
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 561–568
Manchester, August 2008

When is Self-Training Effective for Parsing?

David McClosky, Eugene Charniak, and Mark Johnson
Brown Laboratory for Linguistic Information Processing (BLLIP)

Brown University
Providence, RI 02912

{dmcc|ec|mj}@cs.brown.edu

Abstract

Self-training has been shown capable of
improving on state-of-the-art parser per-
formance (McClosky et al., 2006) despite
the conventional wisdom on the matter and
several studies to the contrary (Charniak,
1997; Steedman et al., 2003). However, it
has remained unclear when and why self-
training is helpful. In this paper, we test
four hypotheses (namely, presence of a
phase transition, impact of search errors,
value of non-generative reranker features,
and effects of unknown words). From
these experiments, we gain a better un-
derstanding of why self-training works for
parsing. Since improvements from self-
training are correlated with unknown bi-
grams and biheads but not unknown words,
the benefit of self-training appears most in-
fluenced by seeing known words in new
combinations.

1 Introduction

Supervised statistical parsers attempt to capture
patterns of syntactic structure from a labeled set of
examples for the purpose of annotating new sen-
tences with their structure (Bod, 2003; Charniak
and Johnson, 2005; Collins and Koo, 2005; Petrov
et al., 2006; Titov and Henderson, 2007). These
annotations can be used by various higher-level ap-
plications such as semantic role labeling (Pradhan
et al., 2007) and machine translation (Yamada and
Knight, 2001).

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

However, labeled training data is expensive to
annotate. Given the large amount of unlabeled text
available for many domains and languages, tech-
niques which allow us to use both labeled and
unlabeled text to train our models are desirable.
These methods are called semi-supervised. Self-
training is a specific type of semi-supervised learn-
ing. In self-training, first we train a model on the
labeled data and use that model to label the unla-
beled data. From the combination of our original
labeled data and the newly labeled data, we train a
second model – our self-trained model. The pro-
cess can be iterated, where the self-trained model
is used to label new data in the next iteration. One
can think of self-training as a simple case of co-
training (Blum and Mitchell, 1998) using a single
learner instead of several. Alternatively, one can
think of it as one step of the Viterbi EM algorithm.

Studies prior to McClosky et al. (2006) failed to
show a benefit to parsing from self-training (Char-
niak, 1997; Steedman et al., 2003). While the re-
cent success of self-training has demonstrated its
merit, it remains unclear why self-training helps in
some cases but not others. Our goal is to better un-
derstand when and why self-training is beneficial.

In Section 2, we discuss the previous applica-
tions of self-training to parsing. Section 3 de-
scribes our experimental setup. We present and
test four hypotheses of why self-training helps in
Section 4 and conclude with discussion and future
work in Section 5.

2 Previous Work

To our knowledge, the first reported uses of self-
training for parsing are by Charniak (1997). He
used his parser trained on the Wall Street Journal
(WSJ, Mitch Marcus et al. (1993)) to parse 30 mil-
lion words of unparsedWSJ text. He then trained

561

a self-trained model from the combination of the
newly parsed text withWSJ training data. How-
ever, the self-trained model did not improve on the
original model.

Self-training and co-training were subsequently
investigated in the 2002 CLSP Summer Work-
shop at Johns Hopkins University (Steedman et
al., 2003). They considered several different pa-
rameter settings, but in all cases, the number of
sentences parsed per iteration of self-training was
relatively small (30 sentences). They performed
many iterations of self-training. The largest seed
size (amount of labeled training data) they used
was 10,000 sentences fromWSJ, though many ex-
periments used only 500 or 1,000 sentences. They
found that under these parameters, self-training did
not yield a significant gain.

Reichart and Rappoport (2007) showed that one
can self-train with only a generative parser if the
seed size is small. The conditions are similar to
Steedman et al. (2003), but only one iteration of
self-training is performed (i.e. all unlabeled data is
labeled at once).1 In this scenario, unknown words
(words seen in the unlabeled data but not in train-
ing) were a useful predictor of when self-training
improves performance.

