
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 569–576
Manchester, August 2008

A Syntactic Time-Series Model for Parsing Fluent and Disfluent Speech ∗

Tim Miller
Department of Computer Science

and Engineering
University of Minnesota
tmill@cs.umn.edu

William Schuler
Department of Computer Science

and Engineering
University of Minnesota
schuler@cs.umn.edu

Abstract

This paper describes an incremental ap-
proach to parsing transcribed spontaneous
speech containing disfluencies with a Hier-
archical Hidden Markov Model (HHMM).
This model makes use of the right-corner
transform, which has been shown to in-
crease non-incremental parsing accuracy
on transcribed spontaneous speech (Miller
and Schuler, 2008), using trees trans-
formed in this manner to train the HHMM
parser. Not only do the representations
used in this model align with structure in
speech repairs, but as an HMM-like time-
series model, it can be directly integrated
into conventional speech recognition sys-
tems run on continuous streams of audio.
A system implementing this model is eval-
uated on the standard task of parsing the
Switchboard corpus, and achieves an im-
provement over the standard baseline prob-
abilistic CYK parser.

1 Introduction

Disfluency is one obstacle preventing speech
recognition systems from being able to recog-
nize spontaneous speech. Perhaps the most chal-
lenging aspect of disfluency recognition is the
phenomenon of speech repair, which involves a
speaker realizing a mistake, cutting off the flow
of speech, and then continuing on, possibly re-
tracing and replacing part of the utterance to that
point. This paper will describe a system which ap-
plies a syntactic model of speech repair to a time-

∗The authors would like to thank the anonymous review-
ers for their input. This research was supported by National
Science Foundation CAREER/PECASE award 0447685. The
views expressed are not necessarily endorsed by the sponsors.

∗c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

series parsing model, and evaluate that system on
the standard Switchboard corpus parsing task.

The speech repair terminology used here fol-
lows that of Shriberg (1994). A speech repair con-
sists of areparandum, an interruption point, and
thealteration. The reparandum contains the words
that the speaker means to replace, including both
words that are in error and words that will be re-
traced. The interruption point is the point in time
where the stream of speech is actually stopped, and
the repairing of the mistake can begin. The alter-
ation contains the words that are meant to replace
the words in the reparandum.

2 Background

Historically, research in speech repair has focused
on acoustic cues such as pauses and prosodic con-
tours for detecting repairs, which could then be ex-
cised from the text for improved transcription. Re-
cent work has also looked at the possible contribu-
tion of higher-level cues, including syntactic struc-
ture, in the detection of speech repair. Some of this
work is inspired by Levelt’s (1983) investigation of
the syntactic and semantic variables in speech re-
pairs, particularly his well-formedness rule, which
states that the reparandum and alteration of a repair
typically have the same consitituent label, similar
to coordination.

Hale et al. (2006) use Levelt’s well-formedness
rule to justify an annotation scheme where unfin-
ished categories (marked X-UNF) have the UNF
label appended to all ancestral category labels
all the way up to the top-most constituent be-
neath an EDITED label (EDITED labels denoting
a reparandum). They reason that this should pre-
vent grammar rules of finished constituents in the
corpus from corrupting the grammar of unfinished
constituents. While this annotation proves helpful,
it also leads to the unfortunate result that a large
reparandum requires several special repair rules to
be applied, even though the actual error is only

569

happening at one point.

Intuitively, though, it seems that an error is only
occurring at the end of the reparandum, and that
until that point only fluent grammar rules are be-
ing applied by the speaker. This intuition has also
been confirmed by empirical studies (Nakatani and
Hirschberg, 1994), which show that there is no ob-
vious error signal in speech up until the moment of
interruption. Although speakers may retrace much
of the reparandum for clarity or other reasons, ide-
ally the reparandum contains nothing but standard
grammatical rules until the speech is interrupted.1

Another recent approach to this problem (John-
son and Charniak, 2004) uses a tree-adjoining
grammar (TAG) approach to define a mapping be-
tween a source sentence possibly containing a re-
pair, and a target, fluent sentence. The use of
the TAG channel model is justified by the putative
crossing dependencies seen in repairs like. . . a
flight to Boston, uh, I mean, to Denver. . .where
there is repetition from the reparandum to the re-
pair. Essentially, this model is building up the
reparandum and alteration in tandem, based on
these crossing dependencies. While this is an inter-
esting model, it focuses on detection and removal
of EDITED sections, and subsequent parsing of
cleaned up speech. As such, it introduces chal-
lenges for integrating the system into a real-time
speech recognizer.

