus with a more fine-grained
tagset (over 700 tags overall). Large tagsets aggra-
vate sparse data problems. As an example, take the
German sentence Das zu versteuernde Einkommen
sinkt (“The to be taxed income decreases”; The
taxable income decreases). This sentence should
be tagged as shown in table 1.

Das ART.Def.Nom.Sg.Neut
zu PART.Zu
versteuernde ADJA.Pos.Nom.Sg.Neut
Einkommen N.Reg.Nom.Sg.Neut
sinkt VFIN.Full.3.Sg.Pres.Ind
. SYM.Pun.Sent

Table 1: Correct POS tags for the German sentence
Das zu versteuernde Einkommen sinkt.

Unfortunately, the POS trigram consisting of
the tags of the first three words does not occur
in the Tiger corpus. (Neither does the pair con-
sisting of the first two tags.) The unsmoothed
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context probability of the third POS tag is there-
fore 0. If the probability is smoothed with the
backoff distribution p(•|PART.Zu), the most
probable tag is ADJA.Pos.Acc.Sg.Fem rather than
ADJA.Pos.Nom.Sg.Neut. Thus, the agreement be-
tween the article and the adjective is not checked
anymore.

A closer inspection of the Tiger corpus reveals
that it actually contains all the information needed
to completely disambiguate each component of the
POS tag ADJA.Pos.Nom.Sg.Neut:

• All words appearing after an article (ART)
and the infinitive particle zu (PART.zu) are at-
tributive adjectives (ADJA) (10 of 10 cases).

• All adjectives appearing after an article and
a particle (PART) have the degree positive
(Pos) (39 of 39 cases).

• All adjectives appearing after a nominative
article and a particle have nominative case (11
of 11 cases).

• All adjectives appearing after a singular arti-
cle and a particle are singular (32 of 32 cases).

• All adjectives appearing after a neuter article
and a particle are neuter (4 of 4 cases).

By (1) decomposing the context probability of
ADJA.Pos.Nom.Sg.Neut into a product of attribute
probabilities
p(ADJA | 2:ART, 2:ART.Def, 2:ART.Nom,
2:ART.Sg, 2:ART.Neut, 1:PART, 1:PART.Zu)
∗ p(Pos| 2:ART, 2:ART.Def, 2:ART.Nom,
2:ART.Sg, 2:ART.Neut, 1:PART, 1:PART.Zu,
0:ADJA)
∗ p(Nom | 2:ART, 2:ART.Def, 2:ART.Nom,
2:ART.Sg, 2:ART.Neut, 1:PART, 1:PART.Zu,
0:ADJA, 0:ADJA.Pos)
∗ p(Sg | 2:ART, 2:ART.Def, 2:ART.Nom,
2:ART.Sg, 2:ART.Neut, 1:PART, 1:PART.Zu,
0:ADJA, 0:ADJA.Pos, 0:ADJA.Nom)
∗ p(Neut | 2:ART, 2:ART.Def, 2:ART.Nom,
2:ART.Sg, 2:ART.Neut, 1:PART, 1:PART.Zu,
0:ADJA, 0:ADJA.Pos, 0:ADJA.Nom, 0:ADJA.Sg)

and (2) selecting the relevant context attributes
for the prediction of each attribute, we obtain the
following expression for the context probability:

p(ADJA | ART, PART.Zu)
∗ p(Pos | 2:ART, 1:PART, 0:ADJA)
∗ p(Nom | 2:ART.Nom, 1:PART.Zu, 0:ADJA)

∗ p(Sg | 2:ART.Sg, 1:PART.Zu, 0:ADJA)
∗ p(Neut | 2:ART.Neut, 1:PART.Zu, 0:ADJA)
The conditional probability of each attribute is

1. Hence the context probability of the whole tag is
also 1. Without having observed the given context,
it is possible to deduce that the observed POS tag
is the only possible tag in this context.

These considerations motivate an HMM tagging
approach which decomposes the POS tags into a
set of simple attributes, and uses decision trees to
estimate the probability of each attribute. Deci-
sion trees are ideal for this task because the iden-
tification of relevant attribute combinations is at
the heart of this method. The backoff smoothing
methods of traditional n-gram POS taggers require
an ordering of the reduced contexts which is not
available, here. Discriminatively trained taggers,
on the other hand, have difficulties to handle the
huge number of features which are active at the
same time if any possible combination of context
attributes defines a separate feature.