McClosky et al. (2006) showed that self-training
improves parsing accuracy when the two-stage
Charniak and Johnson (2005) reranking parser is
used. Using both stages (a generative parser and
discriminative reranker) to label the unlabeled data
set is necessary to improve performance. Only re-
training the first stage had a positive effect. How-
ever, after retraining the first stage, both stages pro-
duced better parses. Unlike Steedman et al. (2003),
the training seed size is large and only one itera-
tion of self-training is performed. Error analysis
revealed that most improvement comes from sen-
tences with lengths between 20 and 40 words. Sur-
prisingly, improvements were also correlated with
the number of conjunctions but not with the num-
ber of unknown words in the sentence.

To summarize, several factors have been iden-
tified as good predictors of when self-training im-
proves performance, but a full explanation of why
self-training works is lacking. Previous work es-
tablishes that parsing all unlabeled sentences at
once (rather than over many iterations) is impor-
tant for successful self-training. The full effect of

1Performing multiple iterations presumably fails because
the parsing models become increasingly biased. However,
this remains untested in the large seed case.

seed size and the reranker on self-training is not
well understood.

3 Experimental Setup

We use the Charniak and Johnson reranking parser
(outlined below), though we expect many of these
results to generalize to other generative parsers
and discriminative rerankers. Our corpora consist
of WSJ for labeled data andNANC (North Amer-
ican News Text Corpus, Graff (1995)) for unla-
beled data. We use the standardWSJ division for
parsing: sections 2-21 for training (39,382 sen-
tences) and section 24 for development (1,346 sen-
tences). Given self-training’s varied performance
in the past, many of our experiments use the con-
catenation of sections 1, 22, and 24 (5,039 sen-
tences) rather than the standard development set
for more robust testing.

A full description of the reranking parser can be
found in Charniak and Johnson (2005). Briefly
put, the reranking parser consists of two stages:
A generative lexicalized PCFG parser which pro-
poses a list of then most probable parses (n-best
list) followed by a discriminative reranker which
reorders then-best list. The reranker uses about
1.3 million features to help score the trees, the
most important of which is the first stage parser’s
probability. In Section 4.3, we mention two classes
of reranker features in more depth. Since some of
experiments rely on details of the first stage parser,
we present a summary of the parsing model.

3.1 The Parsing Model

The parsing model assigns a probability to a parse
π by a top-down process of considering each con-
stituentc in π and, for eachc, first guessing the
preterminal ofc, t(c) then the lexical head ofc,
h(c), and then the expansion ofc into further con-
stituentse(c). Thus the probability of a parse is
given by the equation

p(π) =
∏
c∈π

p(t(c) | l(c),R(c))

·p(h(c) | t(c), l(c),R(c))
·p(e(c) | l(c), t(c), h(c),R(c))

where l(c) is the label ofc (e.g., whether it is a
noun phrase (np), verb phrase, etc.) andR(c) is
the relevant history ofc —- information outsidec
that the probability model deems important in de-
termining the probability in question.

562

For each expansione(c) we distinguish one of
the children as the “middle” childM(c). M(c) is
the constituent from which the head lexical item
h is obtained according to deterministic rules that
pick the head of a constituent from among the
heads of its children. To the left ofM is a sequence
of one or more left labelsLi(c) including the spe-
cial termination symbol△ and similarly for the la-
bels to the right,Ri(c). Thus an expansione(c)
looks like:

l →△Lm...L1MR1...Rn△. (1)

The expansion is generated by guessing firstM ,
then in orderL1 throughLm+1 (= △), and simi-
larly for R1 throughRn+1.

So the parser assigns a probability to the parse
based upon five probability distributions,T (the
part of speech of the head),H (the head),M (the
child constituent which includes the head),L (chil-
dren to the left ofM), andR (children to the right
of M).

4 Testing the Four Hypotheses

The question of why self-training helps in some
cases (McClosky et al., 2006; Reichart and Rap-
poport, 2007) but not others (Charniak, 1997;
Steedman et al., 2003) has inspired various the-
ories. We investigate four of these to better un-
derstand when and why self-training helps. At
a high level, the hypotheses are (1) self-training
helps after a phase transition, (2) self-training re-
duces search errors, (3) specific classes of reranker
features are needed for self-training, and (4) self-
training improves because we see new combina-
tions of words.