Recent work by Miller and Schuler (2008)
showed how a probabilistic grammar trained on
trees modified by use of theright-corner transform
can improve parsing accuracy over an unmodified
grammar when tested on the Switchboard corpus.
The approach described here builds on that work in
using right-corner transformed trees, and extends it
by mapping them to a time-series model to do pars-
ing directly in a model of the sort used in speech
recognition. This system is shown to be more ac-
curate than a baseline CYK parser when used to
parse the Switchboard corpus. The remainder of
this section will review the right-corner transform,
followed by Section 3, which will step through an
extended example giving details about the trans-
form process and its applicability to the problem
of processing speech repairs.

1One objection to this claim is the case of multiple nested
repairs. In this case, though, we presume that all reparanda
were originally intended by the speaker to be fluent at the time
of generation.

2.1 Right-corner transform

The right-corner transform rewrites syntax trees,
turning all right branching structure into left
branching structure, and leaving left branching
structure as is. As a result, constituent structure
can be explicitly built from the bottom up dur-
ing incremental recognition. This arrangement is
well-suited to recognition of speech with errors,
because it allows constituent structure to be built
up using fluent speech rules until the moment of
interruption, at which point a special repair rule
may be applied.

Before transforming the trees in the gram-
mar into right-corner trees, trees are binarized in
the same manner as Johnson (1998b) and Klein
and Manning (2003).2 Binarized trees are then
transformed into right-corner trees using trans-
form rules similar to those described by John-
son (1998a). In this transform, all right branch-
ing sequences in each tree are transformed into
left branching sequences of symbols of the form
A1/A2, denoting an incomplete instance of cate-
gory A1 lacking an instance of categoryA2 to the
right.3

Rewrite rules for the right-corner transform are
shown below, first flattening right-branching struc-
ture:

A1

α1 A2

α2 A3

a3

⇒

A1

A1/A2

α1

A2/A3

α2

A3

a3

A1

α1 A2

A2/A3

α2

. . .
⇒

A1

A1/A2

α1

A2/A3

α2

. . .

then replacing it with left-branching structure:

A1

A1/A2:α1 A2/A3

α2

. . . ⇒

A1

A1/A3

A1/A2:α1 α2

. . .

Here, the first two rewrite rules are applied iter-
atively (bottom-up on the tree) to flatten all right
branching structure, using incomplete constituents

2For the details of the particular binarization process used
here, see Miller and Schuler (2008).

3Here, allAi denote nonterminal symbols, and allαi de-
note subtrees; the notationA1:α1 indicates a subtreeα1 with
labelA1; and all rewrites are applied recursively, from leaves
to root.

570

to record the original nonterminal ordering. The
third rule is then applied to generate left branching
structure, preserving this ordering.

Because this process turns right expansion into
left expansion (leaving center expansion as the
only stack consumer), right-corner transformed
trees also require less stack memory than ordi-
nary phrase structure trees. This key property of
the right-corner transform is exploited in the map-
ping of transformed training trees to a time-series
model. This property will be examined further in
Section 5.

3 Speech Repair Example

A substantial example of a speech repair from the
Switchboard corpus can be seen in Figures 1 and 2,
in which the same repair and surrounding context
is shown after the preliminary binarization pro-
cess, and after the right-corner transform. Fig-
ure 1 also shows, in brackets, the augmented an-
notation described above from Hale et al. (2006).
This scheme consisted of adding -X to an EDITED
label which produced a category X (daughter an-
notation), as well as propagating the -UNF label at
the right corner of the tree up through every parent
below the EDITED root.

3.1 Re-annotation of speech repair

Before applying the right-corner transform, some
corpus pre-processing steps are applied — Fig-
ure 1 shows an example tree after these changes.
These steps aim to improve on the default annota-
tion of repair in the Switchboard corpus by mak-
ing the representation more in line with linguistic
as well as processing desiderata.

