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Abstract

We present an algorithm for unsupervised
induction of labeled parse trees. The al-
gorithm has three stages: bracketing, ini-
tial labeling, and label clustering. Brack-

eting is done from raw text using an un-

supervised incremental parser. Initial la-
beling is done using a merging model that
aims at minimizing the grammar descrip-

tion length. Finally, labels are clustered

to a desired number of labels using syn-
tactic features extracted from the initially

labeled trees. The algorithm obtains 59%
labeled f-score on the WSJ10 corpus, as
compared to 35% in previous work, and

substantial error reduction over a random
baseline. We report results for English,

German and Chinese corpora, using two
label mapping methods and two label set
sizes.
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mar. Most recent work (e.g., (Klein and Manning,
2004; Dennis, 2005; Bod, 2006a; Smith and Eis-
ner, 2006; Seginer, 2007)) annotates text sentences
using a hierarchical bracketing (constituents) or a
dependency structure, and thus represents the in-
duced grammar through its behavior in a parsing
task. Solan et al. (2005) uses a graph representa-
tion, while (Nakamura, 2006) simply uses a gram-
mar formalism such as PCFG. When the bracket-
ing approach is taken, some algorithms label the
resulting constituents, while most do not.

Each of these approaches can be justified or crit-
icized; a detailed discussion of this issue is be-
yond the scope of this paper. The algorithm pre-
sented here belongs to the first group, annotating
given sentences with labeled bracketing structures.
The main theoretical justification for this approach
is that many linguistic and psycho-linguistic theo-
ries posit some kind of a hierarchical labeled con-
stituent (or constructional) structure, arguing that it
has a measurable psychological (cognitive) reality
(e.g., (Goldberg, 2006)). The main practical argu-
ments in favor of this approach are that it enables

Unsupervised learning of grammar from texty yetailed and large-scale evaluation using anno-

(‘grammar induction’) is of great theoretical and

tated corpora, as is done in this paper, and that the

practical importance. It can shed light on Ianguaggu,[put format is suitable for many applications.

acquisition by humans and on the general structure
of language, and it can potentially assist NLP ap
plications that utilize parser output. The proble
has attracted researchers for decades, and intergs
has greatly increased recently, in part due to the
availability of huge corpora, computation power,

and new learning algorithms (see Section 2).

A fundamental issue in this research direction
the representation of the resulting induced gra
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When an algorithm generates labeled structures,
the number of labels is an important issue. From a

rT}h(%oretical point of view, the algorithm should also

iscover the appropriate number of labels. How-
ever, for evaluation and application purposes it is
useful to base the number of labels on a specific

igarget grammar In previous work, the number was

Set to be equal to that in the target grammar. This
Is a reasonable approach that we experiment with

Licensed under th&Creative Commons in this paper. In addition, to reduce the possible

arbitrariness in this approach, we also experiment

with the number oprominent labelsn the target
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grammar, determined according to their coveragexperimented with English (WSJ10, Brown10),
of corpus constituents. German (NEGRA10) and Chinese (CTB10) cor-
Another issue relates to the nature of the inpora.
put. In most cases (e.g., in the Klein, Smith, Den- When comparing to previous work that used
nis and Bod papers above), the input consists ofianually annotated corpora in its evaluation
part-of-speech (POS) sequences, derived from teftdaghighi and Klein, 2006) we obtained 59.5%
corpora by manual or automatic POS tagging. Itabeled f-score on the WSJ10 setup vs. their 35.3%
some cases (e.g., in the Seginer and Solan papéfction 5). We also show substantial improve-
above) it can consist of plain text. Again, eachment over a random baseline, and that the cluster-
approach has its pros and cons. The algorithing stage of our algorithm improves the results of
we present here requires POS tags for its labelirfifye second merging stage.
stages. Parts-of-speech are widely considered toSection 2 discusses previous work. In Section 3
have a psychological reality (at least in Englishye detail our algorithm. The experimental setup
including when they are viewed as low-level conand results are presented in Sections 4 and 5.
structions as in (Croft, 2001)), so this kind of input
is reasonable for theoretical research. Moreover, & Previous Work