4.1 Phase Transition

The phase transition hypothesis is that once a
parser has achieved a certain threshold of perfor-
mance, it can label data sufficiently accurately.
Once this happens, the labels will be “good
enough” for self-training.

To test the phase transition hypothesis, we use
the same parser as McClosky et al. (2006) but train
on only a fraction ofWSJ to see if self-training is
still helpful. This is similar to some of the ex-
periments by Reichart and Rappoport (2007) but
with the use of a reranker and slightly larger seed
sizes. The self-training protocol is the same as
in (Charniak, 1997; McClosky et al., 2006; Re-
ichart and Rappoport, 2007): we parse the entire

unlabeled corpus in one iteration. We start by tak-
ing a random subset of theWSJ training sections
(2-21), accepting each sentence with 10% proba-
bility. With the sampled training section and the
standard development data, we train a parser and a
reranker. In Table 1, we show the performance of
the parser with and without the reranker. For ref-
erence, we show the performance when using the
complete training division as well. Unsurprisingly,
both metrics drop as we decrease the amount of
training data. These scores represent our baselines
for this experiment.

Using this parser model, we parse one million
sentences fromNANC, both with and without the
reranker. We combine these one million sentences
with the sampled subsets ofWSJ training and train
new parser models from them.2

Finally, we evaluate these self-trained models
(Table 2). The numbers in parentheses indicate the
change from the corresponding non-self-trained
model. As in Reichart and Rappoport (2007), we
see large improvements when self-training on a
small seed size (10%) without using the reranker.
However, using the reranker to parse the self-
training and/or evaluation sentences further im-
proves results. From McClosky et al. (2006), we
know that when 100% of the training data is used,
self-training does not improve performance with-
out a reranker.

From this we conclude that there is no such
threshold phase transition in this case. High per-
formance is not a requirement to successfully use
self-training for parsing, since there are lower per-
forming parsers which can self-train and higher
performing parsers which cannot. The higher per-
forming Charniak and Johnson (2005) parser with-
out reranker achieves anf -score of 89.0 on section
24 when trained on all ofWSJ. This parser does
not benefit from self-training unless paired with a
reranker. Contrast this with the same parser trained
on only 10% ofWSJ, where it gets anf -score of
85.8 (Table 2) or the small seed models of Reichart
and Rappoport (2007). Both of these lower per-
forming parsers can successfully self-train. Ad-
ditionally, we now know that while a reranker is
not required for self-training when the seed size is
small, it still helps performance considerably (f -
score improves from 87.7 to 89.0 in the 10% case).

2We do not weight the originalWSJ data, though our ex-
pectation is that performance would improve ifWSJ were
given a higher relative weight. This is left as future work.

563

% WSJ # sentences Parserf -score Reranking parserf -score
10 3,995 85.8 87.0
100 39,832 89.9 91.5

Table 1: Parser and reranking parser performance on sentences≤ 100 words in sections 1, 22, and 24
when trained on different amounts of training data. %WSJ is the percentage ofWSJ training data trained
on (sampled randomly). Note that the full amount of development data is still used as held out data.

ParsedNANC with reranker? Parserf -score Reranking parserf -score
No 87.7 (+1.9) 88.7 (+1.7)
Yes 88.4 (+2.6) 89.0 (+2.0)

Table 2: Effect of self-training using only 10% ofWSJas labeled data. The parser model is trained from
one million parsed sentences fromNANC + WSJ training. The first column indicates whether the million
NANC sentences were parsed by the parser or reranking parser. Thesecond and third columns differ in
whether the reranker is used to parse thetest sentences (WSJsections 1, 22, and 24, sentences 100 words
and shorter). Numbers in parentheses are the improvements over the corresponding non-self-trained
parser.

4.2 Search Errors

Another possible explanation of self-training’s im-
provements is that seeing newly labeled data re-
sults in fewer search errors (Daniel Marcu, per-
sonal communication). A search error would in-
dicate that the parsing model could have produced
better (more probable) parses if not for heuristics
in the search procedure. The additional parse trees
may help produce sharper distributions and reduce
data sparsity, making the search process easier. To
test this, first we present some statistics on then-
best lists (n = 50) from the baselineWSJ trained
parser and self-trained model3 from McClosky et
al. (2006). We use each model to parse sentences
from held-out data (sections 1, 22, and 24) and ex-
amine then-best lists.