The standard annotation practice of having the
EDITED label as the category at the root of a
reparandum does not represent any proposed lin-
guistic phenomenon, and it conflates speech re-
pairs of different categories. As a result, the parser
is unable to make use of information about which
syntactic category the reparandum was originally
intended to be. This information would be useful
in the example discussed here, since an unfinished
NP is followed by a completed NP. The daughter
annotation used by Hale et al. fixes this annota-
tion to allow the parser to have access to this infor-
mation. The annotation scheme in this paper also
makes use of the daughter annotation.

In addition, trees are modified to reduce the ar-
ity of speech repair rules, and to change the model

of how repairs occur. The default Switchboard
has, e.g. an NP reparandum (headed by EDITED)
and the NP alteration represented as siblings in the
syntax tree. This annotation seems to implicitly
model all repairs as stopping the process of pro-
ducing the current constituent, then starting a new
one. In contrast, the representation here models re-
pairs of this type as a speaker generating a partial
noun phrase, realizing an error, and then continu-
ing to generatethe same noun phrase. This rep-
resentation scheme thus represents the beginning
of an effort to distinguish between repairs that are
changing the direction of the utterance and those
that are just fixing a local mistake.

3.2 Right-corner transform model of speech
repair

The right corner transform is then applied to this
example in Figure 2. The resulting tree represen-
tation is especially valuable because it models hu-
man production of speech repairs well, by not ap-
plying any special rule until the moment of inter-
ruption.

In the example in Figure 1, there is an unfinished
constituent (PP-UNF) at the end of the reparan-
dum. This standard annotation is deficient because
even if an unfinished consituent like PP-UNF is
correctly recognized, and the speaker is essentially
in an error state, there may be several partially
completed constituents above — in Figure 1, the
NP, PP, and NP above the PP-UNF. These con-
stituents need to be completed, but using the stan-
dard annotation there is only one chance to make
use of the information about the error that has oc-
curred — the ‘NP→ NP PP-UNF’ rule. Thus, by
the time the error section is completed, there is no
information by which a parsing algorithm could
choose to reduce the topmost NP to EDITED (or
EDITED-NP) other than independent rule proba-
bilities.

The approach used by Hale et al. (2006) works
because the information about the transition to an
“error state” is propagated up the tree, in the form
of the -UNF tags. As the parsing chart is filled
in from the bottom up, each rule applied is essen-
tially coming out of a special repair rule set, and
so at the top of the tree the EDITED hypothesis is
much more likely. However, this requires that sev-
eral fluent speech rules from the data set be modi-
fied for use in a special repair grammar, which not
only reduces the amount of available training data,

571

S

NP

CC

and

NP

EDITED-NP

NP

DT

the

NN

JJ

first

NN

kind

PP[-UNF]

IN

of

NP[-UNF]

NP

invasion

PP-UNF

of

NP

NP

DT

the

NN

JJ

first

NN

type

PP

IN

of

NP

privacy

VP

. . .

Figure 1: Binarized tree repair structure, with the -UNF propagation as in Hale et al. (2006) shown in
brackets.

S/VP

S/VP

S/S

CC

and

NP

NP/NP

NP/PP

NP/NP

EDITED-NP

NP/PP

NP/NP

NP/PP

NP

NP/NN

NP/NN

DT

the

JJ

first

NN

kind

IN

of

NP

invasion

PP-UNF

of

NP

NP/NN

NP/NN

DT

the

JJ

first

NN

type

IN

of

NP

privacy

VBD

. . .

Figure 2: Right-corner transformed tree with repair structure

but violates our intuition that reparanda are usually
fluent up until the actual edit occurs.

The right corner transform works in a different
way, by building up constituent structure from left
to right. In Figure 2, the same repair is shown
as it appears in the training data for this system.
With this representation, the problem noticed by
Hale and colleagues has been solved in a different
way, by incrementally building upleft-branching
rather than right-branching structure, so that only
a single special error rule is required at the end of
the constituent. As seen in the figure, all of the
structure beneath the EDITED-NP label is built us-
ing rules from the fluent grammar. It is only at
one point, when the PP-UNF is found, that a re-
pair rule is applied and the EDITED-NP section is
found. The next step in the process is that the NP
essentially restarts (the NP/NP label), and the sub-
sequent words start to build up what will be the NP
alteration in a fluent manner.

To summarize, while the -UNF propagation
scheme often requires the entire reparandum to
be generated from a speech repair rule set, this

scheme only requires one special rule, where the
moment of interruption actually occurred. This re-
duces the number of special speech repair rules
that need to be learned and saves more potential
examples of fluent speech rules, and therefore po-
tentially makes better use of limited data.

