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A large number of regular patterns are observ
across the sound inventories of human languag
These regularities are arguably a consequence
the self-organization that is instrumental in th
emergence of these inventories (de Boer, 2000).
Many attempts have been made by functional ph
nologists for explaining this self-organizing behav
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Abstract

We study the self-organization of the con-
sonant inventories through a complex net-
work approach. We observe that the dis-
tribution of occurrence as well as co-
occurrence of the consonants across lan-
guages follow a power-law behavior. The
co-occurrence network of consonants ex-
hibits a high clustering coefficient. We
propose four novel synthesis models for
these networks (each of which is a refine-
ment of the earlier) so as to successively
match with higher accuracy (a) the above
mentioned topological properties as well
as (b) the linguistic property ofeature
economyexhibited by the consonant inven-
tories. We conclude by arguing that a pos-
sible interpretation of this mechanism of
network growth is the process of child lan-
guage acquisition. Such models essentially
increase our understanding of the struc-
ture of languages that is influenced by their
evolutionary dynamics and this, in turn,
can be extremely useful for building future
NLP applications.
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ior through certain general principles suchaax-

imal perceptual contrasfLiljencrants and Lind-
blom, 1972),ease of articulationLindblom and
Maddieson, 1988; de Boer, 2000), apdse of
learnability (de Boer, 2000). In fact, there are a
lot of studies that attempt to explain the emergence
of the vowel inventories through the application of
one or more of the above principles (Liljencrants
and Lindblom, 1972; de Boer, 2000). Some studies
have also been carried out in the area of linguistics
that seek to reason the observed patterns in the con-
sonant inventories (Trubetzkoy, 1939; Lindblom
and Maddieson, 1988; Boersma, 1998; Clements,
2008). Nevertheless, most of these works are con-
fined to certain individual principles rather than
formulating a general theory describing the emer-
gence of these regular patterns across the conso-
nant inventories.

The self-organization of the consonant inven-
tories emerges due to an interaction of different
forces acting upon them. In order to identify the
nature of these interactions one has to understand
the growth dynamics of these inventories. The the-
ories of complex networkgrovide a number of
growth models that have proved to be extremely
successful in explaining the evolutionary dynam-
ics of various social (Newman, 2001; Ramasco et
%I., 2004), biological (Jeong et al., 2000) and other
natural systems. The basic framework for the cur-

es

rg' t study develops around two such complex net-
works namely, thePhonemekanguageNetwork

r PlaNet (Choudhury et al., 2006) and its one-
ode projection, thehoneme-Phonemietwork

or PhoNet (Mukherjee et al.2007a). We begin by

O-

analyzing some of the structural properties (Sec. 2)

Licensed under the&Creative Commons of the networks and observe that the consonant

fjodes in both PlaNet and PhoNet follow a power-
law-like degree distribution. Moreover, PhoNet
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is characterized by a high clustering coefficient
a property that has been found to be prevalent |
many other social networks (Newman, 2001; Ra
masco et al., 2004).

We propose four synthesis models for PlaNe
(Sec. 3), each of which employ a variant gbref-
erential attachmen{Baralasi and Albert, 1999)
based growth kernkl While the first two mod-
els are independent of the characteristic prope 2
ties of the (consonant) nodes, the following twc Flalst FhaNet
use them. These models are successively refined ]
not only to reproduce the topological properties of '9ureé 1: lllustration of the nodes and edges of
PlaNet and PhoNet, but also to match the Iinguié?IaNet and PhoNet.
tic property offeature economyBoersma, 1998;

Clements, 2008) that is observed across the conso-

nant inventories. The underlying growth rules forEPl is the set of edges running betwegnandVe.

each of these individual models helps us to intelrThere IS an eglge € Epi from a n.OdeUl < VL.to a
?devc e V¢ iff the consonant is present in the

pret the cause of the emergence of at least one (

more) of the aforementioned properties. We co nventory OT languageé. o
clude (Sec. 4) by providing a possible interpreta- PNONet is the one-mode projection of PlaNet
tion of the proposed mathematical model that w@NtO the consonant nodes i.e., a network of con-
finally develop in terms of child language acquisi-SOnants in which two nodes are linked by an edge
tion. with weight as many times as they co-occur across

