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Abstract
In this paper, we consider classifying word
positions by whether or not they can either
start or end multi-word constituents. This
provides a mechanism for “closing” chart
cells during context-free inference, which
is demonstrated to improve efficiency and
accuracy when used to constrain the well-
known Charniak parser. Additionally, we
present a method for “closing” a sufficient
number of chart cells to ensure quadratic
worst-case complexity of context-free in-
ference. Empirical results show that this
O(n2) bound can be achieved without im-
pacting parsing accuracy.

1 Introduction
While there have been great advances in the statis-
tical modeling of hierarchical syntactic structure in
the past 15 years, exact inference with such mod-
els remains very costly, so that most rich syntac-
tic modeling approaches involve heavy pruning,
pipelining or both. Pipeline systems make use of
simpler models with more efficient inference to re-
duce the search space of the full model. For ex-
ample, the well-known Ratnaparkhi (1999) parser
used a POS-tagger and a finite-state NP chunker as
initial stages of a multi-stage Maximum Entropy
parser. The Charniak (2000) parser uses a simple
PCFG to prune the chart for a richer model; and
Charniak and Johnson (2005) added a discrimina-
tively trained reranker to the end of that pipeline.

Recent results making use of finite-state chun-
kers early in a syntactic parsing pipeline have
shown both an efficiency (Glaysher and Moldovan,
2006) and an accuracy (Hollingshead and Roark,
2007) benefit to the use of such constraints in a
parsing system. Glaysher and Moldovan (2006)
demonstrated an efficiency gain by explicitly dis-
allowing entries in chart cells that would result in
constituents that cross chunk boundaries. Holling-
shead and Roark (2007) demonstrated that high
precision constraints on early stages of the Char-
niak and Johnson (2005) pipeline—in the form of
base phrase constraints derived either from a chun-
ker or from later stages of an earlier iteration of the
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same pipeline—achieved significant accuracy im-
provements, by moving the pipeline search away
from unlikely areas of the search space. Both
of these approaches (as with Ratnaparkhi earlier)
achieve their improvements by ruling out parts of
the search space for downstream processes, and the
gain can either be realized in efficiency (same ac-
curacy, less time) or accuracy (same time, greater
accuracy). Parts of the search space are ruled out
precisely when they are inconsistent with the gen-
erally reliable output of the chunker, i.e., the con-
straints are a by-product of chunking.

In this paper, we consider building classifiers
that more directly address the problem of “closing”
chart cells to entries, rather than extracting this in-
formation from taggers or chunkers built for a dif-
ferent purpose. We build two classifiers, which tag
each word in the sequence with a binary class la-
bel. The first classifier decides if the word can be-
gin a constituent of span greater than one word; the
second classifier decides if the word can end a con-
stituent of span greater than 1. Given a chart cell
(i, j) with start word wi and end word wj , where
j>i, that cell can be “closed” to entries if the first
classifier decides that wi cannot be the first word of
a multi-word constituent or if the second classifier
decides that wj cannot be the last word in a multi-
word constituent. In such a way, we can optimize
classifiers specifically for the task of constrain-
ing chart parsers. Note that such classifier output
would be relatively straightforward to incorporate
into most existing context-free constituent parsers.

We demonstrate the baseline accuracies of such
classifiers, and their impact when the constraints
are placed on the Charniak and Johnson (2005)
parsing pipeline. Various ways of using classifier
output are investigated, including one method for
guaranteeing quadratic complexity of the context-
free parser. A proof of the quadratic complexity is
included, along with a detailed performance evalu-
ation when constraining the Charniak parser to be
worst-case quadratic.
2 Background
Dynamic programming for context-free inference
generally makes use of a chart structure, as shown
in Fig. 1. Each cell in the chart represents a pos-
sible constituent spanning a substring, which is
identified by the indices of the first and last words
of the substring. Thus, the cell identified with
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i, j−4 i+1, j−3 i+2, j−2 i+3, j−1 i+4, j

Figure 1: Fragment of a chart structure. Each cell is indexed
with start and end word indices.

i, j will contain possible constituents spanning the
substring wi . . . wj . Context-free inference has cu-
bic complexity in the length of the string n, due
to the O(n2) chart cells and O(n) possible child
configurations at each cell. For example, the CYK
algorithm, which assumes a grammar in Chomsky
Normal Form (hence exactly 2 non-terminal chil-
dren for each constituent of span greater than 1),
must consider the O(n) possible midpoints for the
two children of constituents at each cell.