4 Mapping to an HHMM

This section describes how a corpus of trees trans-
formed as above can be mapped to a time-series
model called a Hierarchical Hidden Markov Model
(HHMM) in order to incorporate parsing into
speech decoding. This suggests that this approach
can be used in applications using streaming speech
input, unlike other parsing approaches which are
cubic time on input length at best, and require in-
put to be pre-segmented.

This section will begin by showing how HH-
MMs can model linguistic structure by extending
standard Hidden Markov Models (HMMs) used in
speech recognition, and will follow with a descrip-
tion of how right-corner transformed trees can be
mapped to this model topology.

572

4.1 Hierarchical HMMs

In general, the hidden state in an HMM can be as
simple or complex as necessary. This can include
factorizing the hidden state into any number of in-
terdependent random variables modeling the sub-
states of the complex hidden state. A Hierarchi-
cal Hidden Markov Model is essentially an HMM
with a specific factorization that is useful in many
domains — the hidden state at each time step is
factored intod random variables which function as
a stack, andd additional boolean random variables
which regulate the operations of the stack through
time. The boolean random variables are typically
marginalized out when performing inference on a
sequence.

While the vertical direction of the hidden sub-
states (at a fixedt) represents a stack at a sin-
gle point in time, the horizontal direction of the
hidden sub-states (at a fixedd) can be viewed as
simple HMMs at depthd, taking direction from
the HMM above them and controlling those be-
low them. This interpretation will be useful when
formally defining the transitions between the stack
elements at different time steps below.

Formally, HMMs characterize speech or text as
a sequence of hidden statesqt (which may con-
sist of speech sounds, words, and/or other hypoth-
esized syntactic or semantic information), and ob-
served statesot at corresponding time stepst (typ-
ically short, overlapping frames of an audio sig-
nal, or words or characters in a text processing
application). A most likely sequence of hidden
stateŝq1..T can then be hypothesized given any se-
quence of observed stateso1..T , using Bayes’ Law
(Equation 2) and Markov independence assump-
tions (Equation 3) to define a fullP(q1..T | o1..T)
probability as the product of aLanguage Model
(ΘL) prior probability and anObservation Model
(ΘO) likelihood probability:

q̂1..T = argmax
q1..T

P(q1..T | o1..T) (1)

= argmax
q1..T

P(q1..T) · P(o1..T | q1..T) (2)

def= argmax
q1..T

T∏
t=1

PΘL
(qt | qt-1)·PΘO

(ot | qt) (3)

Language model transitionsPΘL
(qt | qt−1) over

complex hidden statesqt can be modeled us-
ing synchronized levels of stacked-up compo-
nent HMMs in a Hierarchic Hidden Markov
Model (HHMM) (Murphy and Paskin, 2001).

HHMM transition probabilities are calculated in
two phases: a ‘reduce’ phase (resulting in an in-
termediate, marginalized stateft), in which com-
ponent HMMs may terminate; and a ‘shift’ phase
(resulting in a modeled stateqt), in which untermi-
nated HMMs transition, and terminated HMMs are
re-initialized from their parent HMMs. Variables
over intermediateft and modeledqt states are fac-
tored into sequences of depth-specific variables —
one for each ofD levels in the HMM hierarchy:

ft = 〈f1
t . . . fD

t 〉 (4)

qt = 〈q1
t . . . qD

t 〉 (5)

Transition probabilities are then calculated as a
product of transition probabilities at each level, us-
ing level-specific ‘reduce’ΘF and ‘shift’ ΘQ mod-
els:

PΘL
(qt|qt-1) =

∑
ft

P(ft|qt-1)·P(qt|ft qt-1) (6)

def=
∑
f1..D

t

D∏
d=1

PΘF(f
d
t | fd+1

t qd
t-1q

d-1
t-1)·

PΘQ(q
d
t |fd+1

t fd
t qd

t-1q
d-1
t) (7)

with fD+1
t andq0

t defined as constants.
Shift and reduce probabilities are now defined

in terms of finitely recursive FSAs with probabil-
ity distributions over transition, recursive expan-
sion, and final-state status of states at each hier-
archy level. In simple HHMMs, each interme-
diate state variable is a boolean switching vari-
ablefd

t ∈ {0,1} and each modeled state variable
is a syntactic, lexical, or phonetic stateqd

t . The
intermediate variablefd

t is true (equal to1) with
probability 1 if there is a transition at the level im-
mediately belowd and the stack elementqd

t−1 is a
final state, and false (equal to0) with probability 1
otherwise:4

PΘF(f
d
t | fd+1

t qd
t−1q

d−1
t−1) def={

if fd+1
t =0 : [fd

t =0]
if fd+1

t =1 : PΘF-Reduce(f
d
t | qd

t−1, q
d−1
t−1)

(8)

wherefD+1 = 1 andq0
t = ROOT.