POS induction is of medium quality (Clark, 2003)’Unsupervised parsing has attracted researchers for

using a manually POS tagged corpus e”‘?‘b'es uségcades (see (Clark, 2001; Klein, 2005) for recent
measure the performance of other induction Stag?éviews). Many types of input, syntax formalisms,

in a controlled manner. Since supervised POS tag‘earch procedures, and success criteria were used.

glntg t'.s of I\I/erthlgt: quza:)ll(% arlﬁ_very efﬁment f%m'Among the theoretical and practical motivations to
putationally (Brants, ), this requirement doe is problem are the study of human language ac-

not seriously limit the practical applicability of aquisition (in particular, an empirical study of the

grammar induction algo.rlthm.. _ . poverty of stimulus hypothesis), preprocessing for
Our labeled bracketings induction algor'thmconstructing large treebanks (Van Zaanen, 2001),

consists of three stages_. We first i.nduce_ U”I?énd improving language models (Chen, 1995).
beled bracketing trees using the algorithm given in In recent years efforts have been made to eval-

(Seginer, 200%) We then induce initial labels us- uate the algorithms on manually annotated cor-

ing aBayesian Model Merging (BMMabeling al- - 2 gch as the WSJ PennTreebank. Recently,

gorithm (Borensztajn and Zuidema, 2007), whicho s along this line have for the first time out-
aims at minimizing the description length of the

¢ ] ) performed the right branching heuristic baseline
input data and the induced grammar. Finally,

T ) th?or English. These include the constituent—context
initial labels are clustered to a desired number qinodel (CCM) (Klein and Manning, 2002), its
labels using syntactic features extracted from th tension using a dependency moélel (Klei1n and

initially labeled trees. Previous work on IabeledManning, 2004), (U)DOP based models (Bod,
brackets induction (Section 2) did notdifferentiatezooea; Bod, 2006b; Bod, 2007), an exemplar—
the u_nlabeled structu_re indgction phase from thﬁased approach (Dennis, 2005), guiding EM using
labeling phase, applying as'”g'e phase approacn:ontrastive estimation (Smith and Eisner, 2006),
To evaluate labeled bracketings, we need a magy the incremental parser of (Seginer, 2007). All
ping between the label symbols of the induced angf ihese use as input POS tag sequences, except
target grammars. Previous work used a ‘greedyof Seginer's algorithm, which uses plain text. All

many to one, mapping. We used both the greedy these papers induce unlabeled bracketing or de-
mapping and a label-to-label (LL) mapping, SinC&endencies.

greedy mapping is highly forgiving to structural’ There are other algorithmic approaches to the

problems in the induced labeling. We report resu“ﬁroblem (e.g., (Adriaans, 1992; Daelemans, 1995;

for two cases: one in which the number of labels iN,n 73anen 2001)). None of these had evaluated
the induced and target grammars is the same, ajgq|eq bracketing on annotated corpora.
one in which the former is the number of promi- |, this paper we focus on the induction of

ngnt labels in the target grammar. We dls_cuss hoWeled bracketing. Bayesian Model Merging