In a parsing pipeline, some decisions about the
hidden structure are made at an earlier stage. For
example, base phrase chunking involves identify-
ing a span as a base phrase of some category,
often NP. A base phrase constituent has no chil-
dren other than pre-terminal POS-tags, which all
have a single terminal child, i.e., there is no in-
ternal structure in the base phrase involving non-
POS non-terminals. This has a number of implica-
tions for the context-free parser. First, there is no
need to build internal structure within the identi-
fied base phrase constituent. Second, constituents
which cross brackets with the base phrase can-
not be part of the final tree structure. This sec-
ond constraint on possible trees can be thought
of as a constraint on chart cells, as pointed out
in Glaysher and Moldovan (2006): no multi-word
spanning constituent can begin at a word falling
within a base-phrase chunk, other than the first
word of that chunk. Similarly, no multi-word span-
ning constituent can end at a word falling within a
base-phrase chunk, other than the last word of that
chunk. These constraints rule out many possible
structures that the full context-free parser would
have to otherwise consider.

These start and end constraints can be extracted
from the output of the chunker, but the chunker is
not trained to optimize the accuracy (or the pre-
cision) of these particular constraints, rather typi-
cally to optimize chunking accuracy. Further, these
constraints can apply even for words which fall
outside of typical chunks. For example, in En-
glish, verbs and prepositions tend to occur before
their arguments, hence are often unlikely to end
constituents, despite not being inside a typically
defined base phrase. If we can build a classifier
specifically for this task (determining whether a

Strings in corpus 39832
Word tokens in corpus 950028
Tokens neither first nor last in string 870399
Word tokens in S1 439558 50.5%
Word tokens in E1 646855 74.3%

Table 1: Statistics on word classes from sections 2-21 of the
Penn Wall St. Journal Treebank

word can start or end a multi-word constituent),
we can more directly optimize the classifier for use
within a pipeline.

3 Starting and ending constituents
To better understand the particular task that we
propose, and its likely utility, we first look at the
distribution of classes and our ability to build sim-
ple classifiers to predict these classes. First, let
us introduce notation. Given a string of n words
w1 . . . wn, we will say that a word wi (1<i<n) is
in the class S>1 if there is a constituent spanning
wi . . . wj for some j>i; and wi ∈ S1 otherwise.
Similarly, we will say that a word wj (1<j<n) is
in the class E>1 if there is a constituent spanning
wi . . . wj for some i<j; and wj ∈ E1 otherwise.
These are two separate binary classification tasks.

Note that the first word w1 and the last word
wn are unambiguous in terms of whether they start
or end constituents of length greater than 1. The
first word w1 must start a constituent spanning the
whole string, and the last word wn must end that
same constituent. The first word w1 cannot end a
constituent of length greater than 1; similarly, the
last word wn cannot start a constituent of length
greater than 1. Hence our classifier evaluation
omits those two word positions, leading to n−2
classifications for a string of length n.

Table 1 shows statistics from sections 2-21 of
the Penn WSJ Treebank (Marcus et al., 1993).
From the nearly 1 million words in approximately
40 thousand sentences, just over 870 thousand are
neither the first nor the last word in the string,
hence possible members of the sets S1 or E1, i.e.,
not beginning a multi-word constituent (S1) or not
ending a multi-word constituent (E1). Of these,
over half (50.5%) do not begin multi-word con-
stituents, and nearly three quarters (74.3%) do not
end multi-word constituents. This high latter per-
centage reflects English right-branching structure.

How well can we perform these binary classifi-
cation tasks, using simple (linear complexity) clas-
sifiers? To investigate this question, we used sec-
tions 2-21 of the Penn WSJ Treebank as training
data, section 00 as heldout, and section 24 as de-
velopment. Word classes are straightforwardly ex-
tracted from the treebank trees, by measuring the
span of constituents starting and ending at each
word position. We trained log linear models with
the perceptron algorithm (Collins, 2002) using fea-
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Markov order
Classification Task 0 1 2
S1 (no multi-word constituent start) 96.7 96.9 96.9
E1 (no multi-word constituent end) 97.3 97.3 97.3

Table 2: Classification accuracy on development set for bi-
nary classes S1 and E1, for various Markov orders.

tures similar to those used for NP chunking in Sha
and Pereira (2003), including surrounding POS-
tags (provided by a separately trained log linear
POS-tagger) and surrounding words, up to 2 be-
fore and 2 after the current word position.