Shift probabilities at each level are defined us-
ing level-specific transitionΘQ-Trans and expan-

4Here [·] is an indicator function:[φ] = 1 if φ is true,0
otherwise.

573

d=1

d=2

d=3

word

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13

and

the

first

kind

of

invasion

of

the

first

type

of

privacy

. . .

− − − − − − − − N
P/N

N

N
P/N

N

− −

− − N
P/N

N

N
P/N

N

N
P/PP

N
P/N

P

N
P/PP

N
P/N

P

N
P/N

P

N
P/N

P

N
P/PP

N
P/N

P

− S/S

S/S

S/S

S/S

S/S

S/S

S/S

S/S

S/S

S/S

S/S

S/VP

Figure 3: Sample tree from Figure 2 mapped toqd
t variable positions of an HHMM at each stack depthd

(vertical) and time stept (horizontal). Values for final-state variablesfd
t are not shown. Note that some

nonterminal labels have been omitted; labels for these nodes can be reconstructed from their children.
This includes the EDITED-NP nonterminal that occurs as a child of the NP/NPat t=8,d=2, indicated in
boldface.

sionΘQ-Expandmodels:

PΘQ(qd
t | fd+1

t fd
t qd

t−1q
d−1
t) def=

if fd+1
t =0, fd

t =0 : [qd
t = qd

t−1]
if fd+1

t =1, fd
t =0 : PΘQ-Trans(q

d
t | qd

t−1q
d−1
t)

if fd+1
t =1, fd

t =1 : PΘQ-Expand(q
d
t | qd−1

t)
(9)

wherefD+1 = 1 andq0
t = ROOT. This model

is conditioned on final-state switching variables at
and immediately below the current HHMM level.
If there is no final state immediately below the
current level (the first case above), it determinis-
tically copies the current HHMM state forward to
the next time step. If there is a final state imme-
diately below the current level (the second case
above), it transitions the HHMM state at the cur-
rent level, according to the distributionΘQ-Trans.
And if the state at the current level is final (the
third case above), it re-initializes this state given
the state at the level above, according to the distri-
butionΘQ-Expand. The overall effect is that higher-
level HMMs are allowed to transition only when
lower-level HMMs terminate. An HHMM there-
fore behaves like a probabilistic implementation of
a pushdown automaton (or ‘shift-reduce’ parser)
with a finite stack, where the maximum stack depth
is equal to the number of levels in the HHMM hi-
erarchy.

4.2 Mapping trees to HHMM derivations

Any tree can now be mapped to an HHMM deriva-
tion by aligning the nonterminals withqd

t cate-
gories. First, it is necessary to define rightward
depthd, right index positiont, and final (right)
child statusf , for every nonterminal nodeA in a
tree, where:

• d is defined to be the number of right branches
between nodeA and the root,

• t is defined to be the number of words beneath
or to the left of nodeA, and

• f is defined to be0 if node A is a left (or
unary) child,1 otherwise.

Any binary-branching tree can then be annotated
with these values and rewritten to define labels and
final-state values for every combination ofd andt
covered by the tree. This process simply copies
stacked up constituents over multiple time steps,
while other constituents are being recognized. Co-
ordinatesd, t ≤ D, T that are not covered by the
tree are assigned label ‘−’, andf = 1. The result-
ing label and final-state values at each node now
define a value ofqd

t andfd
t+1 for each depthd and

time stept of the HHMM (see Figure 3). Prob-
abilities for HHMM modelsΘQ-Expand, ΘQ-Trans,
andΘF-Reducecan then be estimated from these val-
ues directly. Like the right-corner transform, this
mapping is reversible, soq and f values can be
taken from a hypothesized most likely sequence
and mapped back to trees (which can then undergo
the reverse of the right-corner transform to become
ordinary phrase structure trees).

