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Abstract

Self-training has been shown capable of
improving on state-of-the-art parser per-
formance (McClosky et al., 2006) despite
the conventional wisdom on the matter and
several studies to the contrary (Charniak,
1997; Steedman et al., 2003). However, it
has remained unclear when and why self-
training is helpful. In this paper, we test
four hypotheses (namely, presence of a
phase transition, impact of search errors,
value of non-generative reranker features,
and effects of unknown words). From
these experiments, we gain a better un-
derstanding of why self-training works for
parsing. Since improvements from self-
training are correlated with unknown bi-
grams and biheads but not unknown words,
the benefit of self-training appears mostin-
fluenced by seeing known words in new
combinations.

I ntroduction

However, labeled training data is expensive to
annotate. Given the large amount of unlabeled text
available for many domains and languages, tech-
niques which allow us to use both labeled and
unlabeled text to train our models are desirable.
These methods are called semi-supervised. Self-
training is a specific type of semi-supervised learn-
ing. In self-training, first we train a model on the
labeled data and use that model to label the unla-
beled data. From the combination of our original
labeled data and the newly labeled data, we train a
second model — our self-trained model. The pro-
cess can be iterated, where the self-trained model
is used to label new data in the next iteration. One
can think of self-training as a simple case of co-
training (Blum and Mitchell, 1998) using a single
learner instead of several. Alternatively, one can
think of it as one step of the Viterbi EM algorithm.

Studies prior to McClosky et al. (2006) failed to
show a benefit to parsing from self-training (Char-
niak, 1997; Steedman et al., 2003). While the re-
cent success of self-training has demonstrated its
merit, it remains unclear why self-training helps in
some cases but not others. Our goal is to better un-
derstand when and why self-training is beneficial.

Supervised statistical parsers attempt to capture | saction 2, we discuss the previous applica-

patterns of syntactic structure from a labeled set (?Fons of self-training to parsing. Section 3 de-
examples for the purpose of annotating new S . '

. . -~ scribes our experimental setup. We present and
tences with their structure (Bod, 2003; Charnlalf P P P

: est four hypotheses of why self-training helps in
and Johnson, 2005; Collins and Koo, 2005; Petro . . ) .
- ' ' ’ tion 4 and lud thd d fut
et al., 2006; Titov and Henderson, 2007). Thes ection = and conclude wi Iscussion and future

. . . Work in Section 5.
annotations can be used by various higher-level ap-

plications such as semantic role labeling (Pradhap Previous Work

et al., 2007) and machine translation (Yamada and _
Knight, 2001). To our knowledge, the first reported uses of self-

training for parsing are by Charniak (1997). He
used his parser trained on the Wall Street Journal
(wsg Mitch Marcus et al. (1993)) to parse 30 mil-
lion words of unparseavsJtext. He then trained
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a self-trained model from the combination of theseed size and the reranker on self-training is not
newly parsed text wittwsJ training data. How- well understood.

ever, the self-trained model did not improve on the

original model. 3 Experimental Setup

Self-training and co-training were subsequentl . .
investigated in the 2002 CLSP Summer Work)-(Ne use the Charniak and Johnson reranking parser

shop at Johns Hopkins University (Steedman e(f)u“'ned below), though we expect many of these
results to generalize to other generative parsers

al., 2003). They considered several different pa- s .
. ) d discriminative rerankers. Our corpora consist
rameter settings, but in all cases, the number o
: : . of wsJfor labeled data andlaNC (North Amer-
sentences parsed per iteration of self-training was
. Ican News Text Corpus, Graff (1995)) for unla-
relatively small (30 sentences). They performe led data. W the standavd, division for
many iterations of self-training. The largest see cled data. Vve use the sta sion 1o

: S Harsing: sections 2-21 for training (39,382 sen-
size (amount of labeled training data) they usetences and section 24 for develooment (1.346 sen-
was 10,000 sentences frowsJ, though many ex- ) ! velop (1,

periments used only 500 or 1,000 sentences. Théences). Given self-training’s yaried performance
found that under these parameters, self-training di the p_ast, many (.)f our experiments use the con-
not yield a significant gain. catenation of sections 1, 22, and 24 (5,039 sen-

Reichart and Rappoport (2007) showed that o tences) rather than the standard development set

S . . or more robust testing.
can self-train with only a generative parser if the Afull d it F1h ki b
seed size is small. The conditions are similar t ufl description ot the reranking parser can be