this number can be defined and determined. We

- 2Using, as they did, a greedy mapping with an equal num-
1The algorithm uses raw (not POS tagged) sentences. ber of labels in the induced and target grammars.
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(BMM) (Stolcke, 1994; Stolcke and Omohundro,stage. To do that we modify the Bayesian Model
1994) is a framework for inducing PCFG contain-Merging (BMM) algorithm of (Borensztajn and
ing both a bracketing and a labeling. The characzuidema, 2007), which induces context-free gram-
teristics of this framework (separating prior prob-mars (bracketing and labeling) from POS tags,
ability, data likelihood and heuristic search proceeombining features of the models of (Stolcke and
dures) can also be found in the grammar inductio®@mohundro, 1994) and (Petasis et al., 2004).
models of (Wolf, 1982; Langley and Stromsten, The BMM algorithm (Borensztajn and
2000; Petasis et al., 2004; Solan et al., 2005). Theuidema, 2007) uses an iterative heuristic
BMM model used here (Borensztajn and Zuidemagreedy search for an optimal PCFG according to
2007) combines features of (Petasis et al., 2004)e Bayesian criterion of maximum posterior prob-
and Stolcke’s algorithm, applying the minimumability. Two operators define possible transitions
description length (MDL) principle. We use it herebetween grammars: BRGE creates generaliza-
only for initial labeling of existing bracketings. tions by replacing two existing non-terminals
The MDL principle was also used in (Grunwald, X; and X that occur in the same contexts by a
1994; de Marcken, 1995; Clark, 2001). single new non-terminal’; CHUNK concatenates
There are only two previous papers we areepeating patterns by taking a sequence of two
aware of that induce labeled bracketing and evahon-terminals X; and X, and creating a new
uate on corpora annotated with a similar repreaon-terminal Y that expands t&; X5.
sentation (Haghighi and Klein, 2006; Borensztajn We have used the algorithm to deal only with
and Zuidema, 2007). We utilize and extend théabeling. It reads the initial rules of the grammar
latter’s labeling algorithm. However, the evalu-from all productions implicit in the bracketed cor-
ation done by the latter dealt only with labeling,pus induced in the previous step. Every constituent
using gold-standard (manually annotated) brackefexcept of the start symbol) is given a unique label.
ings. Thus, we can directly compare our resultSince only labeling is required, onlyERGE oper-
only to (Haghighi and Klein, 2006), where twoations are performed.
models ¢cre x noneandecre x ccw) are fully un- - The objective function the algorithm tries to op-

supervised. These models use the inside-outsigiénize at each step is the posterior probability cal-
and EM algorithms to induce bracketing and labeleulated according to Bayes’ Law:

ing simultaneously, as opposed to our three step

metho&. Mprap = argmaxy, P(M|X) = argmax,; P(X|M) - P(IVI%]-)

where P(X|M) is the likelihood of the dataX

given the grammaki/ and P (M) is the prior prob-

Our model consists of three stages: bracketing, in@Pility of the grammar. This is equivalent to mini-
tial labeling, and label clustering. mizing the function

3 Algorithm

3.1 Induction of Unlabeled Bracketing ~leg(P(X|M)) ~logP(m) := DDL + GDL := DL.  (2)
In this step, we apply the algorithm of (Seginer, ysing a Minimal Description Length (MDL)
2007) to induce bracketing from plain txtWe principle, BMM interprets this function as total de-
have chosen that algorithm because it is very faggription length (DL): The Grammar Description
(bot.h learning and parsing) and its code is publicly engthGDL = —logP(M) is the space needed
available. We could have chosen any of the algay encode the model, and the Data Description
rithms mentioned above producing a similar outputength pDL = —logP(X|M) is the space re-
format. quired to describe the data given the model. The
. . . rationale for MDL is to prefer smaller grammars
3.2 Initial Constituent L abdling that describe the data well. DDL and GDL are
Our label clustering stage uses syntactic feaomputed as in (Stolcke, 1994; Stolcke and Omo-
tures. To obtain these, we need an initial labelhundro, 1994). In order to reduce the number of
ing on the bracketings computed in the previougrammars considered at each step, which naively
~ 3Their other models, which were the core of their pa eriS quadratic in the number of non-terminals, a
are semi-supervised. PP hethod based on (Petasis et al., 2004) for effi-
*http://www.seggu.net/ccl ciently predicting DL gain is applied. The process
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is iterated until no additional merge operation im- 0
proves the objective function. Full details are given © -
in (Borensztajn and Zuidema, 2007). i

70

- - -NEGRA10
——BROWNI10|
—WSJ10
--CTB10

33 Labe Clustering -
Label set size. BMM produces quite a large num-
ber of labels (4944 for WSJ®) In the third step | L
of our algorithm we reduce that number. We first K most frequent labels

discuss the issue of the number of labels in induced _ ) ]
grammars, which is an important issue. Figure 1: For eaclk, the fraction of constituents