5 HHMM Application to Speech Repair

While the HHMM parser described above can pro-
duce the same output as a standard probablistic
CYK parser (the most likely parse tree), the differ-
ent parsing strategy of an HHMM parser and the
close connection of this system with a probabilis-
tic model of semantics present potential benefits to
the recognition of disfluent speech.

574

First, by using a depth-limited stack, this model
better adheres to psycholinguistically observed
short term memory limits that the human parser
and generator are likely to obey (Cowan, 2001;
Miller, 1956). The use of a depth-limited stack
is enabled by the right-corner transform’s prop-
erty of transforming right expansions to left ex-
pansions, which minimizes stack usage. Corpus
studies (Schuler et al., 2008) suggest that broad
coverage parsing can be achieved via this trans-
form using only four stack elements. In practical
terms this means that the model is less likely than
a standard CYK parser to spend time and probabil-
ity mass on analyses that conflict with the memory
limits humans appear to be constrained by when
generating and understanding speech.

Second, this model is part of a more general
framework that incorporates a model of referential
semantics into the parsing model of the HHMM
(Schuler et al., in press). While the framework
evaluated in this paper models only the syntactic
contribution to speech repair, there are some cases
where syntactic cues are not sufficient to distin-
guish disfluent from fluent utterances. In many
of these cases, semantic information is the only
way to tell that an utterance contains a repair.5 A
recognition system that incorporates referential se-
mantics with syntax should improve the accuracy
of speech repair recognition as it has been shown
to increase recognition of entities in fluent speech
recognition.

Finally, the semantic model just described, as
well as the mechanics of the HHMM parser on
a right-corner transformed grammar, combine to
form a model that accounts for two previously
distant aspects of speech processing: referential
semantics and speech repair. From the genera-
tive view of language processing, the model starts
with a desired referent, and based on that refer-
ent selects the appropriate syntactic structures, and
within those it selects the appropriate lexical items
to unambiguously describe the referent. In the se-
mantic sense, then, the model is operating in a
top-down fashion, with the referent being the driv-
ing force for the generation of syntax and words.
However, since the model is also working in a left-

5For example, the sentence “The red. . . uh. . . blue box” is
more likely to be considered a repair in a context with sin-
gle colored boxes, whereas the sentence “The big. . . uh. . . blue
box” is less likely to be considered a repair in the same con-
text, although the two sentences have the same syntactic struc-
ture.

to-right fashion on a highly left-branching gram-
mar, there is also a bottom-up composition of con-
stituents, which models the phenomenon of speech
repair naturally and accurately.

6 Evaluation

The evaluation of this system was performed on
the Switchboard corpus of transcribed conversa-
tional speech, using themrgannotations in directo-
ries 2 and 3 for training, and the files sw4004.mrg
to sw4153.mrg in directory 4 for evaluation, fol-
lowing Johnson and Charniak (2004). In addition
to testing the HHMM parser on the Switchboard
corpus, the experiment testing a CYK parser from
Miller and Schuler (2008) was replicated, with
slightly better results due to a change in the evalu-
ation script6 and small changes in the binarization
process (both of these changes affect the baseline
and test systems).

The input to the system consists of the terminal
symbols from the trees in the corpus section men-
tioned above. The terminal symbol strings are first
pre-processed by stripping punctuation and empty
categories, which could not be expected from the
output of a speech recognizer. In addition, any in-
formation about repair is stripped from the input,
including partial words, repair symbols,7 and in-
terruption point information. While an integrated
system for processing and parsing speech may use
both acoustic and syntactic information to find re-
pairs, and thus may have access to some of this
information about where interruptions occur, this
testing paradigm is intended to evaluate the use of
the right-corner transform in a time-series model
on parsing speech repair. To make a fair compari-
son to the CYK baseline of Hale et al. (2006), the
recognizer was given correct part-of-speech tags as
input along with words.

The results presented here use two standard met-
rics for assessing accuracy of transcribed speech
with repairs. The first metric, Parseval F-measure,
takes into account precision and recall of all non-
terminal (and non pre-terminal) constituents in a
hypothesized tree relative to the gold standard. The
second metric, EDIT-finding F, measures precision
and recall of the words tagged as EDITED in the
hypothesized tree relative to those tagged EDITED

6Specifically, we switched to using the evalb tool created
by Sekine and Collins (1997).