We compute statistics of theWSJ and self-
trained n-best lists with the goal of understand-
ing how much they intersect and whether there are
search errors. On average, then-best lists over-
lap by 66.0%. Put another way, this means that
about a third of the parses from each model are
unique, so the parsers do find a fair number of dif-
ferent parses in their search. The next question
is where the differences in then-best lists lie —
if all the differences were near the bottom, this
would be less meaningful. LetW and S repre-
sent then-best lists from the baselineWSJand self-
trained parsers, respectively. Thetopm(ℓ) func-
tion returns the highest scoring parse in then-best
list ℓ according to the reranker and parser model

3http://bllip.cs.brown.edu/selftraining/

m.4 Almost 40% of the time, the top parse in
the self-trained model is not in theWSJ model’s
n-best list, (tops(S) /∈ W) though the two mod-
els agree on the top parse roughly 42.4% of the
time (tops(S) = topw(W)). Search errors can
be formulated astops(S) /∈ W ∧ tops(S) =
topw(W ∪ S). This captures sentences where the
parse that the reranker chose in the self-trained
model is not present in theWSJmodel’sn-best list,
but if the parse were added to theWSJmodel’s list,
the parse’s probability in theWSJ model and other
reranker features would have caused it to be cho-
sen. These search errors occur in only 2.5% of
the n-best lists. At first glance, one might think
that this could be enough to account for the differ-
ences, since the self-trained model is only several
tenths better inf -score. However, we know from
McClosky et al. (2006) that on average, parses do
not change between theWSJand self-trained mod-
els and when they do, they only improve slightly
more than half the time. For this reason, we run a
second test more focused on performance.

For our second test we help theWSJ trained
model find the parses that the self-trained model
found. For each sentence, we start with then-best
list (n = 500 here) from theWSJ trained parser,
W . We then consider parses in the self-trained
parser’sn-best list,S, that are not present inW
(S − W). For each of these parses, we deter-
mine its probability under theWSJ trained parsing

4Recall that the parser’s probability is a reranker feature
so the parsing model influences the ranking.

564

Model f -score
WSJ 91.5
WSJ& search help 91.7
Self-trained 92.0

Table 3: Test of whether “search help” from the
self-trained model impacts theWSJ trained model.
WSJ + search help is made by adding self-trained
parses not proposed by theWSJ trained parser but
to which the parser assigns a positive probability.
The WSJ reranker is used in all cases to select the
best parse for sections 1, 22, and 24.

model. If the probability is non-zero, we add the
parse to then-best listW , otherwise we ignore the
parse. In other words, we find parses that theWSJ

trained model could have produced but didn’t due
to search heuristics. In Table 3, we show the per-
formance of theWSJtrained model, the model with
“search help” as described above, and the self-
trained model onWSJ sections 1, 22, and 24. The
WSJ reranker is used to pick the best parse from
eachn-best list. WSJ with search help performs
slightly better thanWSJ alone but does not reach
the level of the self-trained model. From these ex-
periments, we conclude that reduced search errors
can only explain a small amount of self-training’s
improvements.

4.3 Non-generative reranker features

We examine the role of specific reranker features
by training rerankers using only subsets of the fea-
tures. Our goal is to determine whether some
classes of reranker features benefit self-training
more than others. We hypothesize that features
which are not easily captured by the generative
first-stage parser are the most beneficial for self-
training. If we treat the parser and reranking parser
as different (but clearly dependent) views, this is a
bit like co-training. If the reranker uses features
which are captured by the first-stage, the views
may be too similar for there to be an improvement.

We consider two classes of features (GEN and
EDGE) and their complements (NON-GEN and
NON-EDGE).5 GEN consists of features that
are roughly captured by the first-stage generative
parser: rule rewrites, head-child dependencies, etc.
EDGE features describe items across constituent
boundaries. This includes the words and parts of

5A small number of features overlap hence these sizes do
not add up.