There are three major contributions of this workl2nguages. Hence, it can be represented by a graph

Firstly, it provides a fascinating account of the” = ( Vo, Epn ), whereVc is the set of conso-

structure and the evolution of the human speedignt nodes and,, is the set of edges connecting
sound systems. Furthermore, the introduction JP€Se nodes it:. There is an edge < Ep, if the

the node property based synthesis model is a Siayo nodes _(read consonants) that are connected by
nificant contribution to the field of complex net-¢ CO-OCCur in at least one language and the number
works. On a broader perspective, this work show@f languages they co-occur in defines the weight of

how statistical mechanics can be applied in undef® €dge:. Figure 1 shows the nodes and the edges

standing the structure of a linguistic system, whici?f PlaNet and PhoNet. o
in turn can be extremely useful in developing fu- Data Source and Network Construction:Like

Languages

One Mode Projection

SHULTLOSUO,)

ture NLP applications. many other earlier studies (Liljencrants and Lind-
blom, 1972; Lindblom and Maddieson, 1988; de

2 Properties of the Consonant Boer, 2000; Hinskens and Weijer, 2003), we use
Inventories the UCLA Phonological Segment Inventory Data-

] ) ] ) _base (UPSID) (Maddieson, 1984) as the source of
Ir_l _thls section, we briefly recapitulate the defiy,r qata. There are 317 languages in the data-
nitions of PlaNet and PhoNet, the data sourcgaqe with a total of 541 consonants found across
construction procedure for the networks and soMge  Each consonant is characterized by a set of
of t'h'eir important structural properties. We alsophonological features (Trubetzkoy, 1931), which
revisit the concept of feature economy and th§jgtinguishes it from others. UPSID uses articula-
method used for its quantification. tory features to describe the consonants, which can
be broadly categorized into three different types
namely themanner of articulation the place of
articulation and phonation Manner of articu-
PlaNetis a bipartite grapi = ( V1, Ve, Epi ) CON- |ation specifies how the flow of air takes place
sisting of two sets of nodes namely; (labeled by i, the vocal tract during articulation of a conso-
the languages) arid (labeled by the consonants);nant, whereas place of articulation specifies the

LThe word kernel here refers to the function or mathemat2ctive Speech organ 6_md also t_he place where it
ical formula that drives the growth of the network. acts. Phonation describes the vibration of the vo-

2.1 Structural Properties of the Consonant
Networks
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Manner of Articulation Place of Articulation Phonation SUitany mOdIfled by the one presented in (Barrat

tap velar voiced i ki .
flap uvular voiceless et al., 2004). According to this definition, the clus-
ill | . .. L -
ik e tering coefficient for a nodeis,
nasal glottal
plosive bilabial 1 .. .
r-sound alveolar c = Z (wU + wll) ;i
fricative retroflex Z Wi ( k _ 1) - J J
affricate pharyngeal Vi ? Vil
implosive labial-velar (1)
approximant labio-dental . 3
ejective stop labial-palatal wherej and! are neighbors of; k; represents the
affricated click dental-palatal H P . ) . _
ejective affricate dental-alveolar plaln degree' of the nOdﬁ Wigs w]l and _wll de
ejective fricative palato-alveolar note the weights of the edges connecting nodes

lateral approximant

andj, j andl, and: and! respectively;a;;, a;,
Table 1: The table shows some of the important;; are boolean variables, which are true iff there
features listed in UPSID. Over 99% of the UPSIDs an edge between the nodeandj, i andl, and;
languages have bilabial, dental-alveolar and veland! respectively. The clustering coefficient of the
plosives. Furthermore, voiceless plosives outnummetwork ¢,,) is equal to the average clustering co-
ber the voiced ones (92% vs. 67%). 93% of thefficient of the nodes. The value af, for PhoNet
languages have at least one fricative, 97% have i8t0.89, which is significantly higher than that of a
least one nasal and 96% have at least one liquichndom graph with the same number of nodes and
Approximants occur in fewer than 95% of the lan-edges (.08).

guages. o .
2.2 Linguistic Properties: Feature Economy

and its Quantification
cal cords during the articulation of a consonantr, principle of feature economy states that lan-

Apart from these thr_ee major classes there are al ?lages tend to use a small numberditinctive
some secondary articulatory features found in cef: tures and maximize their combinatorial pos-