Table 2 presents classification accuracy on the
development set for both of these classification
tasks. We trained models with Markov order 0
(each word classified independently), order 1 (fea-
tures with class pairs) and order 2 (features with
class triples). This did not change performance
for the E1 classification, but Markov order 1 was
slightly (but significantly) better than order 0 for
S1 classification. Hence, from this point forward,
all classification will be Markov order 1.

We can see from these results that simple classi-
fication approaches yield very high classification
accuracy. The question now becomes, how can
classifier output be used to constrain a context-free
parser, and what is the impact on parser perfor-
mance of using such a classifier in the pipeline.
4 Closing chart cells
Before moving on to an empirical investigation of
constraining context-free parsers with the methods
we propose, we first need to take a fairly detailed
look at representations internal to these parsers. In
particular, while we can rule out multi-word con-
stituents with particular start and end positions,
there may be intermediate or incomplete structures
within the parser that should not be ruled out at
these same start and end positions. Hence the no-
tion of “closing” a chart cell is slightly more com-
plicated than it may seem initially.

Consider the chart representation in Fig. 1. Sup-
pose that wi is in class S1 and wj is in class E1,
for i<j. We can “close” all cells (i, k) such that
i<k and all cells (l, j) such that l<j, based on
the fact that multi-word constituents cannot begin
with word wi and cannot end with wj . A closed
cell will not take complete entries, and, depending
on the constraint used to close the cell, will have
restrictions on incomplete entries. To make this
more explicit, let us precisely define complete and
incomplete entries.

Context-free inference using dynamic program-
ming over a chart structure builds longer-span con-
stituents by combining smaller span constituents,
guided by rules in a context-free grammar. A
context-free grammar G = (V, T, S†, P ) consists
of: a set of non-terminal symbols V , including a

special start symbol S†; a set of terminal symbols
T ; and a set of rule productions P of the form
A → α for A ∈ V and α ∈ (V ∪ T )∗, i.e.,
a single non-terminal on the left-hand side of the
rule production, and a sequence of 0 or more ter-
minals or non-terminals on the right-hand side of
the rule. If we have a rule production A → B C
in P , a completed B entry in chart cell (i, j) and
a completed C entry in chart cell (j, k), then we
can place a completed A entry in chart cell (i, k),
typically with some indication that the A was built
from the B and C entries. Such a chart cell entry
is sometimes called an “edge”.

The issue with incomplete edges arises when
there are rule productions in P with more than two
children on the right-hand side of the rule. Rather
than trying to combine an arbitrarily large num-
ber of smaller cell entries, a more efficient ap-
proach, which exploits shared structure between
rules, is to only perform pairwise combination,
and store incomplete edges to represent combina-
tions that require further combination to achieve
a complete edge. This can either be performed
in advance, e.g., by factoring a grammar to be in
Chomsky Normal Form, as required by the CYK
algorithm (Cocke and Schwartz, 1970; Younger,
1967; Kasami, 1965), resulting in “incomplete”
non-terminals created by the factorization; or in-
complete edges can be represented through so-
called dotted rules, as with the Earley (1970) al-
gorithm, in which factorization is essentially per-
formed on the fly. For example, if we have a rule
production A → B C D in P , a completed B en-
try in chart cell (i, j) and a completed C entry in
chart cell (j, k), then we can place an incomplete
edge A → B C ·D in chart cell (i, k). The dot sig-
nifies the division between what has already been
combined (to the left of the dot), and what remains
to be combined.1 Then, if we have an incomplete
edge A → B C · D in chart cell (i, k) and a com-
plete D in cell (k, l), we can place a completed A
entry in chart cell (i, l).