Steedman et al. (2003), but only one iteration o und in Charniak and Johnson (2005). Briefly

self-training is performed (i.e. all unlabeled data iSPUt’ the rgranqug parser consists of tWO. stages:
labeled at once}.ln this scenario, unknown words A generative lexicalized PCFG parser which pro-

(words seen in the unlabeled data but not in trair][_-)otsefsliSl list dOLthel (;r_ms'; br Ob?ble parsEa{oes_t h
ing) were a useful predictor of when self-training Ist) do OV¥§ by at I'ls:[crl_rprl]na ve rEran erw t;C ¢
improves performance. reorders then-best list. e reranker uses abou

McClosky et al. (2006) showed that self—trainingl'3 ;n_'"'on tfeatturfesht_ohh.elshscf(.)rei t?e rees, th’e
improves parsing accuracy when the two-stagg1OS important of which 1S the 1irst Stage parsers

Charniak and Johnson (2005) reranking parser Psrobablllty. In Sectloh 4.3, we mentlon.tWO classes
used. Using both stages (a generative parser a rergnker features in more depth. Since some of
discriminative reranker) to label the unlabeled datgxperlments rely on details of the f|_rst stage parser,
set is necessary to improve performance. Only rd'e present a summary of the parsing model.
training the first stage had a positive effect. Howz 1 ThePar sing M odel

ever, after retraining the first stage, both stages pro- _ _ N
duced better parses. Unlike Steedman et al. (2003)he parsing model assigns a probability to a parse

the training seed size is large and only one itergt by & top-down process of considering each con-
tion of self-training is performed. Error analysisStituéntc in = and, for eactr, first guessing the
revealed that most improvement comes from sefeterminal ofc, ¢(c) then the lexical head of,
tences with lengths between 20 and 40 words. Suf{c). and then the expansion efnto further con-
prisingly, improvements were also correlated wittstituentse(c). Thus the probability of a parse is
the number of conjunctions but not with the numgiven by the equation

ber of unknown words in the sentence.

To summarize, several factors have been iden- 2(t) =[] p(t(c) | i(c), R(c))
tified as good predictors of when self-training im- cem
proves performance, but a full explanation of why p(h(c) | t(c),l(c), R(c))
self-training works is lacking. Previous work es- -ple(c) | (c),t(c), h(c),R(c))

tablishes that parsing all unlabeled sentences at

once (rather than over many iterations) is imporwherel(c) is the label ofc (e.g., whether it is a

tant for successful self-training. The full effect ofnoun phraser(p), verb phrase, etc.) ari(c) is

—Y o _ ) the relevant history of —- information outside:
Performing multiple iterations presumably fails becaus

the parsing models become increasingly biased. HOWGlehat t[h'e probability m_c_)de_l deemsf important in de-
this remains untested in the large seed case. termining the probability in question.
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For each expansioa(c) we distinguish one of unlabeled corpus in one iteration. We start by tak-
the children as the “middle” child/(c). M(c) is ing a random subset of thesJ training sections
the constituent from which the head lexical item(2-21), accepting each sentence with 10% proba-
h is obtained according to deterministic rules thability. With the sampled training section and the
pick the head of a constituent from among thetandard development data, we train a parser and a
heads of its children. To the left 8f is a sequence reranker. In Table 1, we show the performance of
of one or more left labeld;(c) including the spe- the parser with and without the reranker. For ref-
cial termination symbol\ and similarly for the la- erence, we show the performance when using the
bels to the right,R;(c). Thus an expansion(c) complete training division as well. Unsurprisingly,
looks like: both metrics drop as we decrease the amount of

training data. These scores represent our baselines
| = ALp,..LiMR;...R,A. (1) for this experiment.

Using this parser model, we parse one million
) .. sentences fronnANC, both with and without the
then in orderL; through L = A), and simi- ! -
! gh Lt (= 2), reranker. We combine these one million sentences

larly for Ry throughR,, . . - :
So the parser assigns a probability to the pars\,’g'th the sampled subsets wfsJtraining and train

based upon five probability distributiong, (the neW_ parser models from thefn. ,
part of speech of the heady, (the head)M (the Finally, we evaluate these self-trained models
child constituent which includes the head)chil- (Table 2). The numbers in parentheses indicate the

dren to the left of\7), andR (children to the right change from the corresponding non-self-trained

The expansion is generated by guessing first

of M). model. As in Reichart and Rappoport (2007), we
see large improvements when self-training on a
4 Testing the Four Hypotheses small seed size (10%) without using the reranker.