Feature set # features f -score
GEN 448,349 90.4
NON-GEN 885,492 91.1
EDGE 601,578 91.0
NON-EDGE 732,263 91.1
ALL 1,333,519 91.3

Table 4: Sizes and performance of reranker feature
subsets. Reranking parserf -scores are on all sen-
tences in section 24.

speech of the tokens on the edges between con-
stituents and the labels of these constituents. This
represents a specific class of features not captured
by the first-stage. These subsets and their sizes are
shown in Table 4. For comparison, we also include
the results of experiments using the full feature set,
as in McClosky et al. (2006), labeledALL . The
GEN features are roughly one third the size of the
full feature set.

We evaluate the effect of these new reranker
models on self-training (Table 4). For each fea-
ture set, we do the following: We parse one million
NANC sentences with the reranking parser. Com-
bining the parses withWSJ training data, we train
a new first-stage model. Using this new first-stage
model and the reranker subset, we evaluate on sec-
tion 24 of WSJ. GEN’s performance is weaker
while the other three subsets achieve almost the
same score as the full feature set. This confirms
our hypothesis that when the reranker helps in self-
training it is due to features which are not captured
by the generative first-stage model.

4.4 Unknown Words

Given the large size of the parsed self-training cor-
pus, it contains an immense number of parsing
events which never occur in the training corpus.
The most obvious of these events is words — the
vocabulary grows from 39,548 to 265,926 words
as we transition from theWSJ trained model to
the self-trained model. Slightly less obvious is bi-
grams. There are roughly 330,000 bigrams inWSJ

training data and approximately 4.8 million new
bigrams in the self-training corpus.

One hypothesis (Mitch Marcus, personal com-
munication) is that the parser is able to learn a lot
of new bilexical head-to-head dependencies (bi-
heads) from self-training. The reasoning is as fol-
lows: Assume the self-training corpus is parsed in
a mostly correct manner. If there are not too many

565

new pairs of words in a sentence, there is a de-
cent chance that we can tag these words correctly
and bracket them in a reasonable fashion from con-
text. Thus, using these parses as part of the train-
ing data improves parsing because should we see
these pairs of words together in the future, we will
be more likely to connect them together properly.

We test this hypothesis in two ways. First, we
perform an extension of the factor analysis simi-
lar to that in McClosky et al. (2006). This is done
via a generalized linear regression model intended
to determine which features of parse trees can pre-
dict when the self-training model will perform bet-
ter. We consider many of the same features (e.g.
bucketed sentence length, number of conjunctions,
and number of unknown words) but also consider
two new features: unknown bigrams and unknown
biheads. Unknown items (words, bigrams, bi-
heads) are calculated by counting the number of
items which have never been seen inWSJ train-
ing but have been seen in the parsedNANC data.
Given these features, we take thef -scores for each
sentence when parsed by theWSJ and self-trained
models and look at the differences. Our goal is to
find out which features, if any, can predict thesef -
score differences. Specifically, we ask the question
of whether seeing more unknown items indicates
whether we are more likely to see improvements
when self-training.

The effect of unknown items on self-training’s
relative performance is summarized in Figure 1.
For each item, we show the total number of incor-
rect parse nodes in sentences that contain the item.
We also show the change in the number of correct
parse nodes in these sentences between theWSJ

and self-trained models. A positive change means
that performance improved under self-training. In
other words, looking at Figure 1a, the greatest per-
formance improvement occurs, perhaps surpris-
ingly, when we have seen no unknown words.
As we see more unknown words, the improve-
ment from self-training decreases. This is a pretty
clear indication that unknown words are not a good
predictor of when self-training improves perfor-
mance.

A possible objection that one might raise is that
using unknown biheads as a regression feature will
bias our results if they are counted from gold trees
instead of parsed trees. Seeing a bihead in train-
ing will cause the otherwise sparse biheads dis-
tribution to be extremely peaked around that bi-

f -score Model
89.8 ∗ WSJ (baseline)
89.8 ∗ WSJ+NANC M
89.9 ∗ WSJ+NANC T
89.9 ∗ WSJ+NANC L
90.0 ∗ WSJ+NANC R
90.0 WSJ+NANC MT
90.1 WSJ+NANC H
90.2 WSJ+NANC LR
90.3 WSJ+NANC LRT
90.4 WSJ+NANC LMRT
90.4 WSJ+NANC LMR
90.5 WSJ+NANC LRH
90.7 ⊛ WSJ+NANC LMRH
90.8 ⊛ WSJ+NANC (fully self-trained)

