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Abstract

Translation model size is growing at a pace

that outstrips improvements in computing

power, and this hinders research on many

interesting models. We show how an al-

gorithmic scaling technique can be used

to easily handle very large models. Us-

ing this technique, we explore several large

model variants and show an improvement

1.4 BLEU on the NIST 2006 Chinese-

English task. This opens the door for work

on a variety of models that are much less

constrained by computational limitations.

1 Introduction

Translation model size is growing quickly due to

the use of larger training corpora and more com-

plex models. As an example of the growth in avail-

able training data, consider the curated Europarl

corpus (Koehn, 2005), which more than doubled in

size from 20 to 44 million words between 2003 and

2007.1 As an example of model complexity, con-

sider the popular hierarchical phrase-based model

of Chiang (2007), which can translate discontigu-

ous phrases. Under the loosest interpretation of

this capability, any subset of words in a sentence
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can be a phrase. Therefore, the number of rules

that the model can learn is exponential in sentence

length unless strict heuristics are used, which may

limit the model’s effectiveness. Many other mod-

els translate discontiguous phrases, and the size of

their extracted rulesets is such a pervasive problem

that it is a recurring topic in the literature (Chiang,

2007; DeNeefe et al., 2007; Simard et al., 2005).

Most decoder implementations assume that all

model rules and parameters are known in advance.

With very large models, computing all rules and

parameters can be very slow. This is a bottleneck

in experimental settings where we wish to explore

many model variants, and therefore presents a real

impediment to full exploration of their potential.

We present a solution to this problem.

To fully motivate the discussion, we give a con-

crete example of a very large model, which we

generate using simple techniques that are known

to improve translation accuracy. The model takes

77 CPU days to compute and consumes nearly a

terabyte of external storage (§2). We show how

to solve the problem with a previously developed

algorithmic scaling technique that we call transla-

tion by pattern matching (§3). The key idea be-

hind this technique is that rules and parameters are

computed only as needed. Using this technique,

we explore a series of large models, giving experi-

mental results along a variety of scaling axes (§4).

Our results extend previous findings on the use of

long phrases in translation, shed light on the source

of improved performance in hierarchical phrase-

based models, and show that our tera-scale trans-

lation model outperforms a strong baseline.

2 A Tera-Scale Translation Model

We will focus on the hierarchical phrase-based

model of Chiang (2007). It compares favorably
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with conventional phrase-based translation (Koehn

et al., 2003) on Chinese-English news translation

(Chiang, 2007). We found that a baseline system

trained on 27 million words of news data is already

quite strong, but we suspect that it would be possi-

ble to improve it using some simple techniques.

Add additional training data. Our baseline

already uses much of the available curated news

data, but there is at least three times as much cu-

rated data available in the United Nations proceed-

ings. Adding the UN data gives us a training cor-

pus of 107 million words per language.

Change the word alignments. Our baseline

uses Giza++ alignments (Och and Ney, 2003)

symmetrized with the grow-diag-final-and heuris-

tic (Koehn et al., 2003). We replace these with

the maximum entropy aligments of Ayan and Dorr

(2006b). They reported improvements of 1.6

BLEU in Chinese-English translation, though with

much less training data.

Change the bilingual phrase extraction

heuristic. Our baseline uses a tight heuristic, re-

quiring aligned words at phrase edges. However,

Ayan and Dorr (2006a) showed that a loose heuris-

tic, allowing unaligned words at the phrase edges,

improved accuracy by 3.7 BLEU with some align-

ments, again with much less training data.

Quadrupling the amount of training data pre-

dictably increases model size. The interaction of

the alignment and phrase extraction heuristic in-

creases the model size much more. This is because

the maximum entropy alignments are sparse—

fewer than 70% of the words are aligned. Con-

sider a contiguous phrase chosen at random from a

training sentence. With our sparse alignments, the

chance that both of its edge words are aligned is

less than half. The tight heuristic discards many

possible phrases on this basis alone. The situa-

tion worsens with discontiguous phrases. How-

ever, with the loose heuristic, we see the oppo-

site effect. Not only is a randomly chosen source

phrase with unaligned edge words legal, but it may

have many translations, since its minimal align-

ment in the target is likely to have one or more

adjacent unaligned words, and any combination of

these can be part of a valid target phrase.