2 Decision Trees

Decision trees (Breiman et al., 1984; Quinlan,
1993) are normally used as classifiers, i.e. they as-
sign classes to objects which are represented as at-
tribute vectors. The non-terminal nodes are labeled
with attribute tests, the edges with the possible out-
comes of a test, and the terminal nodes are labeled
with classes. An object is classified by evaluating
the test of the top node on the object, following the
respective edge to a daughter node, evaluating the
test of the daughter node, and so on until a termi-
nal node is reached whose class is assigned to the
object.

Decision Trees are turned into probability esti-
mation trees by storing a probability for each pos-
sible class at the terminal nodes instead of a single
result class. Figure 1 shows a probability estima-
tion tree for the prediction of the probability of the
nominative attribute of nouns.

2.1 Induction of Decision Trees
Decision trees are incrementally built by first se-
lecting the test which splits the manually anno-
tated training sample into the most homogeneous
subsets with respect to the class. This test, which
maximizes the information gain1 wrt. the class, is

1The information gain measures how much the test de-
creases the uncertainty about the class. It is the difference
between the entropy of the empirical distribution of the class
variable in the training set and the weighted average entropy
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2:N.Reg

p=0.571 p=0.938

p=0.999

0:N.Name

1:ART.Nom

0:N.Name 0:N.Name

p=0.948 p=0.998 ....

1:ADJA.Nom

yes

yes no

noyes no

yes no

no

yes

Figure 1: Probability estimation tree for the nomi-
native case of nouns. The test 1:ART.Nom checks
if the preceding word is a nominative article.

assigned to the top node. The tree is recursively
expanded by selecting the best test for each sub-
set and so on, until all objects of the current subset
belong to the same class. In a second step, the de-
cision tree may be pruned in order to avoid overfit-
ting to the training data.

Our tagger generates a predictor for each feature
(such as base POS, number, gender etc.) Instead of
using a single tree for the prediction of all possible
values of a feature (such as noun, article, etc. for
base POS), the tagger builds a separate decision
tree for each value. The motivation was that a tree
which predicts a single value (say verb) does not
fragment the data with tests which are only rele-
vant for the distinction of two other values (e.g. ar-
ticle and possessive pronoun).2 Furthermore, we
observed that such two-class decision trees require
no optimization of the pruning threshold (see also
section 2.2.)

The tree induction algorithm only considers bi-
nary tests, which check whether some particular
attribute is present or not. The best test for each
node is selected with the standard information gain
criterion. The recursive tree building process ter-
minates if the information gain is 0. The decision
tree is pruned with the pruning criterion described
below.

Since the tagger creates a separate tree for each
attribute, the probabilities of a set of competing at-
tributes such as masculine, feminine, and neuter
will not exactly sum up to 1. To understand why,
assume that there are three trees for the gender at-
tributes. Two of them (say the trees for mascu-
line and feminine) consist of a single terminal node

in the two subsets. The weight of each subset is proportional
to its size.

2We did not directly compare the two alternatives (two-
valued vs. multi-valued tests), because the implementational
effort required would have been too large.

which returns a probability of 0.3. The third tree
for neuter has one non-terminal and two terminal
nodes returning a probability of 0.3 and 0.5, re-
spectively. The sum of probabilities is therefore
either 0.9 or 1.1, but never exactly 1. This problem
is solved by renormalizing the probabilities.

The probability of an attribute (such as “Nom”)
is always conditioned on the respective base POS
(such as “N”) (unless the predicted attribute is the
base POS) in order to make sure that the probabil-
ity of an attribute is 0 if it never appeared with the
respective base POS. All context attributes other
than the base POS are always used in combination
with the base POS. A typical context attribute is
“1:ART.Nom” which states that the preceding tag
is an article with the attribute “Nom”. “1:ART” is
also a valid attribute specification, but “1:Nom” is
not.

The tagger further restricts the set of possible
test attributes by requiring that some attribute of
the POS tag at position i-k (i=position of the pre-
dicted POS tag, k ≥ 1) must have been used be-
fore an attribute of the POS tag at position i-(k+1)
may be examined. This restriction improved the
tagging accuracy for large contexts.

2.2 Pruning Criterion

The tagger applies3 the critical-value pruning strat-
egy proposed by (Mingers, 1989). A node is
pruned if the information gain of the best test mul-
tiplied by the size of the data subsample is below a
given threshold.