) o ) However, using the reranker to parse the self-
The question of why self-training _helps IN SOM&aining and/or evaluation sentences further im-
cases (McClosky et al., 2006; Reichart and Rags,es results. From McClosky et al. (2006), we
poport, 2007) but not others (Charniak, 1997, that when 100% of the training data is used,

Steedman et al.,, 2003) has inspired various thegt yraining does not improve performance with-
ories. We investigate four of these to better UNg it a reranker.

derstand when and why self-training helps. From this we conclude that there is no such

a high level, the hypotheses are (1) Sehc_'[raininghreshold phase transition in this case. High per-

helps after a phase transition, (2) self-training re;: : .
o formance is not a requirement to successfully use
duces search errors, (3) specific classes of reranker

features are needed for self-training, and (4) sel Elf-training for parsing, since there are lower per-
training improves because we see Hew combina(—)rming parsers which can self-train and higher
tions ng WOIPdS performing parsers which cannot. The higher per-

forming Charniak and Johnson (2005) parser with-
4.1 Phase Transition out reranker achieves ghscore of 89.0 on section

The phase transition hypothesis is that once 23.4 when trained on all ovsa This parser does

parser has achieved a certain threshold of perforr]-O t benefit from self-training unless paired with a

mance, it can label data sufficiently accuratelyreranker' Contrast this with the same parser trained

S:gjgr:’r’]:‘f)rzgﬁ‘g?;i’in;he labels willbe gOOd2;5.8 (Table 2) or the small seed models of Reichart
' aend Rappoport (2007). Both of these lower per-

To test the phase transition hypothesis, we US}

the same parser as McClosky et al. (2006) but traifp NJ PArsers can successfully self-train. Ad-

on only a fraction ofwsJto see if self-training is d|t|onall){, We now k”OV_V _that while a reranke_r 'S
still helpful. This is similar to some of the ex- not required for self-training when the seed size is

periments by Reichart and Rappoport (2007) buﬁma”’ it still helps performance considerably- (
. : 0
with the use of a reranker and slightly larger seed O"c IMpProves from 87.710 89.0in the 10% case).

sizes. The self-training protocol is the same 5 _ o
We do not weight the originalvsJdata, though our ex-

?n (Charniak, 1997; McClosky et al., 2006; Re"pectation is that performance would improvewfss were
ichart and Rappoport, 2007): we parse the entirgiven a higher relative weight. This is left as future work.

n only 10% ofwsy, where it gets arf-score of
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% wsJ #sentences Parsgrscore Reranking parsgrscore
10 3,995 85.8 87.0
100 39,832 89.9 91.5

Table 1. Parser and reranking parser performance on sestent00 words in sections 1, 22, and 24
when trained on different amounts of training datawXvis the percentage afsJjtraining data trained
on (sampled randomly). Note that the full amount of develeptata is still used as held out data.

ParsedNANC with reranker? Parsef-score  Reranking parsgrscore
No 87.7 (+1.9) 88.7 (+1.7)
Yes 88.4 (+2.6) 89.0 (+2.0)

Table 2: Effect of self-training using only 10% wfsJas labeled data. The parser model is trained from
one million parsed sentences fromaNC + wsJtraining. The first column indicates whether the million
NANC sentences were parsed by the parser or reranking parsesetbed and third columns differ in
whether the reranker is used to parsetdsesentenceswsJsections 1, 22, and 24, sentences 100 words
and shorter). Numbers in parentheses are the improvemeetsttee corresponding non-self-trained
parser.

4.2 Search Errors m.* Almost 40% of the time, the top parse in

Another possible explanation of self-training's im-th€ Self-trained model is not in the'sy model's
provements is that seeing newly labeled data ré-Pest list, (ops(S) ¢ W) though the two mod-

sults in fewer search errors (Daniel Marcu, perS!S adree on the top parse roughly 42.4% of the

sonal communication). A search error would infiMme ¢ops(S) = top,(W)). Search errors can
dicate that the parsing model could have producel&e formulated agop,(S) ¢ W A tops(S) =
better (more probable) parses if not for heuristick?Pw(W U S). This captures sentences where the
in the search procedure. The additional parse treB8rSe f[hat the reran_ker chose in the self-Framed
may help produce sharper distributions and redud80d€! is not present in thessmodel'sn-best list,

data sparsity, making the search process easier. gt If the barse were added to thessmodel's list,
test this, first we present some statistics onithe (€ Parse’s probability in thezsymodel and other
best lists  — 50) from the baselinavsJ trained reranker features would have caused it to be cho-

parser and self-trained modetom McClosky et S€N- These search errors occur in only 2.5% of
al. (2006). We use each model to parse sentenc n-best lists. At first glance, one might think

from held-out data (sections 1, 22, and 24) and e)ghat this could be enough to account for the differ-
amine then-best lists. T ences, since the self-trained model is only several