To make matters concrete, we estimated the size

of the translation model that would be produced

using these modifications. We did not actually

compute the full model, for reasons that will be-

come apparent. Instead, we modified Chiang’s ex-

tractor to simply report the number of rules that it

would normally extract. We then computed the ra-

tio of extracted rules to that of the baseline system.

Under the rough assumption that the number of

unique rules and representation size grows linearly

in the number of extracted rules, we were then able

to estimate the size of the large model. The results

show that it would be impractical to compute the

model (Table 1). Merely counting all of the rule

occurrences took nearly 5 days on our 17-node re-

search cluster. This does not even include the time

required for sorting and scoring the rules, which

we did not attempt. The resulting model would

be nearly two orders of magnitude larger than the

largest one we could find in the literature (Table 2).

3 Translation by Pattern Matching

Clearly, substantial experimentation with models

this large is impossible unless we have consider-

able resources at our disposal. To get around this

problem, we use an algorithmic scaling technique

that we call translation by pattern matching. In this

approach, the training text and its word alignment

reside in memory. We then translate as follows.

for each input sentence do

for each possible phrase in the sentence do

Find its occurrences in the source text

for each occurrence do

Extract its aligned target phrase (if any)

for each extracted phrase pair do

Score using maximum likelihood

Decode as usual using the scored rules

A similar method is used in example-based

translation (Brown, 2004). It was applied to

phrase-based translation by Callison-Burch et al.

(2005) and Zhang and Vogel (2005). The key point

is that the complete translation model is never ac-

tually computed—rules and associated parameters

are computed only as needed. Obviously, the on-

demand computation must be very fast. If we can

achieve this, then the model can in principle be ar-

bitrarily large. Callison-Burch et al. (2005) and

Zhang and Vogel (2005) give very similar recipes

for application to phrase-based models.

Fast lookup using pattern matching algo-

rithms. The complexity of the naı̈ve algorithm to

find all occurrences of a source phrase in a train-

ing text T is linear in the length of the text, O(|T |).
This is much too slow for large texts. They solve

this using an index data structure called a suffix
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Baseline Large

Rules extracted (millions) 195 19,300

Extract time (CPU hours) 10.8 1,840

Unique rules (millions) 67 6,600*

Extract file size (GB) 9.3 917*

Model size (GB) 6.1 604*

Table 1: Extraction time and model sizes. The

model size reported is the size of the files contain-

ing an external prefix tree representation (Zens and

Ney, 2007). *Denotes estimated quantities.

Citation Millions of rules

Simard et al. (2005) (filtered) 4

Chiang (2007) (filtered) 6

DeNeefe et al. (2007) 57

Zens and Ney (2007) 225

this paper 6,600

Table 2: Model sizes in the literature.

array (Manber and Myers, 1993). Its size is 4|T |
bytes and it enables lookup of any length-m sub-

string of T in O(m + log |T |) time.

Fast extraction using sampling. The complex-

ity of extracting target phrases is linear in the num-

ber of source phrase occurrences. For very fre-

quent source phrases, this is expensive. They solve

this problem by extracting only from a sample of

the found source phrases, capping the sample size

at 100. For less frequent source phrases, all possi-

ble targets are extracted.

Fast scoring using maximum likelihood.

Scoring the phrase pairs is linear in the number

of pairs if we use the maximum likelihood esti-

mate p(e|f) for source phrase f and target phrase

e. Since each source phrase only has small number

of targets (up to the sample limit), this step is fast.

However, notice that we cannot easily compute the

target-to-source probability p(f |e) as is commonly

done. We address this in §4.1.

Callison-Burch et al. (2005) and Zhang and Vo-

gel (2005) found that these steps added only tenths

of a second to per-sentence decoding time, which

we independently confirmed (Lopez, 2008, Chap-

ter 3). Their techniques also apply to discontigu-

ous phrases, except for the pattern matching algo-

rithm, which only works for contiguous phrases.

Since our model (and many others) uses discon-

tiguous phrases, we must use a different algorithm.