To illustrate the pruning, assume that D is the
data of the current node with 50 positive and 25
negative elements, and that D1 (with 20 positive
and 20 negative elements) and D2 (with 30 posi-
tive and 5 negative elements) are the two subsets
induced by the best test. The entropy of D is
−2/3 log22/3 − 1/3 log21/3 = 0.92, the entropy
of D1 is −1/2 log21/2−1/2 log21/2 = 1, and the
entropy of D2 is −6/7 log26/7 − 1/7 log21/7 =
0.59. The information gain is therefore 0.92 −
(8/15 ∗ 1 − 7/15 ∗ 0.59) = 0.11. The resulting
score is 75 ∗ 0.11 = 8.25. Given a threshold of 6,
the node is therefore not pruned.

We experimented with pre-pruning (where a
node is always pruned if the gain is below the

3We also experimented with a pruning criterion based on
binomial tests, which returned smaller trees with a slightly
lower accuracy, although the difference in accuracy was never
larger than 0.1% for any context size. Thus, the simpler prun-
ing strategy presented here was chosen.
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threshold) as well as post-pruning (where a node
is only pruned if its sub-nodes are terminal nodes
or pruned nodes). The performance of pre-pruning
was slightly better and it was less dependent on
the choice of the pruning threshold. A threshold
of 6 consistently produced optimal or near optimal
results for pre-pruning. Thus, pre-pruning with a
threshold of 6 was used in the experiments.

3 Splitting of the POS Tags

The tagger treats dots in POS tag labels as attribute
separators. The first attribute of a POS tag is the
main category. The number of additional attributes
is fixed for each main category. The additional
attributes are category-specific. The singular at-
tribute of a noun and an adjective POS tag are
therefore two different attributes.4

Each position in the POS tags of a given cate-
gory corresponds to a feature. The attributes oc-
curring at a certain position constitute the value set
of the feature.

4 Our Tagger

Our tagger is a HMM tagger which decomposes
the context probabilities into a product of attribute
probabilities. The probability of an attribute given
the attributes of the preceding POS tags as well as
the preceding attributes of the predicted POS tag
is estimated with a decision tree as described be-
fore. The probabilities at the terminal nodes of the
decision trees are smoothed with the parent node
probabilities (which themselves were smoothed in
the same way). The smoothing is implemented by
adding the weighted class probabilities pp(c) of the
parent node to the frequencies f(c) before normal-
izing them to probabilities:

p(c) =
f(c) + αpp(c)
α +

∑
c f(c)

The weight α was fixed to 1 after a few experi-
ments on development data. This smoothing strat-
egy is closely related to Witten-Bell smoothing.
The probabilities are normalized by dividing them
by the total probability of all attribute values of the
respective feature (see section 2.1).

The best tag sequence is computed with the
Viterbi algorithm. The main differences of our tag-
ger to a standard trigram tagger are that the order of
the Markov model (the k in equation 1) is not fixed

4This is the reason why the attribute tests in figure 1 used
complex attributes such as ART.Nom rather than Nom.

and that the context probability p(ti|ti−1
i−k) is inter-

nally computed as a product of attribute probabili-
ties. In order to increase the speed, the tagger also
applies a beam-search strategy which prunes all
search paths whose probability is below the prob-
ability of the best path times a threshold. With a
threshold of 10−3 or lower, the influence of prun-
ing on the tagging accuracy was negligible.

4.1 Supplementary Lexicon
The tagger may use an external lexicon which sup-
plies entries for additional words which are not
found in the training corpus, and additional tags for
words which did occur in the training data. If an
external lexicon is provided, the lexical probabili-
ties are smoothed as follows: The tagger computes
the average tag probabilities of all words with the
same set of possible POS tags. The Witten-Bell
method is then applied to smooth the lexical prob-
abilities with the average probabilities.

If the word w was observed with N different
tags, and f(w, t) is the joint frequency of w and
POS tag t, and p(t|[w]) is the average probability
of t among words with the same set of possible
tags as w, then the smoothed probability of t given
w is defined as follows:

p(t|w) =
f(w, t) + Np(t|[w])

f(w) + N

The smoothed estimates of p(tag|word) are di-
vided by the prior probability p(tag) of the tag and
used instead of p(word|tag).5

4.2 Unknown Words
The lexical probabilities of unknown words are
obtained as follows: The unknown words are di-
vided into four disjoint classes6 with numeric ex-
pressions, words starting with an upper-case letter,
words starting with a lower-case letter, and a fourth
class for the other words. The tagger builds a suf-
fix trie for each class of unknown words using the
known word types from that class. The maximal
length of the suffixes is 7.