In many situations, it is reasonable to use a nunl"-"befled with thev mqst frequent labels, for WSJ10
ber T identical to the number of labels in a given(SOlid), Brown10 (triangles), NEGRAIO (dashed)

target grammar, for example when that grammegnd CTB10 (dotted). In all corpora, more than
is used for applications or evaluation. This is the>70 Of the constituents are labeled using less than
approach in (Haghighi and Klein, 2006) for their10 prominentabels.

unsupervised modélsand we use it in part of our

that the granularity of syntactic categories (labelsyorpus we experimented with, one havifigabels
in the gold standard annotation of the corpora Wgnq the other having labels.
experiment with is somewhat arbitrary. For eXamg|ygtering. we stop BMM when no improvement

ple, in the WSJ Penn Treebank noun phrases aigits ohjective function is possible, and cluster the
annotated with the symbol NP, but there is no disgpels to conform to the size constraifit.

tinction between subject and object NPs. Incorpo- Denote the number of labels in the induced

rating such a distinction into the WSJ10 grammaérammar withM, the set ofD most frequent in-

would result in a 27 labels grammar instead of 26duced labels with, and the set consisting of the
To examine this issue, consider Figure 1, Whid&ther induced labels with (|B| = M — D). If

shows the amount of constituent coverage obtaineg % D, there is nothing to do since the con-

by a certain numl_aer of labels in the four COrPOrayaint holds. Otherwise, we map each label in
we use (see Section 4). In all of them, about 95%; y, e |apel in4 that exhibits the most simi-

of the constituents are covered by 23% — 37% Qb gyntactic behavior, as follows. We construct
the labels, and the curve rises very sharply until ¢oatre vector representation of each of the la-
that 95% value. Motivated by this observationy g usinggM + | K| features, wherd is the set

given a corpus annotated using a certain hierarchiy pog tags in the corpus. The firdf features
cal labeled grammar, we refer to the sefolabels . eqphond to parent-child relationships between
that cover at least 95% of the consituents in thgcp, of the induced labels and the represented la-
corpus as the grammagsominentabels. bel. Thei-th feature(i € [1, M]) is the number of
The prominent labels are not only the mOS}imeg the;-th label is the parent of the represented
frequent in the corpus; each of them substanype|  Similarly, the next/ features correspond
tially contributes to constituent labeling, while the;, child-parent relationships, the neif features
saliency of other labels is much smaller.. It Scorrespond to sibling relationships and the |&st
thus reasonable to assume that by addressing ol res correspond to the number of times each
prominent labels, we address a level of granularitp g tag is the leftmost POS tag in a constituent
that is uniform and basic (to the annotation schemgpe|eq by the represented label. Note that in order
used). As a result, by asking the induced gramma§ compute the values of the firgd/ features, we
to producer labels, we reduce arbitrariness anq,eeded an initial labeling on the induced bracket-

enable our testing to focus on our success in ideri'hgs. this is the main reason for using the BMM
tifying the basic phenomena in the target grammagiage.

50

% of constituents

401 |

30)

SFor completeness, in Section 5 we provide results for this FOr €ach labeb; € B, we compute the cosine

grammar using greedy mapping evaluation. LL mappingeval-

uation cannot be performed when the numbers of induced and 7It is possible to force BMM to iterate until a desired num-

target labels differ. ber of induced labelsI( or P) is achieved. However, the in-
SPersonal communication with the authors. duced grammars are of very low quality (see Section 5).
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metric between its vectdt’ and that of every;; € find a (one-to-one) matchingy from X to Y hav-
A, mappingp; to the label:; with which it obtains  ing a maximal weight. In our casg is the set of

the highest score: model symbolsY is the set ofl" or P most fre-
guent target symbols (depending on the desired la-
bY - al .
Map(bi) = argmaz; g @ bel setsize used), and;; := Cx; y;, computed as

in greedy mapping (the number of timesandy;