The most straightforward way to accomplish this

is to use the fast suffix array lookup for the con-

tiguous subphrases of a discontiguous phrase, and

then to combine the results. Suppose that we have

substrings u and v, and a gap character X which

can match any arbitrary sequence of words. Then

to look up the phrase uXv, we first find all occur-

rences of u, and all occurrences of v. We can then

compute all cases where an occurrence of u pre-

cedes and occurrence of v in the same sentence.

The complexity of this last step is linear in the

number of occurrences of u and v. If either u or

v is very frequent, this is too slow. Lopez (2007;

2008) solves this with a series of empirically fast

exact algorithms. We briefly sketch the solution

here; for details see Lopez (2008, Chapter 4).

Lossless pruning. For each phrase, we only

search if we have already successfully found both

its longest suffix and longest prefix. For example,

if a, b, c, and d are all words, then we only search

for phrase abXcd if we have already found occur-

rences of phrases abXc and bXcd.

Precomputation of expensive searches. For

phrases containing multiple very frequent sub-

phrases, we precompute the list of occurrences into

an inverted index. That is, if both u and v are fre-

quent, we simply precompute all locations of uXv
and vXu.

Fast merge algorithm. For phrases pairing a

frequent subphrase with infrequent subphrases, we

use a merge algorithm whose upper bound com-

plexity is logarithmic in the number of occurrences

of the frequent subphrase. That is, if count(u) is

small, and count(v) is big, then we can find uXv
in at most O(count(u) · log(count(v))) time.

Our implementation is a fast extension to the Hi-

ero decoder (Chiang, 2007), written in Pyrex.2 It

is an order of magnitude faster than the Python im-

plementation of Lopez (2007). Pattern matching,

extraction, and scoring steps add approximately

2 seconds to per-sentence decoding time, slow-

ing decoding by about 50% compared with a con-

ventional exact model representation using exter-

nal prefix trees (Zens and Ney, 2007). See Lopez

(2008, Chapter 4) for analysis.

4 Experiments

Although the algorithmic issues of translation by

pattern matching are largely solved, none of the

previous work has reported any improvements in

2Pyrex combines Python and C code for performance.
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
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state of the art with very large models.3 In the

remainder of this work, we scratch the surface of

possible uses.

We experimented on Chinese-English newswire

translation. Except where noted, each system was

trained on 27 million words of newswire data,

aligned with GIZA++ (Och and Ney, 2003) and

symmetrized with the grow-diag-final-and heuris-

tic (Koehn et al., 2003). In all experiments that fol-

low, each system configuration was independently

optimized on the NIST 2003 Chinese-English test

set (919 sentences) using minimum error rate train-

ing (Och, 2003) and tested on the NIST 2005

Chinese-English task (1082 sentences). Optimiza-

tion and measurement were done with the NIST

implementation of case-insensitive BLEU 4n4r

(Papineni et al., 2002).4

4.1 Baseline

We compared translation by pattern matching with

a conventional exact model representation using

external prefix trees (Zens and Ney, 2007). To

make model computation efficient for the latter

case, we followed the heuristic limits on phrase ex-

traction used by Chiang (2007).

• Phrases were restricted to five words. Each

gap character counts as a single word regard-

less of how many actual words it spans. Thus

phrase aXb consisting of words a and b sep-

arated by a gap is three words.

• Phrases were restricted to a span of ten words

in the training data.

• Phrases were restricted to two gaps.

• Gaps were required to span at least two words

in the training data.

• Phrases were extracted using a tight heuristic.

Chiang (2007) uses eight features, so we incor-

porate these into the conventional baseline. How-

ever, as discussed previously in §3, the pattern

matching architecture makes it difficult to compute

the target-to-source translation probability, so this

feature is not included in the pattern matching sys-

tem. This may not be a problem—Och and Ney

3Zhang and Vogel (2005) report improvements, but all of
their results are far below state of the art for the reported task.
This may be because their system was not tuned using mini-
mum error rate training (Och, 2003).

4ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl

(2002) observed that this feature could be replaced

by the source-to-target probability without loss of

accuracy. Preliminary experiments suggested that

two other features in Chiang’s model based on rule

counts were not informative, so we considered a

model containing only five features.