The suffix tries are pruned until (i) all suffixes
have a frequency of at least 5 and (ii) the informa-
tion gain multiplied by the suffix frequency and di-

5p(word|tag) is equal to p(tag|word)p(word)/p(tag)
and p(word) is a constant if the tokenization is unambiguous.
Therefore dropping the factor p(word) has no influence on
the ranking of the different tag sequences.

6In earlier experiments, we had used a much larger num-
ber of word classes. Decreasing their number to 4 turned out
to be better.
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vided by the number of different POS tags is above
a threshold of 1. More precisely, if Tα is the set of
POS tags that occurred with suffix α, |T | is the
size of the set T , fα is the frequency of suffix α,
and pα(t) is the probability of POS tag t among the
words with suffix α, then the following condition
must hold:

faα

|Taα|
∑

t∈Taα

paα(t) log
paα(t)
pα(t)

< 1

The POS probabilities are recursively smoothed
with the POS probabilities of shorter suffixes us-
ing Witten-Bell smoothing.

5 Evaluation

Our tagger was first evaluated on data from the
German Tiger treebank. The results were com-
pared to those obtained with the TnT tagger
(Brants, 2000) and the SVMTool (Giménez and
Màrquez, 2004), which is based on support vec-
tor machines.7 The training of the SVMTool took
more than a day. Therefore it was not possible to
optimize the parameters systematically. We took
standard features from a 5 word window and M4-
LRL training without optimization of the regular-
ization parameter C.

In a second experiment, our tagger was also
evaluated on the Czech Academic corpus 1.0
(Hladká et al., 2007) and compared to the TnT tag-
ger.

5.1 Tiger Corpus
The German Tiger treebank (Brants et al., 2002)
contains over 888,000 tokens. It is annotated with
POS tags from the coarse-grained STTS tagset
and with additional features encoding informa-
tion about number, gender, case, person, degree,
tense, and mood. After deleting problematic sen-
tences (e.g. with an incomplete annotation) and au-
tomatically correcting some easily detectable er-
rors, 885,707 tokens were left. The first 80% were
used as training data, the first half of the rest as
development data, and the last 10% as test data.

Some of the 54 STTS labels were mapped to
new labels with dots, which reduced the number
of main categories to 23. Examples are the nom-
inal POS tags NN and NE which were mapped to
N.Reg and N.Name. Some lexically decidable dis-
tinctions missing in the Tiger corpus have been

7It was planned to include also the Stanford tagger
(Toutanova et al., 2003) in this comparison, but it was not
possible to train it on the Tiger data.

automatically added. Examples are the distinc-
tion between definite and indefinite articles, and
the distinction between hyphens, slashes, left and
right parentheses, quotation marks, and other sym-
bols which the Tiger treebank annotates with “$(”.

A supplementary lexicon was created by analyz-
ing a word list which included all words from the
training, development, and test data with a German
computational morphology. The analyses gener-
ated by the morphology were mapped to the Tiger
tagset. Note that only the words, but not the POS
tags from the test and development data were used,
here. Therefore, it is always possible to create a
supplementary lexicon for the corpus to be pro-
cessed.

In case of the TnT tagger, the entries of the sup-
plementary lexicon were added to the regular lex-
icon with a default frequency of 1 if the word/tag-
pair was unknown, and with a frequency propor-
tional to the prior probability of the tag if the word
was unknown. This strategy returned the best re-
sults on the development data. In case of the SVM-
Tool, we were not able to successfully integrate the
supplementary lexicon.

5.1.1 Refined Tagset

Prepositions are not annotated with case in the
Tiger treebank, although this information is impor-
tant for the disambiguation of the case of the next
noun phrase. In order to provide the tagger with
some information about the case of prepositions,
a second training corpus was created in which
prepositions which always select the same case,
such as durch (through), were annotated with this
case (APPR.Acc). Prepositions which select gen-
itive case, but also occur with dative case8, were
tagged with APPR.Gen. The more frequent ones
of the remaining prepositions, such as in (in), were
lexicalized (APPR.in). The refined tagset also dis-
tinguished between the auxiliaries sein, haben, and
werden, and used lexicalized tags for the coor-
dinating conjunctions aber, doch, denn, wie, bis,
noch, and als whose distribution differs from the
distribution of prototypical coordinating conjunc-
tions such as und (and) or oder (or).