Table 5: Performance of the first-stage parser
on various combinations of distributionsWSJ and
WSJ+NANC (self-trained) models on sections 1,
22, and 24. Distributions areL (left expansion),R
(right expansion),H (head word),M (head phrasal
category), andT (head POS tag).∗ and⊛ indicate
the model is not significantly different from base-
line and self-trained model, respectively.

head. If we see the same pair of words in testing,
we are likely to connect them in the same fash-
ion. Thus, if we count unknown biheads from gold
trees, this feature may explain away other improve-
ments: When gold trees contain a bihead found in
our self-training data, we will almost always see an
improvement. However, given the similar trends in
Figures 1b and 1c, we propose that unknown bi-
grams can be thought of as a rough approximation
of unknown biheads.

The regression analysis reveals that unknown bi-
grams and unknown biheads are good predictors of
f -score improvements. The significant predictors
from McClosky et al. (2006) such as the number
of conjunctions or sentence length continue to be
helpful whereas unknown words are a weak pre-
dictor at best. These results are apparent in Figure
1: as stated before, seeing more unknown words
does not correlate with improvements. However,
seeing more unknown bigrams and biheads does
predict these changes fairly well. When we have
seen zero or one new bigrams or biheads, self-
training negatively impacts performance. After
seeing two or more, we see positive effects until
about six to ten after which improvements taper
off.

566

To see the effect of biheads on performance
more directly, we also experiment by interpolat-
ing between theWSJ and self-trained models on a
distribution level. To do this, we take specific dis-
tributions (see Section 3.1) from the self-trained
model and have them override the corresponding
distributions in a compatibleWSJ trained model.
From this we hope to show which distributions
self-training boosts. According to the biheads hy-
pothesis, theH distribution (which captures infor-
mation about head-to-head dependencies) should
account for most of the improvement.

The results of moving these distributions is
shown in Table 5. For each new model, we show
whether the model’s performance is not signifi-
cantly different than the baseline model (indicated
by ∗) or not significantly different than the self-
trained model (⊛). H (biheads) is the strongest sin-
gle feature and the only one to be significantly bet-
ter than the baseline. Nevertheless, it is only 0.3%
higher, accounting for 30% of the full self-training
improvement. In general, the performance im-
provements from distributions are additive (+/−
0.1%). Self-training improves all distributions, so
biheads are not the full picture. Nevertheless, they
remain the strongest single feature.

5 Discussion

The experiments in this paper have clarified many
details about the nature of self-training for parsing.
We have ruled out the phase transition hypothe-
sis entirely. Reduced search errors are responsible
for some, but not all, of the improvements in self-
training. We have confirmed that non-generative
reranker features are more beneficial than genera-
tive reranker features since they make the rerank-
ing parser more different from the base parser. Fi-
nally, we have found that while unknown bigrams
and biheads are a significant source of improve-
ment, they are not the sole source of it. Since
unknown words do not correlate well with self-
training improvements, there must be something
about the unknown bigrams and biheads which are
aid the parser. Our belief is that new combinations
of words we have already seen guides the parser in
the right direction. Additionally, these new combi-
nations result in more peaked distributions which
decreases the number of search errors.

However, while these experiments and others
get us closer to understanding self-training, we still
lack a complete explanation. Naturally, the hy-

0 1 2 3 4 5 6 7 10 11 12

T
ot

al
 n

um
be

r
of

in
co

rr
ec

t n
od

es

0
60

00

0 1 2 3 4 5 6 7 10 11 12

Number of unknown words in tree

R
ed

uc
tio

n
in

in
co

rr
ec

t n
od

es

0
30

0

(a) Effect of unknown words on performance

0 2 4 6 8 10 12 14 16 18 20

T
ot

al
 n

um
be

r
of

in
co

rr
ec

t n
od

es

0
10

00

0 2 4 6 8 10 12 14 16 18 20

Number of unknown bigrams in tree

R
ed

uc
tio

n
in

in
co

rr
ec

t n
od

es

−
10

0
10

0

(b) Effect of unknown bigrams on performance

0 2 4 6 8 10 12 14 16 18 20 25

T
ot

al
 n

um
be

r
of

in
co

rr
ec

t n
od

es

0
10

00

0 2 4 6 8 10 12 14 16 18 20 25

Number of unknown biheads in tree

R
ed

uc
tio

n
in

in
co

rr
ec

t n
od

es

−
50

10
0

(c) Effect of unknown biheads on performance

Figure 1: Change in the number of incorrect parse
tree nodes betweenWSJ and self-trained models
as a function of number of unknown items. See-
ing any number of unknown words results in fewer
errors on average whereas seeing zero or one un-
known bigrams or biheads is likely to hurt perfor-
mance.