. . 1e
tain languages. There are around 52 features “Stgfgilities to generate a large number of conso-

in UPSID; the important ones are noted in Table ]hants (Boersma, 1998; Clements, 2008). Stated
N_ote that in UPSID the features are assumed to tfﬁfferently, a given consonant will have a higher
binary-valued and thgrefore, each consonant “Ran expected chance of occurrence in invento-
be represented by a binary yector. ries in which all of its features have already dis-
We have used UPSID in order tf Cons_tructinctively occurred in the other consonants. This
PlaNet and PhON_Et' Consequenth | _f317 (|n_ principle immediately implies that the consonants
PlaNet) andVc| = 541. The number of edges N chosen by a language should share a considerable
EIaNet and PhoNet are 7022 and 30412 respegymner of features among them. The quantifica-
tively. tion process, which is a refinement of the idea pre-

Degree Distributions of PlaNet and PhoNet: o0 in (Mukherjee et al.2007b), is as follows.
The degree distribution is the fraction of nodes, de- £t/ re Entropy: For an inventory of sizeV

noted byP, which have a degréeyreater thgn O let there bep; consonants for which a particular
equal tok (Newman, 2003). The degree d'smbu'featuref (recall that we assumg to be binary-
tion of the consonant nodes in PlaNet and PhON%Iued) is present and, other consonants for
are shown in Figure 2 in the log-log scale. Both thgpich, the same is absent. Therefore, the proba-
plots shoyv a power-law behaviaP{ oc k™) with bility that a consonant (chosen uniformly at ran-
expo_nenﬂal cut-offs towards the ends. The valuaOm from this inventory) contains the featufés
of ais 0.71 for PlaNet and 0.89 for PhoNet. b and the probability that it does not contain the
Clustering Coefficient of PhoNet: The clus- faature is% (21%)_ One can think off as an in-
tering coefficient for a nodeis the proportion of yenendent random variable, which can take values
links between the nodes that are the neighbors ¢f;q o and]?vf and‘]ﬁf define the probability dis-
i divided by the number of links that could pOS-iption of f. Therefore, for any given inventory,

sibly exist between them (Newman, 2003). Sincg;q can define the binary entrofy; (Shannon and
PhoNet is a weighted graph the above definition igeaver 1949) for the featureas

2For a weighted graph like PhoNet, the degree of a riode Df Pf  qf qf
is the sum of weights on the edges that are incident on Hy = N log, N N log,y N 2)
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Figure 2: Degree distribution (DD) of PlaNet along with that of Plalygobtained from Model I and II
respectively; (b) DD of PhoNet along with that of Pho\gtobtained from Model | and Il respectively.
Both the plots are in log-log scale.

If F'is the set of all features present in the cons@.1 Model I: Preferential Attachment Kernel

nants forming the inventory, thefeature entropy  this model employs a modified version of the ker-
Fp is the sum of the binary entropies with respec,q| qescribed in (Choudhury et al., 2006), which is
to all the features, that is the only work in literature that attempts to explain
Fe=Y H;=Y (_% log, % _ qu log, qﬁf) the emergence of the consonant inventories in the
fer fer framework of complex networks.
3) Let us assume that a language nddec V;,

Since we have assumed thfails an independent has a degre¢;. The consonant nodes i~ are
random variable 'z is the joint entropy of the assumed to be unlabeled, i.e, they are not marked
system. In other words;r provides an estimate by the distinctive features that characterize them.
of the number of discriminative features presemyve first sort the nodeg; throughLs;7 in the as-
in the consonants of an inventory that a speakeending order of their degrees. At each time step a
(e.g., parent) has to communicate to a learner (e.gwdeL;, chosen in order, preferentially attaches it-
child) during language transmission. The lower theelf with &, distinctnodes (call each such nodg)
value of g the higher is the feature economy. Theof the setl/;. The probabilityPr(C;) with which
curve marked as (R) in Figure 3 shows the averaghe nodel; attaches itself to the nodg; is given
feature entropy of the consonant inventories of By,

particular sizé (y-axis) versus the inventory size Pr(Cy) d;* +e€ (@)
. T i =

X-axis). i (da®

( ) Syev, (dy® +e)