For evaluation purposes, the refined tags are
mapped back to the original tags. This mapping
is unambiguous.

8In German, the genitive case of arguments is more and
more replaced by the dative.
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tagger default refined ref.+lexicon
baseline 67.3 67.3 69.4
TnT 86.3 86.9 90.4
SVMTool 86.6 86.6 –
2 tags 87.0 87.9 91.5
10 tags 87.6 88.5 92.2

Table 2: Tagging accuracies on development data
in percent. Results for 2 and for 10 preceding POS
tags as context are reported for our tagger.

5.1.2 Results
Table 2 summarizes the results obtained with

different taggers and tagsets on the development
data. The accuracy of a baseline tagger which
chooses the most probable tag9 ignoring the con-
text is 67.3% without and 69.4% with the supple-
mentary lexicon.

The TnT tagger achieves 86.3% accuracy on the
default tagset. A tag is considered correct if all
attributes are correct. The tagset refinement in-
creases the accuracy by about 0.6%, and the ex-
ternal lexicon by another 3.5%.

The SVMTool is slightly better than the TnT
tagger on the default tagset, but shows little im-
provement from the tagset refinement. Apparently,
the lexical features used by the SVMTool encode
most of the information of the tagset refinement.

With a context of two preceding POS tags (sim-
ilar to the trigram tagger TnT), our tagger outper-
forms TnT by 0.7% on the default tagset, by 1%
on the refined tagset, and by 1.1% on the refined
tagset plus the additional lexicon. A larger context
of up to 10 preceding POS tags further increased
the accuracy by 0.6, 0.6, and 0.7%, respectively.

default refined ref.+lexicon
TnT STTS 97.28
TnT Tiger 97.17 97.26 97.51

10 tags 97.39 97.57 97.97

Table 3: STTS accuracies of the TnT tagger trained
on the STTS tagset, the TnT tagger trained on the
Tiger tagset, and our tagger trained on the Tiger
tagset.

These figures are considerably lower than
e.g. the 96.7% accuracy reported in Brants (2000)
for the Negra treebank which is annotated with
STTS tags without agreement features. This is to

9Unknown words are tagged by choosing the most fre-
quent tag of words with the same capitalization.

be expected, however, because the STTS tagset is
much smaller. Table 3 shows the results of an eval-
uation based on the plain STTS tagset. The first
result was obtained with TnT trained on Tiger data
which was mapped to STTS before. The second
row contains the results for the TnT tagger when
it is trained on the Tiger data and the output is
mapped to STTS. The third row gives the corre-
sponding figures for our tagger.

91.4
91.5
91.6
91.7
91.8
91.9

92
92.1
92.2
92.3

2 3 4 5 6 7 8 9 10

Figure 2: Tagging accuracy on development data
depending on context size

Figure 2 shows that the tagging accuracy tends
to increase with the context size. The best results
are obtained with a context size of 10. What type
of information is relevant across a distance of ten
words? A good example is the decision tree for the
attribute first person of finite verbs, which looks
for a first person pronoun at positions -1 through
-10 (relative to the position of the current word) in
this order. Since German is a verb-final language,
these tests clearly make sense.

Table 4 shows the performance on the test data.
Our tagger was used with a context size of 10. The
suffix length parameter of the TnT tagger was set
to 6 without lexicon and to 3 with lexicon. These
values were optimal on the development data. The
accuracy of our tagger is lower than on the devel-
opment data. This could be due to the higher rate
of unknown words (10.0% vs. 7.7%). Relative to
the TnT tagger, however, the accuracy is quite sim-
ilar for test and development data. The differences
between the two taggers are significant.10

tagger default refined ref.+lexicon
TnT 83.45 84.11 89.14
our tagger 85.00 85.92 91.07

Table 4: Tagging accuracies on test data.

By far the most frequent tagging error was the
confusion of nominative and accusative case. If

10726 sentences were better tagged by TnT (i.e. with few
errors), 1450 sentences were better tagged by our tagger. The
resulting score of a binomial test is below 0.001.
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this error is not counted, the tagging accuracy
on the development data rises from 92.17% to
94.27%.

Our tagger is quite fast, although not as fast as
the TnT tagger. With a context size of 3 (10), it an-
notates 7000 (2000) tokens per second on a com-
puter with an Athlon X2 4600 CPU. The training
with a context size of 10 took about 4 minutes.