We compute statistics of thevsy and self- tenths better irf-score. However, we know from
trained n-best lists with the goal of understand-MiCIr?Sky eLaIt;N(ZOOiir)wggat o(r; avI?rtag_e, zarseds do
ing how much they intersect and whether there afedt change between Jand sefl-frained mod-
search errors. On average, théest lists over- els and when they do, they only improve slightly
lap by 66.0%. Put another way, this means thdpore than half the time. For this reason, we run a
about a third of the parses from each model ar%econd test more focused on performance'.
unique, so the parsers do find a fair number of dif- FOr our second test we help thess trained
ferent parses in their search. The next questidﬁlodel find the parses that the self-trained model
is where the differences in the-best lists lie — found. For each sentence, we start with thbest

if all the differences were near the bottom, thidist (» = 500 here) from thewsJtrained parser,
would be less meaningful. Lé¥ and S repre- W. We then consider parses in the self-trained
sent thex-best lists from the baselingsiand self- Parsersn-best list, 5, that are not present i
trained parsers, respectively. Thep,,(¢) func- (5 — W). For each of these parses, we deter-
tion returns the highest scoring parse in thbest Mine its probability under thevsJtrained parsing

list ¢ according to the reranker and parser model
- “Recall that the parser's probability is a reranker feature
Shttp://bllip.cs.brown. edu/sel ftraining/ so the parsing model influences the ranking.
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Model f-score Feature set| # features| f-score

WSJ 91.5 GEN 448,349 90.4

wsJ& search help 91.7 NON-GEN 885,492 91.1
Self-trained 92.0 EDGE 601,578 91.0
NON-EDGE 732,263 91.1

Table 3: Test of whether “search help” from the ALL 1,333,519 91.3

self-trained model impacts thesJtrained model.
wsJ+ search help is made by adding self-trainedable 4: Sizes and performance of reranker feature
parses not proposed by thesJtrained parser but subsets. Reranking parsgiscores are on all sen-
to which the parser assigns a positive probabilittences in section 24.

ThewsJreranker is used in all cases to select the

best parse for sections 1, 22, and 24. speech of the tokens on the edges between con-

stituents and the labels of these constituents. This
model. If the probability is non-zero, we add therepresents a specific class of features not captured
parse to thex-best listiV, otherwise we ignore the by the first-stage. These subsets and their sizes are
parse. In other words, we find parses thatws shown in Table 4. For comparison, we also include
trained model could have produced but didn’t dughe results of experiments using the full feature set,
to search heuristics. In Table 3, we show the pegs in McClosky et al. (2006), labeleslL. The
formance of thavsJtrained model, the model with GEN features are roughly one third the size of the
“search help” as described above, and the selfull feature set.
trained model orwsJsections 1, 22, and 24. The We evaluate the effect of these new reranker
wsJreranker is used to pick the best parse frormodels on self-training (Table 4). For each fea-
eachn-best list. wsJ with search help performs ture set, we do the following: We parse one million
slightly better thanwsJ alone but does not reach NANC sentences with the reranking parser. Com-
the level of the self-trained model. From these exbining the parses witkvsJtraining data, we train
periments, we conclude that reduced search erraaimew first-stage model. Using this new first-stage
can only explain a small amount of self-training’smodel and the reranker subset, we evaluate on sec-

improvements. tion 24 of wsl GEN's performance is weaker
_ while the other three subsets achieve almost the
4.3 Non-generativereranker features same score as the full feature set. This confirms

We examine the role of specific reranker featuregur hypothesis that when the reranker helps in self-
by training rerankers using only subsets of the fedtaining it is due to features which are not captured
tures. Our goal is to determine whether som&Y the generative first-stage model.