1. Sum of logarithms of source-to-target phrase

translation probabilities.

2. Sum of logarithms of source-to-target lexical

weighting (Koehn et al., 2003).

3. Sum of logarithms of target-to-source lexical

weighting.

4. Sum of logarithms of a trigram language

model.

5. A word count feature.

The sample size (see §3) for the pattern match-

ing system was 300.5 Results show that both trans-

lation by pattern matching and reduced feature set

are harmless to translation accuracy (Table 3).

4.2 Rapid Prototyping via Pattern Matching

Even in this limited experiment, translation by pat-

tern matching improved experimental turnaround.

For the conventional system, it took 10.8 hours to

compute the full model, which required 6.1GB of

space. For the pattern matching system, it took

only 8 minutes to compute all data structures and

indexes. These required only 852MB of space.

There are two tradeoffs. First, memory use is

higher in the pattern matching system, since the

conventional representation resides on disk. Sec-

ond, per-sentence decoding time with the pattern

matching system is slower by about 2 seconds due

to the expense of computing rules and parameters

on demand. Even so, the experimental turnaround

time with the pattern matching system was still

faster. We would need to decode nearly 20,000

sentences with it to equal the computation time of

conventional model construction. We might need

to decode this many times during MERT, but only

because it decodes the same test set many times.

However, it is straightforward to extract all rules

for the development set using pattern matching,

and use them in a conventional system for MERT.

5We use deterministic sampling, which is useful for repro-
ducibility and for minimum error rate training (Och, 2003).
See Lopez (2008, Chapter 3) for details.
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System BLEU

Conventional (eight features) 30.7

Conventional (five features) 30.6

Pattern matching (five features) 30.9

Table 3: Baseline system results.

Taking our five-feature pattern matching sys-

tem as a starting point, we next considered several

ways in which we might scale up the translation

model. Here the benefits of prototyping become

more apparent. If we were to run the following

experiments in a conventional system, we would

need to compute a new model for each condition.

With translation by pattern matching, nearly ev-

ery variant uses the same underlying representa-

tion, so it was rarely even necessary to recompute

data structures and indexes.

4.3 Relaxing Length Restrictions

Increasing the maximum phrase length in standard

phrase-based translation does not improve BLEU

(Koehn et al., 2003; Zens and Ney, 2007). How-

ever, this effect has not yet been evaluated in hier-

archical phrase-based translation.

We experimented with two analogues to the

maximum phrase length. First, we varied the limit

on source phrase length (counting each gap as a

single word), the closest direct analogue. Chiang

(2007) used a limit of five. We found that accuracy

plateaus at this baseline setting (Figure 1). Second,

we varied the limit on the span of phrases extracted

from the training text. Suppose we are interested in

a source phrase uXv. If u and v are collocated in a

training sentence, but within a span longer than the

limit, then the model is prevented from learning a

rule that translates this discontiguous phrase as a

single unit. Chiang (2007) fixes this limit at ten.

Again, accuracy plateaus near the baseline setting

(Figure 2).

Our results are similar to those for conventional

phrase-based models (Koehn et al., 2003; Zens and

Ney, 2007). Though scaling along these axes is un-

helpful, there is still a large space for exploration.

4.4 Interlude: Hierarchical Phrase-Based

Translation versus Lexical Reordering

In a related line of inquiry, we considered the ef-

fect of increasing the number of gaps in phrases.

Chiang (2007) limits them to two. Although we

consider more than this, we also considered fewer,
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Figure 1: Effect of the maximum phrase length.
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Figure 2: Effect of the maximum phrase span.

to gain insight into the hierarchical model.

Hierarchical phrase-based translation is often

reported to be better than conventional phrase-

based translation, but the actual reason for this is

unknown. It is often argued that the ability to trans-

late discontiguous phrases is important to model-

ing translation (Chiang, 2007; Simard et al., 2005;

Quirk and Menezes, 2006), and it may be that this

explains the results. However, there is another hy-

pothesis. The model can also translate phrases in

the form uX or Xu (a single contiguous unit and

a gap). If it learns that uX often translates as

Xu′, then in addition to learning that u translates

as u′, it has also learned that u switches places with

a neighboring phrase during translation. This is

similar to lexicalized reordering in conventional

phrase-based models (Tillman, 2004; Al-Onaizan

and Papineni, 2006).6 If this is the real benefit of

the hierarchical model, then the ability to translate

discontiguous phrases may be irrelevant.