5.2 Czech Academic Corpus
We also evaluated our tagger on the Czech Aca-
demic corpus (Hladká et al., 2007) which contains
652.131 tokens and about 1200 different POS tags.
The data was divided into 80% training data, 10%
development data and 10% test data.

88.5

88.6

88.7

88.8

88.9

89

2 3 4 5 6 7 8 9 10

’context-data2’

Figure 3: Accuracy on development data depend-
ing on context size

The best accuracy of our tagger on the develop-
ment set was 88.9% obtained with a context of 4
preceding POS tags. The best accuracy of the TnT
tagger was 88.2% with a maximal suffix length of
5. The corresponding figures for the test data are
89.53% for our tagger and 88.88% for the TnT tag-
ger. The difference is significant.

6 Discussion

Our tagger combines two ideas, the decomposition
of the probability of complex POS tags into a prod-
uct of feature probabilities, and the estimation of
the conditional probabilities with decision trees. A
similar idea was previously presented in Kempe
(1994), but apparently never applied again. The
tagging accuracy reported by Kempe was below
that of a traditional trigram tagger. Unlike him,
we found that our tagging method out-performed
state-of-the-art POS taggers on fine-grained POS
tagging even if only a trigram context was used.

Schmid (1994) and Màrquez (1999) used deci-
sion trees for the estimation of contextual tag prob-
abilities, but without a decomposition of the tag
probability. Magerman (1994) applied probabilis-
tic decision trees to parsing, but not with a genera-
tive model.

Provost & Domingos (2003) noted that well-
known decision tree induction algorithms such as
C4.5 (Quinlan, 1993) or CART (Breiman et al.,
1984) fail to produce accurate probability esti-
mates. They proposed to grow the decision trees to
their maximal size without pruning, and to smooth
the probability estimates with add-1 smoothing
(also known as the Laplace correction). Ferri
et al. (2003) describe a more complex backoff
smoothing method. Contrary to them, we ap-
plied pruning and found that some pruning (thresh-
old=6) gives better results than no pruning (thresh-
old=0). Another difference is that we used N two-
class trees with normalization to predict the prob-
abilities of N classes. These two-class trees can be
pruned with a fixed pruning threshold. Hence there
is no need to put aside training data for parameter
tuning.

An open question is whether the SVMTool (or
other discriminatively trained taggers) could out-
perform the presented tagger if the same decompo-
sition of POS tags and the same context size was
used. We think that this might be the case if the
SVM features are restricted to the set of relevant
attribute combinations discovered by the decision
tree, but we doubt that it is possible to train the
SVMTool (or other discriminatively trained tag-
gers) without such a restriction given the difficul-
ties to train it with the standard context size.

Czech POS tagging has been extensively stud-
ied in the past (Hajič and Vidová-Hladká, 1998;
Hajič et al., 2001; Votrubec, 2006). Spoustov et
al. (2007) compared several POS taggers includ-
ing an n-gram tagger and a discriminatively trained
tagger (Morče), and evaluated them on the Prague
Dependency Treebank (PDT 2.0). Morče’s tag-
ging accuracy was 95.12%, 0.3% better than the
n-gram tagger. A hybrid system based on four
different tagging methods reached an accuracy of
95.68%. Because of the different corpora used and
the different amounts of lexical information avail-
able, a direct comparison to our results is difficult.
Furthermore, our tagger uses no corpus-specific
heuristics, whereas Morče e.g. is optimized for
Czech POS tagging.

The German tagging results are, to the best of
our knowledge, the first published results for fine-
grained POS tagging with the Tiger tagset.
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7 Summary

We presented a HMM POS tagger for fine-grained
tagsets which splits the POS tags into attribute
vectors and estimates the conditional probabili-
ties of the attributes with decision trees. In ex-
periments with German and Czech corpora, this
method achieved a higher tagging accuracy than
two state-of-the-art general-purpose POS taggers
(TnT and SVMTool).
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and Vladimı́r Petkevič. 2001. Serial combination of
rules and statistics: A case study in czech tagging. In
Proceedings of the 39th Annual Meeting of the ACL,
Toulouse, France.
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Hlavácová, Jirı́ Mı́rovský, and Jan Votrubec. 2007.
Czech Academic Corpus 1.0 Guide. Karolinum
Press, Prag, Czechia.
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