classes of reranker features benefit self-training

more than others. We hypothesize that feature¢s4 Unknown Words

which are not easily captured by the generativgsiven the large size of the parsed self-training cor-
first-stage parser are the most beneficial for sel[)—us it contains an immense number of parsing
training. If we treat the parser and reranking pars&fyents which never occur in the training corpus.
as different (but clearly dependent) views, this is &he most obvious of these events is words — the
bit like co-training. If the reranker uses feature%/ocabulary grows from 39,548 to 265,926 words
which are captured by the first-stage, the Viewgs e transition from thevsJ trained model to
may be too similar for there to be an improvemente self-trained model. Slightly less obvious is bi-
We consider f[wo classes of featurese( and grams. There are roughly 330,000 bigramsvisJ
EDGE) and their complementsNON-GEN and  training data and approximately 4.8 million new
NON-EDGE).> GEN consists of features that bigrams in the self-training corpus.
are roughly captured by the first-stage generative o hypothesis (Mitch Marcus, personal com-
parser: rule rewrites, head-child dependencies, elgy nication) is that the parser is able to learn a lot
EDGE features describe items across constituenfy now bilexical head-to-head dependencies (bi-
boundaries. This includes the words and parts ¢feads) from self-training. The reasoning is as fol-

SA small number of features overlap hence these sizes dgws: Assume the self-training corpus is parsed in
not add up. a mostly correct manner. If there are not too many
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new pairs of words in a sentence, there is a def f-score Model

cent chance that we can tag these words correctly 89.8 + wsJ(baseline)
and bracket them in areasonable fashion fromcon- 89.8 x WSH*NANC M
text. Thus, using these parses as part of the trai- 89.9  * WSHNANC T
ing data improves parsing because should we sge 89.9  * WSJ}NANC L
these pairs of words together in the future, we willl  90.0 *  WSHNANC R
be more likely to connect them together properly. | 90.0 WSHNANC MT
We test this hypothesis in two ways. First, we| 90-1 WSHNANC H
90.2 WSHNANC LR

perform an extension of the factor analysis simi-
lar to that in McClosky et al. (2006). This is done | 20-3 WSHNANC LRT

via a generalized linear regression model intended 90-4 WSHNANC LMRT

to determine which features of parse trees can prd- 20-4 WSHNANC LMR

dict when the self-training model will perform bet- | 99-5 WSJHNANC LRH

ter. We consider many of the same features (e.d. 20/ ~® WSI}NANC LMRH _
bucketed sentence length, number of conjunctiond, 20-8  ® WS3INANC (fully self-trained)
and number of unknown words) but also conside{_

. : able 5: Performance of the first-stage parser
two new features: unknown bigrams and unknown . o C
on various combinations of distributiongsJ and

biheads. Unknown items (words, bigrams, bi- ) .
heads) are calculated by counting the number SHNANC (self-trained) models on sections 1,
2, and 24. Distributions aile (left expansion)R

items which have never been seenwsJ train- (right expansion)H (head word)M (head phrasal

ing but have been seen in the parsexhc data. category), and” (head POS tag): and indicate
Given these features, we take theacores for each ) - ]
the model is not significantly different from base-

sentence when parsed by tiwsJand self-trained line and self-trained model. respectivel
models and look at the differences. Our goal is to » FesP Y-
find out which features, if any, can predict thefse

score differences. Specifically, we ask the questiqqead_ If we see the same pair of words in testing,
of whether seeing more unknown items indicate§,o 5. likely to connect them in the same fash-

whether we are more likely to see improvementg,, 15, if we count unknown biheads from gold