3 Synthesis Models where, d; is the current degree of the nodg,

In this section, we describe four synthesis modVc 1S the set of nodes irc that are not already
els that incrementally attempt to explain the eme€onnected toL;, ¢ is the smoothing parameter
gence of the structural properties of PlaNet anfj'at facilitates random attachments andindi-
PhoNet as well as the feature entropy exhibited%tes Whe_:ther the attachment kgrnel is sub-linear
the consonant inventories. In all these models, < 1), linear @ = 1) or super-linear4 > 1).
assume that the distribution of the consonant if¥0té that the modification from the earlier ker-

ventory size, i.e., the degrees of the language nod8g! (Choudhury et al., 2006) is brought about by
in PlaNet, are knowa priori. the introduction ofa. The above process is re-

BT f | A peated until all the language nodés € V7, get

Let there ben inventories of a particular size. The ) ;
average feature entropy of the inventories of skeis connected td; consonant nodes (re,fer o Fllgure.
LS~ Fg,, whereF, signifies the feature entropy of the 6 of (Choudhury et al., 2006) for an illustration of
i'" inventory of sizek. the steps of the synthesis process). Thus, we have
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the synthesized version of PlaNet, which we shafjroblem, we introduce the concept wiad (i.e.,

call PlaNet,,, henceforth. fully connected triplet) formation and thereby
The Simulation Results: We simulate the refine the model in the following section.

above model to obtain PlaNgt, for 100 differ-

ent runs and average the results over all of ther8.2 Model Il: Kernel based on Triad

We find that the degree distributions that emerge  Formation

fit the empirical data well forr € [1.4,1.5] and : .y
. _ - The triad model (Peltoaki and Alava, 2006)
¢ €10.4,0.6], the best being at= 1.44 and: = 0.5 builds up on the concept afeighborhoodorma-

shown in Figure 2). In fact, the mean efrdre-
( g ) . Co tion. Two consonant nodeS; and C; become
tween the real and the synthesized d|str|but|onsfori hbors if a lan node at anv st f th
the best choice of parameters is as small as 0.di'9nbors 1t a fanguage node at any step ot the
: . synthesis process attaches itself to béth and
Note that this error in case of the model presente . : )
Let the probability of triad formation be de-

in (Choudhury et al., 2006 0.03. Furth 2 :
in (Choudhury etal., ) was UrNermore, ied byp;. At each time step a language node

as we shall see shortly, a super-linear kernel caj
. . k . ; (chosen from the set of language nodes sorted
explain various other topological properties morée

, in ascending order of their degrees) makes the first

accurately than a linear kernel. : :

. . connection preferentially to a consonant nade
In absence of preferential attachment i.e., when : .
. € Ve to which L; is not already connected fol-
all the connections to the consonant nodes aje o
. : owing the distributionPr(C;). For the rest of the
equiprobable, the mean error rises to 0.35.

, ) (k;-1) connectiond.; attaches itself preferentially
A possible reason behind the success of th

| is the f hat | . I% only the neighbors of’; to which L; is not yet
model is the fact that language is a ConStz’lm}fonnected with a probability;. Consequentlyl;

cha_lng_lr_lg system_and_preferenUal attgchment pla}f%nnects itself preferentially to the non-neighbors
a significant role in this change. For instance, duréf C; to which L; is not yet connected with a prob-

ing the change those consonants that belong to IaQE)ility (1 — p,). The neighbor set of; gets up-

guag?s that are _morhe pre\r:glint arr?ong thefsgoe_ad%ted accordingly. Note that every time the node
ers ot a generation have higher chances o ©9, and its neighbors are chosen they together im-
transmitted to the speakers of the subsequent ge&5Se a clique on the one-mode projection. This

erations (Blevins, 2004). This heterogeneity in th%henomenon leads to the formation of a large num-

choice of the consonants manifests itself as pref, . ¢ triangles in the one-mode projection thereby

ere”?'a' attachment. We co'njecture that the Valuiﬁcreasing the clustering coefficient of the resultant
of « is a function of the societal structure and thenetwork

cognitive capabilities of human beings. The exact

) T The Simulation Results:We carry out 100 dif-
nature of this function is currently not known and ; .
. .. ferentsimulation runs of the above model for a par-
a topic for future research. The parametar this

case may be thought of as modeling the randorﬁ'—cmar set of parameter values to obtain Plaljet
and average the results over all of them. We ex-
ness of the system.