To tease apart these claims, we make the follow-

ing distinction. Rules in which both source and tar-

get phrases contain a single contiguous element—

that is, in the form u, Xu, uX , or XuX—

encode lexicalized reordering in hierarchical form.

Rules representing the translation of discontigu-

ous units—minimally uXv—encode translation

knowledge that is strictly outside the purview of

lexical reordering.

We ran experiments varying both the number of

contiguous subphrases and the number of gaps (Ta-

6This hypothesis was suggested independently in personal
communications with several researchers, including Chris
Callison-Burch, Chris Dyer, Alex Fraser, and Franz Och.
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ble 4). For comparison, we also include results

of the phrase-based system Moses (Koehn et al.,

2007) with and without lexicalized reordering.

Our results are consistent with those found else-

where in the literature. The strictest setting allow-

ing no gaps replicates a result in Chiang (2007, Ta-

ble 7), with significantly worse accuracy than all

others. The most striking result is that the accu-

racy of Moses with lexicalized reordering is indis-

tinguishable from the accuracy of the full hierar-

chical system. Both improve over non-lexicalized

Moses by about 1.4 BLEU. The hierarchical emu-

lation owes its performance only partially to lex-

icalized reordering. Additional improvement is

seen when we add discontiguous phrases. That the

effect of lexicalized reordering is weaker in the hi-

erarchical model is unsurprising, since its parame-

terization is much simpler than the one used by the

Moses, which includes several specialized features

for this purpose. This suggests that the hierarchical

model could be improved through better parame-

terization, and still benefit from the translation of

discontiguous phrases.

Finally, we observe that using more gaps does

not improve the hierarchical model.

4.5 The Tera-Scale Model

These are interesting scientific findings, but we

have so far failed to show an improvement over

the baseline. For this, we return to the tera-scale

model of §2. Recall that in this model, we mod-

ify the baseline by adding 80 million words of

UN data and using sparse maximum entropy align-

ments with a loose phrase extraction heuristic.

To avoid conflating rules learned from in-

domain newswire and out-of-domain UN data, we

treat each corpus independently. We sample from

up to 300 source phrase occurrences from each,

and compute lexical weighting and the source-

to-target phrase translation probabilities separately

for both samples. For the UN corpus, the resulting

probabilities are incorporated into three new fea-

tures. These features receive a value of zero for

any rule computed from the newswire data. Like-

wise, the baseline source-to-target phrase transla-

tion probability and lexical weighting features re-

ceive a value of zero for rules computed from the

UN data.

We make one more modification to the model

that is quite easy with pattern matching. We notice

that it is not always possible to extract a transla-

Subphrases Gaps Example BLEU

1 0 u 26.3

1 1 uX,Xu 30.2*

1 2 XuX 30.0*

2 1 uXv 30.5

2 2 uXvX, XuXv 30.8

3 2 uXvXw 30.9

4 3 uXvXwXy 30.9

5 4 uXvXwXyXz 30.8

Moses without lexicalized reordering 29.4

Moses with lexicalized reordering 30.7

Table 4: Comparison with Moses and effect of the

maximum number of subphrases and gaps. *De-

notes emulation of lexicalized reordering.

tion for a source phrase occurrence, even under the

loose heuristic. This is because there may be no

consistently aligned target phrase according to the

alignment. If a phrase occurs frequently but we

can only rarely extract a translation for it, then our

confidence that it represents a natural unit of trans-

lation should diminish. Conversely, if we usually

extract a translation, then the phrase is probably

a good unit of translation. We call this property

coherence. Conventional offline extraction meth-

ods usually ignore coherence. If a phrase occurs

many times but we can only extract a translation

for it a few times, then those translations tend to

receive very high probabilities, even though they

might simply be the result of noisy alignments.