If a chart cell (i, j) has been “closed” due to
constraints limiting multi-word constituents with
that span – either wi ∈ S1 or wj ∈ E1 (and i<j) –
then it is clear that “complete” edges should not be
entered in the cell, since these represent precisely
the multi-word constituents that are being ruled
out. How about incomplete edges? To the extent
that an incomplete edge can be extended to a valid
complete edge, it should be allowed. There are
two cases. If wi ∈ S1, then under the assumption
that incomplete edges are extended from left-to-
right (see footnote 1), the incomplete edge should

1Without loss of generality, we will assume that edges are
extended from left-to-right.
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Parsing accuracy % of Cells
Parsing constraints LR LP F Closed
None (baseline) 88.6 89.2 88.9 –
S1 positions 87.6 89.1 88.3 44.6
E1 positions 87.4 88.5 87.9 66.4
Both S1 and E1 86.5 88.6 87.4 80.3

Table 3: Charniak parsing accuracy on section 24 under var-
ious constraint conditions, using word labels extracted using
Markov order 1 model.

be discarded, because any completed edges that
could result from extending that incomplete edge
would have the same start position, i.e., the chart
cell would be (i, k) for some k>i, which is closed
to the completed edge. However, if wi 6∈ S1, then
wj ∈ E1. A complete edge achieved by extending
the incomplete edge will end at wk for k>j, and
cell (i, k) may be open, hence the incomplete edge
should be allowed in cell (i, j). See §6 for limita-
tions on how such incomplete edges arise in closed
cells, which has consequences for the worst-case
complexity under certain conditions.
5 Constraining the Charniak parser
5.1 Parser overview and constraint methods
The Charniak (2000) parser is a multi-stage,
agenda-driven, edge-based parser, that can be con-
strained by precluding edges from being placed on
the agenda. Here we will briefly describe the over-
all architecture of that parser, and our method for
constraining its search.

The first stage of the Charniak parser uses an
agenda and a simple PCFG to build a sparse chart,
which is used in later stages with the full model.
We will focus on this first stage, since it is here
that we will be constraining the parser. The edges
on the agenda and in the chart are dotted rules, as
described in §4. When edges are created, they are
pushed onto the agenda. Edges that are popped
from the agenda are placed in the chart, and then
combined with other chart entries to create new
edges that are pushed onto the agenda. When a
complete edge spanning the whole string is placed
in the chart, at least one full solution exists in the
chart. After this happens, the parser continues
adding edges to the chart and agenda until reaching
some parameterized target number of additional
edges in the chart, at which point the next stage
of the pipeline receives the chart as input and any
edges remaining on the agenda are discarded.

We constrain the first stage of the Charniak
parser as follows. Using classifiers, a subset of
word positions are assigned to class S1, and a sub-
set are assigned to class E1. (Words can be as-
signed to both.) When an edge is created for cell
(i, j), where i < j, it is not placed on the agenda
if either of the following two conditions hold: 1)
wi ∈ S1; or 2) the edge is complete and wj ∈ E1.
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Figure 2: Precision/recall tradeoff of S1 and E1 tags on the
development set.

Of course, the output of our classifier is not per-
fect, hence imposing these constraints will some-
times rule out the true parse, and parser accuracy
may degrade. Furthermore, because of the agenda-
based heuristic search, the efficiency of search may
not be impacted as straightforwardly as one might
expect for an exact inference algorithm. For these
reasons, we have performed extensive empirical
trials under a variety of conditions to try to clearly
understand the best practices for using these sorts
of constraints for this sort of parser.
5.2 Experimental trials
We begin by simply taking the output of the
Markov order 1 taggers, whose accuracies are re-
ported in Table 2, and using word positions labeled
as S1 or E1 to “close” cells in the Charniak parser,
as described above. Table 3 presents parser accu-
racy on the development set (section 24) under four
conditions: the unconstrained baseline; using just
S1 words to close cells; using just E1 word posi-
tions to close cells; and using both S1 and E1 po-
sitions to close cells. As can be seen from these
results, all of these trials result in a decrease in
accuracy from the baseline, with larger decreases
associated with higher percentages of closed cells.

These results indicate that, despite the relatively
high accuracy of classification, the precision of our
classifier in producing the S1 and E1 tags is too
low. To remedy this, we traded some recall for pre-
cision as follows. We used the forward-backward
algorithm with our Markov order 1 tagging model
to assign a conditional probability at each word po-
sition of the tags S1 and E1 given the string. At
each word position wi for 1<i<n, we took the log
likelihood ratio of tag S1 as follows:

LLR(wi ∈ S1) = log
P(wi ∈ S1 | w1 . . . wn)

P(wi 6∈ S1 | w1 . . . wn)
(1)

and the same for tag E1. A default classification
threshold is to label S1 or E1 if the above log like-
lihood is greater than zero, i.e., if the S1 tag is more
likely than not. To improve the precision, we can
move this threshold to some greater value.