7The Switchboard corpus has special terminal symbols in-
dicating e.g. the start and end of the reparandum.

575

in the gold standard. F score is defined as usual,
2pr/(p + r) for precisionp and recallr.

Table 1 below shows the results of experiments
using the model of speech repair described in this
paper. The ‘Baseline’ result shows the accuracy of
the binarized grammar at parsing the Switchboard
test set. The ’RCT’ result shows the accuracy
of parsing when the right-corner transform is per-
formed on the trees in the training set prior to train-
ing. Finally, the ’HHMM+RCT’ results shows the
accuracy of the HHMM parser system described
in this paper, trained on right-corner trees mapped
to the random variables at each time step. ‘CYK’
and ‘TAG’ lines show relevant results from related
work.

System Parseval F EDIT F
Baseline 63.43 41.82
CYK (H06) 71.16 41.7
RCT 73.21 61.03
HHMM+RCT 77.15 68.03
TAG-based model (JC04) – 79.7

Table 1: Summary of results.

These results show an improvement over the
standard CYK parsing algorithm, in both overall
parsing accuracy and EDIT-finding accuracy. This
shows that the HHMM parser, which is more ap-
plicable to speech input due to its asymptotic linear
time complexity, does not need to sacrifice any ac-
curacy to do so, and indeed improves on accuracy
for both metrics under consideration.

7 Conclusion

The work described here has extended previous
work for recognizing disfluent speech to an incre-
mental model, moving in a direction that holds
promise for eventual direct implementation in a
speech recognizer.

Extending this model to actual speech adds
some complexity, since disfluency phenomena are
difficult to detect in an audio signal. However,
there are also advantages in this extension, since
the extra phonological variables and acoustic ob-
servations contain information that can be useful
in the recognition of disfluency phenomena.

References

Cowan, Nelson. 2001. The magical number 4 in short-
term memory: A reconsideration of mental storage
capacity. Behavioral and Brain Sciences, 24:87–
185.

Hale, John, Izhak Shafran, Lisa Yung, Bonnie Dorr,
Mary Harper, Anna Krasnyanskaya, Matthew Lease,
Yang Liu, Brian Roark, Matthew Snover, and Robin
Stewart. 2006. PCFGs with syntactic and prosodic
indicators of speech repairs. InProceedings of the
45th Annual Conference of the Association for Com-
putational Linguistics (COLING-ACL).

Johnson, Mark and Eugene Charniak. 2004. A tag-
based noisy channel model of speech repairs. InPro-
ceedings of the 42nd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL ’04), pages
33–39, Barcelona, Spain.

Johnson, Mark. 1998a. Finite state approximation of
constraint-based grammars using left-corner gram-
mar transforms. InProceedings of COLING/ACL,
pages 619–623.

Johnson, Mark. 1998b. PCFG models of linguistic tree
representation.Computational Linguistics, 24:613–
632.

Klein, Dan and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. InProceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430.

Levelt, William J.M. 1983. Monitoring and self-repair
in speech.Cognition, 14:41–104.

Miller, Tim and William Schuler. 2008. A unified syn-
tactic model for parsing fluent and disfluent speech.
In Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics (ACL ’08).

Miller, George A. 1956. The magical number seven,
plus or minus two: Some limits on our capacity
for processing information.Psychological Review,
63:81–97.

Murphy, Kevin P. and Mark A. Paskin. 2001. Lin-
ear time inference in hierarchical HMMs. InProc.
NIPS, pages 833–840.

Nakatani, C. and J. Hirschberg. 1994. A corpus-based
study of repair cues in spontaneous speech.The
Journal of the Acoustic Society of America, 95:1603–
1616.

Schuler, William, Samir AbdelRahman, Tim
Miller, and Lane Schwartz. 2008. Toward a
psycholinguistically-motivated model of language.
In Proceedings of COLING, Manchester, UK.

Schuler, William, Stephen Wu, and Lane Schwartz. in
press. A framework for fast incremental interpre-
tation during speech decoding.Computational Lin-
guistics.

Sekine, Satoshi and Michael Collins. 1997. Evalb
bracket scoring program.

Shriberg, Elizabeth. 1994.Preliminaries to a Theory
of Speech Disfluencies. Ph.D. thesis, University of
California at Berkeley.

576