We can incorporate the notion of coherence di-

rectly into the phrase translation probability. In the

baseline model, the denominator of this probabil-

ity is the sum of the number of rule occurrences

containing the source phrase, following Koehn et

al. (2003).7 We replace this with the number of

attempted extractions. This parameterization may

interact nicely with the loose extraction heuris-

tic, reducing the probability of many greedily ex-

tracted but otherwise noisy phrases.

We compared the baseline with our tera-scale

model. Since we had already performed substan-

tial experimentation with the NIST 2005 set, we

also included the NIST 2006 task as a new held-

out test set. Results including variants produced

by ablating a single modification on the develop-

ment set are given in Table 5.

We also compared our modified system with

an augmented baseline using a 5-gram language

7Or the sample size, whichever is less.
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NIST 2005 NIST 2006

System BLEU loss BLEU

Tera-Scale Model (all modifications) 32.6 – 28.4

with grow-diag-final-and instead of maximum entropy alignment 32.1 -0.5

with tight extraction heuristic instead of loose 31.6 -1.0

without UN data 31.6 -1.0

without separate UN features 32.2 -0.4

with standard p(f |e) instead of coherent p(f |e) 31.7 -0.9

Baseline (conventional) 30.7 -1.9

Baseline (pattern matching) 30.9 -1.7 27.0

Table 5: Results of scaling modifications and ablation experiments.

model and rule-based number translation. The ob-

jective of this experiment is to ensure that our im-

provements are complementary to better language

modeling, which often subsumes other improve-

ments. The new baseline achieves a score of 31.9

on the NIST 2005 set, making it nearly the same

as the state-of-the-art results reported by Chiang

(2007). Our modifications increase this to 34.5, a

substantial improvement of 2.6 BLEU.

5 Related Work and Open Problems

There are several other useful approaches to scal-

ing translation models. Zens and Ney (2007) re-

move constraints imposed by the size of main

memory by using an external data structure. John-

son et al. (2007) substantially reduce model size

with a filtering method. However, neither of

these approaches addresses the preprocessing bot-

tleneck. To our knowledge, the strand of research

initiated by Callison-Burch et al. (2005) and Zhang

and Vogel (2005) and extended here is the first to

do so. Dyer et al. (2008) address this bottleneck

with a promising approach based on parallel pro-

cessing, showing reductions in real time that are

linear in the number of CPUs. However, they do

not reduce the overall CPU time. Our techniques

also benefit from parallel processing, but they re-

duce overall CPU time, thus comparing favorably

even in this scenario.8 Moreover, our method

works even with limited parallel processing.

Although we saw success with this approach,

there are some interesting open problems. As dis-

cussed in §4.2, there are tradeoffs in the form of

slower decoding and increased memory usage. De-

coding speed might be partially addressed using

a mixture of online and offline computation as in

Zhang and Vogel (2005), but faster algorithms are

8All of our reported decoding runs were done in parallel.

still needed. Memory use is important in non-

distributed systems since our data structures will

compete with the language model for memory. It

may be possible to address this problem with a

novel data structure known as a compressed self-

index (Navarro and Mäkinen, 2007), which sup-

ports fast pattern matching on a representation that

is close in size to the information-theoretic mini-

mum required by the data.

Our approach is currently limited by the require-

ment for very fast parameter estimation. As we

saw, this appears to prevent us from computing the

target-to-source probabilities. It would also appear

to limit our ability to use discriminative training

methods, since these tend to be much slower than

the analytical maximum likelihood estimate. Dis-

criminative methods are desirable for feature-rich

models that we would like to explore with pattern

matching. For example, Chan et al. (2007) and

Carpuat and Wu (2007) improve translation ac-

curacy using discriminatively trained models with

contextual features of source phrases. Their fea-

tures are easy to obtain at runtime using our ap-

proach, which finds source phrases in context.

However, to make their experiments tractable, they

trained their discriminative models offline only for

the specific phrases of the test set. Combining dis-

criminative learning with our approach is an open

problem.

6 Conclusion

We showed that very large translation models

present an interesting engineering challenge, and

illustrated a solution to this challenge using pattern

matching algorithms. This enables practical, rapid

exploration of vastly larger models than those cur-

rently in use. We believe that many other improve-

ments are possible when the size of our models is
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unconstrained by resource limitations.
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