748



0 0.2 0.4 0.6 0.8 1
87.5

88

88.5

89

89.5

Fraction of constraints preserved

Ch
ar

ni
ak

 p
ar

se
r F

−m
ea

su
re

Start position constraints
End position constraints
Baseline performance

Figure 3: Charniak parser F-measure at various operating
points of the fraction c of total constraints kept.

Each word position in a string was ranked with
respect to these log likelihood ratios for each
tag.2 If the total number of words wi with
LLR(wi ∈ S1) > 0 is k, then we defined multi-
ple operating points by setting the threshold such
that ck words remained above threshold, for some
constant c between 0 and 1. Fig. 2 shows the pre-
cision/recall tradeoff at these operating points for
both S1 and E1 tags. Note that for both tags, we
can achieve over 99% precision with recall above
70%, and for the E1 tag (a more frequent class than
S1) that level of precision is achieved with recall
greater than 90%.

Constraints were derived at each of these oper-
ating points and used within the Charniak parsing
pipeline. Fig. 3 shows the F-measure parsing per-
formance using either S1 or E1 constraints at vari-
ous values of c for preserving ck of the original k
constraints. As can be seen from that graph, with
improved precision both types of constraints have
operating points that achieve accuracy improve-
ments over the baseline parser on the dev set under
default parser settings.

This accuracy improvement is similar to results
obtained in Hollingshead and Roark (2007), where
base phrase constraints from a finite-state chun-
ker were used to achieve improved parse accuracy.
Their explanation for the accuracy improvement,
which seems to apply in this case as well, is that
the first stage of the Charniak parser is still pass-
ing the same number of edges in the chart to the
second stage, but that the edges now come from
more promising parts of the search space, i.e., the
parser does a better job of exploring good parts of
the search space. Hence the constraints seem to be
doing what they should do, which is constrain the
search without unduly excluding good solutions.

Note that these results are all achieved with
the default parsing parameterizations, so that ac-
curacy gains are achieved, but not necessarily ef-
ficiency gains. The Charniak parser allows for

2Perceptron weights were interpreted in the log domain
and conditionally normalized appropriately.
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Figure 4: Speed/accuracy tradeoff for both the uncon-
strained Charniak parser and when constrained with high pre-
cision start/end constraints.

narrow search parameterizations, whereby fewer
edges are added to the chart in the initial stage.
Given the improved search using these constraints,
high accuracy may be achieved at far narrower
search parameterizations than the default setting of
the parser. To look at potential efficiency gains
to be had from these constraints, we chose the
most constrained operating points for both start
and end constraints that do not hurt accuracy rel-
ative to the baseline parser (c = 0.7 for S1 and
c = 0.8 for E1) and used both kinds of constraints
in the parser. We then ran the Charniak parser with
varying search parameters, to observe performance
when search is narrower than the default. Fig. 4
presents F-measure accuracy for both constrained
and unconstrained parser configurations at various
search parameterizations. The times for the con-
strained parser configurations include the approx-
imately 20 seconds required for POS-tagging and
word-boundary classification of the dev set.

These results demonstrate a sharper knee of the
curve for the constrained runs, with parser accu-
racy that is above that achieved by the uncon-
strained parser under the default search parameter-
ization, even after a nearly 5 times speedup.

5.3 Analysis of constraints on 1-best parses
There are two ways in which the constraints could
be improving parser performance: by helping the
parser to find higher probability parses that it was
formerly losing because of search errors; or by
not allowing the parser to select high probability
parses that violate the constraints. To get a sense
of whether the constraints on the parser are sim-
ply fixing search errors or are imposing constraints
on the model itself, we examined the 1-best parses
from both constrained and unconstrained scenar-
ios. First, we calculated the geometric mean of
the 1-best parse probabilities under both scenarios,
which were (in logs) −207.99 for unconstrained
and −208.09 for constrained. Thus, the con-
strained 1-best parses had very slightly less proba-
bility than the unconstrained parses, indicating that
the constraints were not simply fixing search er-
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rors, but also eliminated some MAP parses.
To get a sense of how often search errors