The cosine metric grows when the same coordshare a constituent). To make the graph complete,
nates (features) in both vectors have higher valuege add zero weight edges between induced and
As a result, vectors with high values of the samé&arget labels that do not share any constituent. The
features (corresponding to similar syntactic behaluhn-Munkres algorithm (Kuhn, 1955; Munkres,

ior) get high scores. 1957) solves this problem, and we used it to per-
_ form the LL mapping (see also (Luo, 2005)).
4 Experimental Setup We assessed the overall quality of our algorithm,

the quality of its labeling stage and the quality of

We evaluated our algorithm on English, Germanh ntactic clustering (SC) st For the over
and Chinese corpora: the WSJ Penn Treeban e syntactic clustering (SC) stage. For the ove

- . . . all quality of the induced grammar (both brack-
containing economic English newspaper articles, . . .
éting and labeling) we compare our results with

he B ini i English P I g . .
the Brown corpus, containing various English gen Haghighi and Klein, 2006), using their sefdp

res, the Negra corpus (Brants, 1997) of Germ hat setup was used for all numbers reported in

newspaper text, and version 5.0 of the Chinesg. )
Penn Treebank (Xue et al., 2002). In each cort-?.1IS paper. Note that a random baseline would

pus, we used the sentences of length at mo&t 1(,yleld very poor results, so there is nothing to be

numbering 7422 (WSJ10), 9117 (Brown10), 75432ined from Coénpha””g t‘I’_ It e label
(NEGRA10) and 4626 (CTB10). We assessed the qua!ty of the labeling (MDL
and SC) stages alone, using only the correct brack-

etings produced by the first stage of the algorithm.
GRAL0: 22, 6; CTB10: 24,9. Each number pro- We compare to sandom baselin®n the_se corrgct
constituents that randomly selects (using a uniform

duces a different grammar. distributi label f h tituent th
For labeled f-score evaluation, the induced Ia—IS ribution) a label for each constituent among the

bels should be mapped to the target lahelgve set of labels allowed t9 the algorlthm.
evaluated with two different mapping schemes. 1© asses the quality of the third stage (SC)

For each pait.X;, Y;) of induced and target Iabels,We compare the f-scqre performanc_e of our three
let C'x. y- be the number of times they label a conStages labeled trees induction algorithm (bracket-
i ing, MDL, SC) to an algorithm consisting of the

stituent having the same span in the same senten&%g. ]
Following (Haghighi and Klein, 2006) we applieolflrst two stages only (bracketing and MDL) and

a greedy (many to one) mapping where the maﬁhe accuracy of the two_ stages labeling algorithm
ping is given byMap(X;) = argmazy, Cx. v, (MDL, SC) to an algorithm where the syntactic

This greedy mapping tends to map many inducet(*jlustering stage is replaced by a simpler method

labels to the same target label, and is therefon@ADL’ random clustering).
highly forgiving of large mismatches between th
structures of the induced and target grammars.

Hence, we also applied a label-to-label (LL) mapye start with comparing our algorithm with
ping, computed by reducing this problem t0 0p{Haghighi and Klein, 2006), the only previous
timal assignment in a weighted complete biparyork that produces labeled bracketing and was
tite graph, formally defined as follows. Given aiested on large manually annotated corpora. Their

weighted complete bipartite grapi = (X U relevant models arecrs x noneandecre x cowtl
Y; X x Y) where edggX;,Y;) has weightw;;,

For each corpus the following and P values
were used: WSJ1026, 8; Brownl10: 28,7; NE-

Results

- Brackets covering a single word are not counted, multi-
8Excluding punctuation and null elements, according tgle labels and the sentence level constituent are counted. T
the scheme of (Klein, 2005). sentence level constituents are usually used: one for tite ro
®There are many possible methods for evaluating clustesymbol at the top (which was not counted), and one real sym-
ing quality (Rosenberg and Hirschberg, 2007). For our tasiol (in WSJ10 it is usually, but not always, S), which was
overall f-score is a very natural one. We will address othegounted. We had verified the setup with the authors.
methods in future papers. "They focused on a different, semi-supervised, setting.
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This Paper| PCFG x CCM | PCFG X NONE Greedy LL