when self-training. trees, this feature may explain away other improve-
The effect of unknown items on self-training’s ments: When gold trees contain a bihead found in
relative performance is summarized in Figure lour self-training data, we will aimost always see an
For each item, we show the total number of incorimprovement. However, given the similar trends in
rect parse nodes in sentences that contain the iteFigures 1b and 1c, we propose that unknown bi-
We also show the change in the number of corregframs can be thought of as a rough approximation
parse nodes in these sentences betweemwthe of unknown biheads.
and self-trained models. A positive change means e regression analysis reveals that unknown bi-
that performance improved under self-training. "brams and unknown biheads are good predictors of
other words, looking at Figure 1a, the greatest petr_gcore improvements. The significant predictors
formance improvement occurs, perhaps surprigrom McClosky et al. (2006) such as the number
ingly, when we have seen no unknown wordsyt conjunctions or sentence length continue to be
As we see more unknown words, the Improvepe|sfy| whereas unknown words are a weak pre-
ment from self-training decreases. This is a prettjicor at best. These results are apparent in Figure
clear indication that unknown words are notagooq: as stated before, seeing more unknown words
predictor of when self-training improves perfor-qoeg not correlate with improvements. However,
mance. seeing more unknown bigrams and biheads does
A possible objection that one might raise is thapredict these changes fairly well. When we have
using unknown biheads as a regression feature wgken zero or one new bigrams or biheads, self-
bias our results if they are counted from gold treegaining negatively impacts performance. After
instead of parsed trees. Seeing a bihead in traiseeing two or more, we see positive effects until
ing will cause the otherwise sparse biheads digbout six to ten after which improvements taper
tribution to be extremely peaked around that bieff.
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To see the effect of biheads on performance
more directly, we also experiment by interpolat-
ing between thevsJiand self-trained models on a
distribution level. To do this, we take specific dis-
tributions (see Section 3.1) from the self—trainedg
model and have them override the corresponding
distributions in a compatiblevsJ trained model.
From this we hope to show which distributions
self-training boosts. According to the biheads hy--
pothesis, theéd distribution (which captures infor-
mation about head-to-head dependencies) shoul
account for most of the improvement.

The results of moving these distributions is
shown in Table 5. For each new model, we show Number of unknown words in tree
whether the model’s performance is not signifi- (a) Effect of unknown words on performance

cantly different than the baseline model (indicated
|
o I II...-—_- _____
0O 2 4 6 8

by %) or not significantly different than the self-
10 12 14 16 18 20

umber of

incorrect nodes
0 6000
I |

o 1 2 3 4 5 6 7 10 11 12

R&uction in
incorrect nodes

0 300

A |

o 1 2 3 4 5 6 7 10 11 12

trained model®). H (biheads) is the strongest sin-
gle feature and the only one to be significantly bet-
ter than the baseline. Nevertheless, itis only 0.3% -
higher, accounting for 30% of the full self-training
improvement. In general, the performance im-
provements from distributions are additive (—
0.1%). Self-training improves all distributions, so
biheads are not the full picture. Nevertheless, the
remain the strongest single feature.

Total number of
incorrect nodes

-100 100

\R%duction in
incorrect nodes

%l'
0O 2 4 6 8 10 12 14 16 18 20

Number of unknown bigrams in tree

5 Discussion
(b) Effect of unknown bigrams on performance

0 2 4 6

8 10 12 14 16 18 20 25

The experiments in this paper have clarified many.
details about the nature of self-training for parsing.
We have ruled out the phase transition hypothe-§
sis entirely. Reduced search errors are responsiblg
for some, but not all, of the improvements in self-
training. We have confirmed that non-generative
reranker features are more beneficial than genera-
tive reranker features since they make the rerank<
ing parser more different from the base parser. Fi-‘§
nally, we have found that while unknown bigrams 3
and biheads are a significant source of improve-
ment, they are not the sole source of it. Since
unknown words do not correlate well with self-
training improvements, there must be something
about the unknown bigrams and biheads which ag&gyre 1: Change in the number of incorrect parse
aid the parser. Our belief is that new combination§ee nodes betweewsJ and self-trained models

of words we have already seen guides the parserig 5 function of number of unknown items. See-
the right direction. Additionally, these new combi-ing any number of unknown words results in fewer
nations result in more peaked distributions whiclyrors on average whereas seeing zero or one un-

decreases the number of search errors. known bigrams or biheads is likely to hurt perfor-
However, while these experiments and othergance.

get us closer to understanding self-training, we still
lack a complete explanation. Naturally, the hy-

incorrect nodes
0 1000

incorrect nodes
-50 100

ﬂ I lllll.ll- m——_m_

2 4 6 8 10 12 14 16 18 20 25

Number of unknown biheads in tree

(c) Effect of unknown biheads on performance
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potheses tested are by no means exhaustive. Addiellins, Michael and Terry Koo. 2005. Discriminative
tionally, we have only considered generative con- Reranking for Natural Language Parsirgpmputa-
stituency parsers here and a good direction for fu- 10N Linguistics, 31(1):25-69.

ture research would be to see if self-training geneGraff, David. 1995.North American News Text Cor-
alizes to a broader class of parsers. We suspect thapus. Linguistic Data Consortium. LDC95T21.

using_a generative parser/disc_rir_ninative rerankq\ylcc:losky, David, Eugene Charniak, and Mark John-
paradigm should allow self-training to extend t0 son, 2006. Effective self-training for parsing. In
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