were corrected versus ruling out of MAP parses,
we compared the constrained and unconstrained
parses at each string, and tallied when the uncon-
strained parse probabilities were greater (or less)
than the constrained parse probabilities, as well as
when they were equal. At the default search pa-
rameterization (210), 84.8 percent of the strings
had the same parses; in 9.2 percent of the cases the
unconstrained parses had higher probability; and
in 5.9 percent of the cases the constrained parses
had higher probability. The narrower search pa-
rameterization at the knee of the curve in Fig. 4 had
similar results: 84.6 percent were the same; in 8.6
percent of the cases the unconstrained probability
was higher; and in 6.8 percent of the cases the con-
strained probability was higher. Hence, when the
1-best parse differs, the parse found via constraints
has a higher probability in approximately 40 per-
cent of the cases.

6 O(n2) complexity context-free parsing
Using sufficient S1 and E1 constraints of the sort
we have been investigating, we can achieve worst-
case quadratic (instead of cubic) complexity. A
proof, based on the CYK algorithm, is given in
Appendix A, but we can make the key points here.
First, cubic complexity of context-free inference
is due to O(n2) chart cells and O(n) possible
child configurations per cell. If we “close” all but
O(n) cells, the “open” cells will be processed with
worst-case quadratic complexity (O(n) cells with
O(n) possible child configurations per cell). If we
can show that the remaining O(n2) “closed” cells
each can be processed within constant time, then
the overall complexity is quadratic. The proof in
Appendix A shows that this is the case if closing a
cell is such that: when a cell (i, j) is closed, then
either all cells (i, k) for k>i are closed or all cells
(k, j) for k<j are closed. These conditions are
achieved when we select sets S1 and E1 and close
cells accordingly.

Just as we were able to order word position log
likelihood scores for classes S1 and E1 to im-
prove precision in the previous section, here we
will order them so that we can continue select-
ing positions until we have guaranteed less than
some threshold of “open” cells. If the threshold
is linear in the length of the string, we will be
able to parse the string with worst-case quadratic
complexity, as shown in Appendix A. We will set
our threshold to kn for some constant k (in our
experiments, k ranges from 2 to 10). Table 4
presents the percentage of cells closed, class (S1

and E1) precision and parser accuracy when the
number of “open” cells is bounded to be less than

Open % cells Class Parse accuracy
cells closed Prec LR LP F
all − − 88.6 89.2 88.9

10n 39.1 99.9 88.6 89.2 88.9
8n 50.4 99.9 88.6 89.2 88.9
6n 62.8 99.9 88.6 89.2 88.9
4n 75.7 99.8 88.8 89.4 89.1
2n 88.8 99.8 88.8 89.5 89.1

Table 4: Varying constant k for kn “open” cells, yielding
O(n2) parsing complexity guarantees

the threshold. These results clearly demonstrate
that such constraints can be placed on real context-
free parsing problems without significant impact to
accuracy–in fact, with small improvements.

We were quite surprised by these trials, fully ex-
pecting these limits to negatively impact accuracy.
The likely explanation is that the existing Char-
niak search strategy itself is bounding processing
in such a way that the additional constraints placed
on the process do not interfere with standard pro-
cessing. Note that our approach closes a higher
percentage of cells in longer strings, which the
Charniak pipeline already more severely prunes
than shorter strings. Further, this approach appears
to be relying very heavily on E1 constraints, hence
has very high precision of classification.

While the Charniak parser may not be the ideal
framework within which to illustrate these worst-
case complexity improvements, the lack of impair-
ment to the parser provides strong evidence that
other parsers could make use of the resulting charts
to achieve significant efficiency gains.
7 Conclusion & Future Work
In this paper, we have presented a very simple ap-
proach to constraining context-free chart parsing
pipelines that has several nice properties. First,
it is based on a simple classification task that
can achieve very high accuracy using very sim-
ple models. Second, the classifier output can
be straightforwardly used to constrain any chart-
based context-free parser. Finally, we have shown
(in Appendix A) that “closing” sufficient cells
with these techniques leads to quadratic worst-case
complexity bounds. Our empirical results with the
Charniak parser demonstrated that our classifiers
were sufficiently accurate to allow for such bounds
to be placed on the parser without hurting parsing
accuracy.