567

potheses tested are by no means exhaustive. Addi-
tionally, we have only considered generative con-
stituency parsers here and a good direction for fu-
ture research would be to see if self-training gener-
alizes to a broader class of parsers. We suspect that
using a generative parser/discriminative reranker
paradigm should allow self-training to extend to
other parsing formalisms.

Recall that in Reichart and Rappoport (2007)
where only a small amount of labeled data was
used, the number of unknown words in a sen-
tence was a strong predictor of self-training ben-
efits. When a large amount of labeled data is avail-
able, unknown words are no longer correlated with
these gains, but unknown bigrams and biheads are.
When using a small amount of training data, un-
known words are useful since we have not seen
very many words yet. As the amount of train-
ing data increases, we see fewer new words but
the number of new bigrams and biheads remains
high. We postulate that this difference may help
explain the shift from unknown words to unknown
bigrams and biheads. We hope to further inves-
tigate the role of these unknown items by seeing
how our analyses change under different amounts
of labeled data relative to unknown item rates.

Acknowledgments

This work was supported by DARPA GALE contract

HR0011-06-2-0001. We would like to thank Matt Lease, the

rest of the BLLIP team, and our anonymous reviewers for

their comments. Any opinions, findings, and conclusions or

recommendations expressed in this paper are those of the au-

thors and do not necessarily reflect the views of DARPA.

References

Blum, Avrim and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. InPro-
ceedings of the 11th Annual Conference on Compu-
tational Learning Theory (COLT-98).

Bod, Rens. 2003. An efficient implementation of a
new DOP model. In10th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, Budapest, Hungary.

Charniak, Eugene and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. InProc. of the 2005 Meeting of the Assoc.
for Computational Linguistics (ACL), pages 173–
180.

Charniak, Eugene. 1997. Statistical parsing with a
context-free grammar and word statistics. InProc.
AAAI, pages 598–603.

Collins, Michael and Terry Koo. 2005. Discriminative
Reranking for Natural Language Parsing.Computa-
tional Linguistics, 31(1):25–69.

Graff, David. 1995.North American News Text Cor-
pus. Linguistic Data Consortium. LDC95T21.

McClosky, David, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference, pages
152–159.

Mitch Marcus et al. 1993. Building a large annotated
corpus of English: The Penn Treebank.Comp. Lin-
guistics, 19(2):313–330.

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. InProceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 433–440, Sydney,
Australia, July. Association for Computational Lin-
guistics.

Pradhan, Sameer, Wayne Ward, and James Martin.
2007. Towards robust semantic role labeling. InHu-
man Language Technologies 2007: The Conference
of the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 556–563, Rochester, New York,
April. Association for Computational Linguistics.

Reichart, Roi and Ari Rappoport. 2007. Self-training
for enhancement and domain adaptation of statistical
parsers trained on small datasets.Proceedings of the
45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 616–623.

Steedman, Mark, Steven Baker, Jeremiah Crim,
Stephen Clark, Julia Hockenmaier, Rebecca Hwa,
Miles Osborne, Paul Ruhlen, and Anoop Sarkar.
2003. CLSP WS-02 Final Report: Semi-Supervised
Training for Statistical Parsing. Technical report,
Johns Hopkins University.

Titov, Ivan and James Henderson. 2007. Constituent
parsing with incremental sigmoid belief networks.
In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 632–
639, Prague, Czech Republic, June. Association for
Computational Linguistics.

Yamada, Kenji and Kevin Knight. 2001. A syntax-
based statistical translation model. InProceedings
of the 39th Annual Meeting of the Association for
Computational Linguistics, pages 523–529.

568