T P T P
WSJI0| 595 35.3 26.3 —
X MDL,SC 80 67 a7 59
Table 1: F-scores of our algorithm and of the unsy=mpL re 67 61 37 a2

- . . . . Rand. Base. 30 30 5 14
pervised models in (Haghighi and Klein, 2006) Ofrorreduction | 399719 | 15%53% | 16%. 4a% | 29% 52%

WSJ10 (they did not test these models on the othggrownio

. . MDL,SC 73 61 48 60
corpora we experimented with). MDL,RC 68 59 76 51
Rand. Base. 27 27 4 14
Error Reduction | 16%,63% | 5%, 47% 4%, 46% 18%, 53%
. . NEGRA10
The number of labels in their induced grammarwocsc 79 72 &5 72

H MDL,RC 73 69 54 58
equals the number of labels in the target grammae——"o = = =

(26 for WSJ10), and they had used a greedy mapError Reduction | 22%,66% | 10%,34% | 24%,63% | 33%,66%
CTBI0

ping. Table 1 shows that our algorithm achievesyprse =5 57 y =5
a superior f-score of 59.5% over their 35.3%| MDLRC 36 32 40 45
Rand. Base. 29 29 5 12

Haghighi and Klein (2006) did not experiment Eror Reduction| 53%58% | 51%, 54% | 7%41% | 18%,49%
with the NEGRA10 and Brown10 corpora, and had ] ) L
used version 3.0 of CTB10 while we have used thgable 4: Pure labeling results (taking into account

substantially different version 5.0, so we can onl)9 nly the ((:jotrr?r(:t brac;ketlngs dp'r\zglicgcé akt) sta?_e 1,
compare our results on WSJ10. compared to the random and ( ,RC) baselines.

Table 2 shows the labeled recall, precision and ]:_I'he left number in the Error Reduction lines slots

score of our algorithm on the various corpora anaomgares (MDL'SCKAE)L(I\SACI?L;RC) an tTebn?ht
mappings we use. On Brown10, NEGRA10 an jlumber compares ( ,SC) to random labeling.

CTB10 (version 5.0) these are the first reporte DL,SC) algorithm is substantially superior.
results for this task. For reference, the table also
shows the unlabeled f-score results of Seginerter (second line}® All three labeling algorithms
bracketing algorithm (our first stagé) used Seginer’s bracketing and results are reported
We can see that greedy mapping is indeed moumnly for labels of correctly bracketed constituents.
forgiving than LL mapping, for botl" labels and Reported are the algorithm and baselines accuracy
P labels. WSJ results are generally higher than fapercentage of correctly labeled constituents after
the other corpora, probably because WSJ brackehie mapping has been performed) and the error re-
ing results are higher than for the other corpora. duction of the algorithm over the baselines (bottom
Comparing the left and right columns in eacHine). (MDL,SC) substantially outperforms both
of the table sections reveals that for greedy maphe random baseline, demonstrating the power of
ping, mapping to a higher number of labels resultthe whole labeling stage, and the (MDL,RC) algo-
in higher scores than mapping to a lower numberithm, demonstrating the power of the SC stage.
LL mapping behaves in exactly the opposite way. We compared our grammars to the grammars in-
The explanation for this is that when we force theluced by the first two stages (bracketing and then
mapping to cover all of the target labels (as don& DL that stops when no DL improvement is pos-
by LL mapping for7" labels), we move probabil- sible) alone. Since the number of labels in these
ity mass from the correct, heavy labels to smallegrammars is much larger than in the target gram-
ones, thereby magnifying errors. mar, only the evaluation with the greedy, many to
Table 4 addresses the quality of the whole laene, mapping is performed. Using greedy map-
beling stage (MDL and SC) and of the SC stageping, the F-score of these grammars constitutes an
We report the quality of our labels (top line forupper bound on the F-score after the subsequent
each corpus in the table) the random baseline I&C stage. For WSJ10 (4944 labels), NEGRA10
bels (third line) and the labels of an algorithm(5557 labels), CTB10 (2298 labels) and Brown10
where MDL is performed and the syntactic clus{3314 labels) F-score values are 64.6, 49.9, 38.7
tering is replaced by a random clustering (RC) aland 52.5 compared to F-score values of 59.5(50.2),
gorithm that, given a label that is not one of the 45.6(42), 36.4(34.7) and 49.4(41.3) after mapping
T or P most frequent labels, randomly selects onall induced labels to th& (P) most frequent la-
of the most frequent labels and adb4o its clus- bels with SC (Table 2, ‘greedy’ section). The frac-