Future work in this direction will involve trying
different methods for defining effective operating
points, such as more heavily constraining longer
strings, in an attempt to further improve the search
in the Charniak parser. We would also like to in-
vestigate performance when using other chart pars-
ing strategies, such as when using cell pruning in-
stead of an agenda.
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CYK(w1 . . . wn, G = (V, T, S†, P, ρ)) � PCFG G must be in CNF
1 for t = 1 to n do � scan in words/POS-tags (span=1)
2 for j = 1 to |V | do
3 αj(t, t)← P(Aj → wt)
4 for s = 2 to n do � all spans > 1
5 for t = 1 to n−s+1 do
6 e← t+s−1 � end word position for this span
7 for i = 1 to |V | do

8 ζi(t, e)← argmax
t<m≤e

„
argmax

j,k
P(Ai → Aj Ak) αj(t, m− 1) αk(m, e)

«
9 αi(t, e)← max

t<m≤e

„
max
j,k

P(Ai → Aj Ak) αj(t, m− 1) αk(m, e)

«
Figure 5: Pseudocode of a basic CYK algorithm for PCFG in Chomsky Normal Form (CNF).
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Appendix A Proof of quadratic
complexity parsing with constraints

For this proof, we will use the well-known CYK
parsing algorithm, which makes use of grammars
in Chomsky Normal Form (CNF). To achieve
CNF, among other things, rules with more than 2

children on the right-hand side must be factored
into multiple binary rules. To do this, compos-
ite non-terminals are created in the factorizations,
which represent incomplete constituents, i.e., those
edges that require further combination to be made
complete.3 For example, if we have a rule pro-
duction A → B C D in the context-free grammar
G, then a new composite non-terminal would be
created, e.g., B-C, and two binary rules would re-
place the previous ternary rule: A → B-C D and
B-C → B C. The B-C non-terminal represents
part of a rule expansion that needs to be combined
with something else to produce a complete non-
terminal from the original set of non-terminals.
Let V ′ be the set of non-terminals that are cre-
ated through factorization, which hence represent
incomplete edges.

Fig. 5 shows pseudocode of a basic CYK algo-
rithm for use with a probabilistic CFG in CNF,
G = (V, T, S†, P, ρ). The function ρ maps from
rules in P to probabilities. Lines 1-3 of the algo-
rithm in Fig. 5 initialize the span 1 cells. Lines 4-9
are where the cubic complexity comes in: O(n)
loops in line 4, each of which include O(n) loops
in line 5, each of which requires finding a max-
imum over O(n) midpoints m in lines 8-9. For
each non-terminal Ai ∈ V at each cell (t, e), the
algorithm stores a backpointer ζi(t, e) in line 8, for
efficiently extracting the maximum likelihood so-
lution at the end of inference; and maximum prob-
abilities αi(t, e) in line 9, for use in the dynamic
program.

Given a set of word positions in the classes S1

and E1, as defined in the main part of this paper,
we can designate all cells (i, j) in the chart where
either wi ∈ S1 or wj ∈ E1 to be “closed”. Chart
cells that are not closed will be called “open”. The
total number of cells in the chart is (n2 + n)/2,
and if we set a threshold on the maximum number
of open cells to be kn, the number of closed cells
must be at least (n2+n)/2−kn. Given an ordering
of words (see §6 for one approach), we can add
words to these sets one word at a time and close the

3As before, we assume that edges are extended from left-
to-right, which requires a left-factorization of the grammar.
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QUADCYK(w1 . . . wn, G = (V, T, S†, P, ρ), V ′, S1, E1) � PCFG G must be in CNF
1 for t = 1 to n do � scan in words/POS-tags (span=1)
2 for j = 1 to |V | do
3 αj(t, t)← P(Aj → wt)
4 for s = 2 to n do � all spans > 1
5 for t = 1 to n−s+1 do
6 e← t+s−1 � end word position for this span
7 if wt ∈ S1 CONTINUE � start position t “closed”
8 else if we ∈ E1 � end position e “closed”
9 for i = 1 to |V | do
10 if Ai 6∈ V ′ CONTINUE � only “incomplete” factored non-terminals (V ′)

11 ζi(t, e)← argmax
j,k

P(Ai → Aj Ak) αj(t, e− 1) αk(e, e)

12 αi(t, e)← max
j,k

P(Ai → Aj Ak) αj(t, e− 1) αk(e, e)