o lore several parameter settings in the range as fol-
Nevertheless, the degree distribution o P g g

S .. _lows: « € [1,1.5] (in steps of 0.1)¢ € [0.2,0.4]
PhoNet,,,, which is the one-mode projection . .
n steps of 0.1) an 0.70,0.95] (in steps of
of PlaNet,,,, does not match the real data WeII(I P ) ang:, € | ’ 1 P

0.05). We also observe that if we traverse any fur-

(see Figure 2). The mean error between the twt%eralong one or more of the dimensions of the pa-

distributions is 0.45. Furthermore, the C|USterin9ameter space then the results get worse. The best
coefficient of PhoNet,, is 0.55 and differs largely result emerges far = 1.3,¢ = 0.3 andp, = 0.8
- 1.9,€ — U. t — VU.O.

from that of PhoNet. The primary reason for this —_. .
P y Figure 2 shows the degree distribution of the

deviation in the results is that PhoNet exhibits t nod ¢ pl d PlaNet. Th
strong patterns of co-occurrences (Mukherjee gpnsonant nodes o aNgt and Flaet. - the
ean error between the two distributions is 0.04

al.2007a) and this fact is not taken into accoun imatel d is theref than th
by Model I. In order to circumvent the above 2PProxXimately and Is theretore worse than the re-

sult obtained from Model I. Nevertheless, the aver-
“Mean error is defined as the average difference betwedd€ clustering coefficient of PhoNgt in this case

the ordinate pairs (sayandy ) where the abscissas are equalis 0.85, which is within 4.5% of that of PhoNet.

In other words, if there aré&V such ordinate pairs then the Moreover, in this process the mean error between

mean error can be expressedgs‘w. the degree distribution of PhoNgt and PhoNet

N
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(as illustrated in Figure 2) has got reduced drasti = | .. .weorics sseained rom moseit

cally from 0.45 to 0.03. M3: Inventaries obtained from Modell
One can again find a possible association of thi '

model with the phenomena of language change.

a group of consonants largely co-occur in the lan £

guages of a generation of speakers then it is ver"g: o

likely that all of them get transmitted together in

the subsequent generations (Blevins, 2004). Th

triad formation probability ensures that if a pair of

consonant nodes become neighbors of each oth

in a particular step of the synthesis process the % © 2 » w0 s o 1

the choice of such a pair should be highly pre- Inventory Size

ferred in the subsequent steps of the process. This

is coherent with the aforementioned phenomendrigure 3: Average feature entropy of the invento-

of transmission of consonants in groups over linries of a particular size (y-axis) versus the inven-

guistic generations. Since the valuempfthat we tory size (x-axis).

obtain is quite high, it may be argued that such

transmissions are largely prevalent in nature. o
Although Model 1 reproduces the structuralmarked by a set of distinctive features. The attach-

properties of PlaNet and PhoNet quite accuratel)??ent _kemel in this case hf”‘s fwo components one
of which is preferential while the other favors the

as we shall see shortly, it fails to generate inven—h i t th ts that t alow f
tories that closely match the real ones in termg oice ot those consonants that aré at a low 1ea-

of feature entropy. However, at this point, recalfure distance (the number of feature positions they

that Model Il assumes that the consonant nodes aqgf[ert?]t) ?OT the dgl;eady (t:)h(t)sen ort1es. LetUs de;
unlabeled; therefore, the inventories that are pr(51—0 € Ihe lealure distance between two consonants

duced as a result of the synthesis are composed 0f andC; by D(Ci, C). We define theaffinity,
(Ci, C;), betweerC; andC; as

consonants, which unlike the real inventories, a
not marked by their distinctive features. In order , 1

to label thgm we perform the following, A(C;, C) = D(C;,C)) ®)

The Labeling Scheme:

1. Sort the consonants of UPSID in the decreasingherefore, the lower the feature distance between

order of their frequency of occurrence and call thi€; andC; the higher is the affinity between them.
list of consonantd.istC[1 - - - 541], At each time step a language node estab-
2. Sort theV: nodes of PlaNet,, in decreasing lishes the first connection with a consonant node
order of their degree and call this list of nodedsay C;) preferentially following the distribution
ListN|[1-- - 541], Pr(C;) like the previous models. The rest of
3. Vi<i<sa1 ListN[i] «— ListCli] the connections to any arbitrary consonant node

The Figure 3 indicates that the curve for the redf’s (N0t yet connected to the language node) are
inventories (R) and those obtained from Model fnade following the distributiofil — w) Pr(C;) +
(M2) are significantly different from each other.wPrass(Ci, C;), where
This difference arises due to the fact that in Model A(G; C’)
I, the choice of a consonant from the set of neigh- Prase(Ci, CZT) = ik 2
bors is solely degree-dependent, where the rela- Zvc; A(C;, C))
tionships between the features are not taken into
consideration. Therefore, in order to eliminate this?md.0 < WS 1 .

Simulation Results: We perform 100 different

problem, we introduce the model using the feature-. ) .
based kernel in the next section simulation runs of the above model for a particular

set of parameter values to obtain Plajygtand av-
erage the results over all of them. We explore dif-
ferent parameter settings in the range as follows:
In this model, we assume that each of the conser € [1,2] (in steps of 0.1)¢ € [0.1,1] (in steps
nant nodes are labeled, that is each of them aoé 0.1) andw € [0.1,0.5] (in steps of 0.05). The

R: Real Inventories

Average Fe
=S

M4: Inventories obtained from Model IV (seed of 30 languages)

IS

(6)

3.3 Model lll: Feature-based Kernel
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Results Modell Modelll Modellll Model IV
ME: DD of PlaNet & PlaNet,,,, 0.01 0.04 0.05 0.05

best result in terms of the structural properties of

PlaNet and PhoNet emerges for=1.6,¢ =0.3 ME: DD of PhoNet & PhoNe,, ~ 0.45 0.03 0.02 0.02
% Err: Clustering Coefficient 38.2 04.5 05.6 06.7
andw =0.2. ME: Avg. F of Real & Synth. Inv. 340 3.00 210 093
. 144 130 160 135
In this case, the mean error between the de- p 05 03 03 03
gree distribution curves for PlaNgt, and PlaNet m o2 % o

is 0.05 and that between of PholNgtand PhoNet
is 0.02. Furthermore, the clustering coefficient oflable 2: Important results obtained from each of
PhoNet,,, in this case is 0.84, which is within the_models. ME: Mean Error, DD: Degree Distri-
5.6% of that of PhoNet. The above results shoRution.

that the structural properties of the synthesized

networks in this case are quite similar to those The inventories that are produced as a result of
obtained through the triad model. Neverthelesgpe bootstrapping have an average feature entropy
the average feature entropy of the inventories prejoser to the real inventories (see curve M4 in Fig-
duced (see curve M3 in Figure 3) are more close {ge 3) than the earlier models. Hence, we find
that of the real ones now (for quantitative compariat this improved labeling strategy brings about
ison see Table 2). a global betterment in our results unlike in the pre-
Therefore, it turns out that the groups of convious cases. The larger the number of languages
sonants that largely co-occur in the languagessed for the purpose of bootstrapping the better are

of a linguistic generation are actually driven bythe results mainly in terms of the match in the fea-
the principle of feature economy (see (Clementgyre entropy curves.

2008; Mukherjee et al.2007a) for details).
However, note that even for Model Ill the nodes4 Conclusion

that are chosen for attachment in the initial stages

of the synthesis process are arbitrary and consé/¢ dedicated the preceding sections of this article
quently, the labels of the nodes of Plagtdo [© analyze and synthesize the consonant invento-
not have a one-to-one correspondence with that €S Of the world’s languages in the framework of a

PlaNet, which is the main reason behind the diffel€OmPplex network. Table 2 summarizes the results
ence in the result between them. In order to oveRbtained from the four models so that the reader

come this problem we can make use of a small s€&n easily compare them. Some of our important

of real inventories to bootstrap the model. observations are
e The distribution of occurrence and co-occurrence
3.4 Model IV: Feature-based Kernel and of consonants across languages roughly follow a
Bootstrapping power law,

. _ e The co-occurrence network of consonants has a
In order to create a bias towards the Iabellnq;arge clustering coefficient

scheme prevalent in PlaNet, we use 30 (around Groups of consonants that largely co-occur

10% of the) real languages as a seed (chosen rafsoq5 |anguages are driven by feature economy
domly) for Model Iil; i.e., they are used by the \hich can be expressed through feature entropy),
model for bootstrapping. The idea is summarizeg Each of the above properties emerges due to dif-

below. _ _ ferent reasons, which are successively unfurled by
1. Select 30 real inventories at random and COM5ur models

struct a PlaNet from them. Call this network the
initial PlaNet,,,.