12The numbers slightly differ from those in Seginer’s paper, *Our algorithm’s numbers can be deduced from Table 2.
since we use the (Haghighi and Klein, 2006) setup. Results for all random baselines are averaged over 10 runs.
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Greedy Mapping LL Mapping Seginer
T Tabels P labels T Tabels P Tabels (unlabeled)
Corpus R P F R P F R P F R P F F

WSJ10 58 61 595] 489 | 515|502 34.2| 36.1| 352 427|449 | 438 | 74.6
NEGRA10 | 54.2 | 39.3| 45.6 | 50 36.2 | 42 447 324|376 495 359 41.7 | 58.1
CTB10 35.1| 37.8| 36.4| 33.4| 36 3471 219|236 22.7| 274 295 | 28.4 | 51.8
Brown1l0 | 476 | 51.3| 49.4] 39.9| 43 41.3|31.3| 33.7| 324 389|419 40.3 | 67.8

Table 2: Labeled recall, precision and f-score of our atharj mapping model labels into target labels
greedily (left) and using LL mapping (right). The number ofliced labels was set to be the total
numberT of target labels or the numbé? of prominent labels in the target grammar (WSJ10: 26, 8;
Brownl10: 28, 7; NEGRA10: 22, 6; CTB10: 24, 9). Also shown aegiSer’s unlabeled bracketing

results (rightmost column), which constitute an upper lobom the quality of subsequent labeling steps.

WSJ10 Brown10
Label | T labels P labels T labels P labels

R P F R P F R P F R P F
S 771|776 77.3] 754 679 715 72.3| 60.9| 66.1| 69.3] 63.2| 66.1

NP 85 | 795| 154 | 19.8 | 61.6 | 30 10.7| 79.3| 189 | 15.6 | 78 26
VP 204 | 676| 31.3| 64.2| 36.7| 46.7| 98 | 725| 17.3| 141 | 59 22.8
PP 40.8 | 63.5| 49.7 | 8 89 |84 | 174 | 592|269 | 755 | 144 | 24.2

Table 3: Recall, Precision and F-score for constituentslébwith the 4 most frequent labels in the
WSJ10 and Brown10 test sets. LL mapping is used for evaluatio

tion of constituents covered by tfie(P) most fre- concept of prominent labels, which allows us cov-
quent labels before mapping with SC is 0.42(0.29grage of the basic and most salient level of a target
0.33(0.23), 0.58(0.45) and 0.66(0.42), emphasizzrammar. Labels are clearly an important aspect of
ing the effect of SC on the final result. grammar induction. Future work will explore their
MDL finds the best merge at each iteration. Insignificance for applications.
stead of stopping it when no DL gains are possi- Evaluating induced labels is a complex issue.
ble, we can keep merging after the deltas becom#e applied greedy mapping as in previous work,
worse than the total DL, stopping only when theand showed that our algorithm significantly out-
desired number of label§(or P) is achieved. We performs it. In addition, we introduced LL map-
tried this version of a (bracketing and MDL) algo-ping, which overcomes some of the shortcomings
rithm and obtained grammars of very low quality.of greedy mapping. There are several other possi-
This further demonstrates the importance of the Stdle methods for evaluating labeled induced gram-

stage. mars, and we plan to explore them in future work.
Table 3 shows results for the four most frequenyVe evaluated on large human annotated corpora
labels of WSJ10 and Brown10 . of different English domains and three languages,
and showed that our labeling stages, and specif-

6 Conclusion ically the SC stage, outperform several baselines

for all corpora and mapping methods.
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