13 else � chart cell (t, e) “open”
14 for i = 1 to |V | do
15 ζi(t, e)← argmax

t<m≤e

„
argmax

j,k
P(Ai → Aj Ak) αj(t, m− 1) αk(m, e)

«
16 αi(t, e)← max

t<m≤e

„
max
j,k

P(Ai → Aj Ak) αj(t, m− 1) αk(m, e)

«
Figure 6: Pseudocode of a modified CYK algorithm, with quadratic worst case complexity with O(n) “open” cells. In
addition to string and grammar, it requires specification of factored non-terminal set V ′ and position constraints (S1, E1).

related cells, until the requisite number of closures
are achieved. Then the resulting sets of S1 word
positions and E1 word positions can be provided to
the parsing algorithm, in addition to the grammar
G and the set of factored non-terminals V ′.

Fig. 6 shows pseudocode of a modified CYK al-
gorithm that takes into account S1 and E1 word
classes. Lines 1-6 of the algorithm in Fig. 6 are
identical to those in the algorithm in Fig. 5. At
line 7, we have identified the chart cell being pro-
cessed, which is (t, e). If wt ∈ S1 then the cell is
completely closed, and there is nothing to do. Oth-
erwise, if we ∈ E1 (lines 8-12), then factored non-
terminals from V ′ can be created in that cell by
finding legal combinations of children categories.
If neither of these conditions hold, then the cell is
open (lines 13-16) and processing occurs as in the
standard CYK algorithm (lines 14-16 of the algo-
rithm in Fig. 6 are identical to lines 7-9 in Fig. 5).

If the number of “open” cells is less than kn for
some constant k, then we can prove that the algo-
rithm in Fig. 6 is O(n2) when given a left-factored
grammar in CNF. A key part of the proof rests on
two lemmas:

Lemma 1: Let V ′ be the set of composite non-
terminals created when left-factoring a CFG
to be in CNF, as described earlier. Then, for
any production Ai → Aj Ak in the grammar,
Ak 6∈ V ′.

Proof: With left-factoring, any k-ary production
A → A1 . . . Ak−1Ak results in new non-terminals
that concatenate the first k − 1 non-terminals on
the right-hand side. These factored non-terminals
are always the leftmost child in the new produc-
tion, hence no second child in the resulting CNF
grammar can be a factored non-terminal.2

Lemma 2: For a cell (t, e) in the chart, if

we ∈ E1, then the only possible midpoint m
for creating an entry in the cell is e.

Proof: Placing an entry in cell (t, e) requires a rule
Ai → Aj Ak, an Aj entry in cell (t, m−1) and an
Ak entry in cell (m, e). Suppose there is an Ak en-
try in cell (m, e) for m < e. Recall that we ∈ E1,
hence the cell (m, e) is closed to non-terminals not
in V ′. By Lemma 1, Ak 6∈ V ′, therefore the cell
(m, e) is closed to Ak entries. This is a contradic-
tion. Therefore, the lemma is proved.2

Theorem: Let O be the set of cells (t, e) such
that wt 6∈ S1 and we 6∈ E1 (“open” cells).
If |O| < kn for some constant k, where n is
the length of the string, then the algorithm in
Fig. 6 has worst case complexity O(n2).

Proof: Lines 4 and 5 of the algorithm in Fig. 6
loop through O(n2) cells (t, e), for which there are
three cases: wt ∈ S1 (line 7 of Fig. 6); we ∈ E1

(lines 8-12); and (t, e) ∈ O (lines 13-16).
Case 1: wt ∈ S1. No further work to be done.
Case 2: we ∈ E1. There is a constant amount of
work to be done, for the reason that there is only
one possible midpoint m for binary children com-
binations (namely e, as proved in Lemma 2), hence
no need to perform the maximization over O(n)
midpoints.
Case 3: (t, e) ∈ O. As with standard CYK pro-
cessing, there are O(n) possible midpoints m over
which to maximize, hence O(n) work required.

Only O(n) cells fall in case 3, hence the to-
tal amount of work associated with the cells in O
is O(n2). There are O(n2) cells associated with
cases 1 and 2, each of which has a total amount
of work bounded by a constant, hence the total
amount of work associated with the cells not in
O is also O(n2). Therefore the overall worst-case
complexity of the algorithm under these conditions
is O(n2). 2
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