2. The rest of the language nodes are incrementa
added to this initial PlaNe},, using Model Il1.

So far, we have tried to explain the physical sig-
Ir|1ificance of our models in terms of the process

language change. Language change is a col-
_ _ : lective phenomenon that functions at the level of
Simulation Results: The best fit now emerges population of speakers (Steels, 2000). Never-

ata = 1.35, ¢ = 0.3 andw N 9’15_' The mean er- theless, it is also possible to explain the signif-
ror between the degree distribution of PlaNet an%ance of the models at the level of an individ-

PlaNet,, is 0.05 and that between PhoNet anqjal, primarily in terms of the process of language

ﬁﬂomeg'y” S 005032.' ;Lhe CIUSte”.?r?. cge;(f)l/mep:hoi; acquisition, which largely governs the course of
ONet,, is 0.83 in this case (within 6.7% of tha language change. In the initial years of language

of PhoNet). development every child passes through a stage
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calledbabblingduring which he/she learns to pro-F. Hinskens and J. Weijer. 2003. Patterns of segmen-
duce non_meaningfu| sequences of consonants and&' modification in consonant inventories: A cross-
vowels, some of which are not even used in the linguistic study.Linguistics41(6), 1041-1084.
language to which they are exposed (JakobsoR, Jakobson. 1968.Child Language, Aphasia and
1968; Locke, 1983). Clear preferences can be Phonological UniversalsThe Hague: Mouton.
O_bserved for learning certalo squnds SUC.h a_ls pllql'. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A.
sives and nasals, whereas fricatives and liquids are| . Baratasi. 2000. The large-scale organization of
avoided. In fact, this hierarchy of preference dur- metabolic networksNature406651-654.

ing the babbling stage follows the Cross-linguisti%‘ Liliencrants and B. Lindblom. 1972. Numerical sim-

frequency distribution of the consonants. This in-"i5tion of vowel quality systems: the role of percep-
nate frequency dependent preference towards cer-tual contrastLanguage48, 839-862.

in phonemes migh f phonetic rea-
tain phonemes might be because of phonetic e%. Lindblom and |. Maddieson. 1988. Phonetic univer-

sons (i.e., for articulatory/perceptual benefits). In sals in consonant systemsanguage, Speech, and
all our models, this innate preference gets cap- Mind, 62-78, Routledge, London.

tured through the process of preferential attach-
ment. However, at the same time, in the context 01‘
learning a particular inventory the ease of learning
the individual consonants also plays an importarit Maddieson. 1984.Patterns of Sounds<Cambridge
role. The lower the number of new feature distinc- University Press, Cambridge.

tions to be learnt, the higher the ease of learning. mukherjee, M. Choudhury, A. Basu and N. Gan-
the consonant. Therefore, there are two orthogonal guly. 2007a. Modeling the co-occurrence principles
preferences: (a) the occurrence frequency depen—Of the consonant inventories: A complex network ap-
dent preference (that is innate), and (b) the feature- Proachint. Jour. of Mod. Phys. §(2), 281-295.
dependent preference (that increases the easeppfukherjee, M. Choudhury, A. Basu and N. Ganguly.
learning), which are instrumental in the acquisi- 2007b. Redundancy ratio: An invariant property of
tion of the inventories. The feature-based kernel is the consonant inventories of the world’s languages
essentially a linear combination of these two mu- Proceedings of ACLQZ04-111.

tually orthogonal factors. M. E. J. Newman. 2001. Scientific collaboration net-
works.Physical Review B4, 016131.

L. Locke. 1983. Phonological Acquisition and
Change Academic Press New York.

M. E. J. Newman. 2003. The structure and function of
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