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Recent work for Chinese word segmentation an
POS tagging pays much attention to discriminativ
methods, such as Maximum Entropy Model (ME
(Ratnaparkhi and Adwait, 1996), Conditional Ran
dom Fields (CRFs) (Lafferty etal., 2001), percep
tron training algorithm (Collins, 2002), etc. Com-
pared to generative ones such as Hidden Mark
Model (HMM) (Rabiner, 1989; Fine et al., 1998),
discriminative models have the advantage of flex
bility in representing features, and usually obtaind’
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Abstract

In this paper, we describe a new rerank-
ing strategy named word lattice reranking,
for the task of joint Chinese word segmen-
tation and part-of-speech (POS) tagging.
As a derivation of the forest reranking
for parsing (Huang, 2008), this strategy
reranks on the pruned word lattice, which
potentially contains much more candidates
while using less storage, compared with
the traditional-best list reranking. With a
perceptron classifier trained with local fea-
tures as the baseline, word lattice rerank-
ing performs reranking with non-local fea-
tures that can’t be easily incorporated into
the perceptron baseline. Experimental re-
sults show that, this strategy achieves im-
provement on both segmentation and POS
tagging, above the perceptron baseline and
then-best list reranking.

Introduction

almost perfect accuracy in two tasks.

Originated by Xue and Shen (2003), the typ-

segmentation in a classification style, by assign-
ing each character a positional tag indicating its
relative position in the word. If we extend these
positional tags to include POS information, seg-
mentation and POS tagging can be performed by a
single pass under a unify classification framework
(Ng and Low, 2004). In the rest of the paper, we
call this operation mode Joint S&T. Experiments
of Ng and Low (2004) shown that, compared with
performing segmentation and POS tagging one at
atime, Joint S&T can achieve higher accuracy not
only on segmentation but also on POS tagging.
Besides the usual local features such as the
character-based ones (Xue and Shen, 2003; Ng
and Low, 2004), many non-local features related
to POSs or words can also be employed to improve
performance. However, as such features are gener-
ated dynamically during the decoding procedure,
incorporating these features directly into the clas-
sifier results in problems. First, the classifier’s fea-
ture space will grow much rapidly, which is apt to
overfit on training corpus. Second, the variance of
on-local features caused by the model evolution
guring the training procedure will hurt the param-

)eter tuning. Last but not the lest, since the cur-

rent predication relies on the results of prior predi-

cations, exact inference by dynamic programming

can't be obtained, and then we have to maintain a

cR/-best candidate list at each considering position,

which also evokes the potential risk of depress-
ii_ng the parameter tuning procedure. As a result,

any theoretically useful features such as higher-
order word- or POS- grams can not be utilized ef-
ficiently.

ical approach of discriminative models conducts A Widely used approach of using non-local

(© 2008. Licensed to the Coling 2008 Organizing Com
mittee for publication in Coling 2008 and for re-publishing in

any form or medium.

features is the well-known reranking technique,

which has been proved effective in many NLP
tasks, for instance, syntactic parsing and machine
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Figure 1: Pruned word lattice as directed graph. The character segjwenchoose is T -/- X -#-
& -fR-7K". For clarity, we represent each subsequence-POS pair as a sifgge while ignore the
corresponding scores of the edges.

translation (Collins, 2000; Huang, 2008), etc. Es2.1 Oracle Diameter in Lattice

pecially, Huang (2008) reranked the packed forgjen 4 sentence, its referencer and pruned
est, which contains exponentially many parsegyqq |attice . generated by the baseline classi-
Inspired by his work, we propose word lattiCefer the oracle diametet* of L is define as the
reranking, a strategy that reranks the pruned WOrgl, meter most similar to. With F-measure as the
lattice outputted by a baseline classifier, rathertha&oring function, we can identify* using the al-
only an-best list. Word lattice, a directed graph a%yorithm depicted in Algorithm 1, which is adapted

shown in Figure 1, is a packed structure that cafy joyica| analysis from the forest oracle computa-
represent many possibilities of segmentation angl | ¢ Huang (2008)

POS tagg|gg. kOuBexhperlmhents on t?(? Penn Chi- Before describe this algorithm in detail, we de-
nege Treg an 5 S, ow that, reranking on Worﬁjict the key point for finding the oracle diameter.
lattice gains obvious improvement over the bas iven the system’s outputand the referencg*

line classifier and the reranking ombest list. using|y| and|y*| to denote word counts of them

C(()jmpr_;lred ?galn;t the baseline, we obtatlg a(; errf‘-)é’spectively, andly N y*| to denote matched word
reduction of11.9% on segmentation, ant.3% .t of|y| and|y*|, F-measure can be computed

on Joint S&T. by:
2 Word Lattice 9PR 20y N y*|

F(y,y*) = = - (1)
Formally, a word latticeL is a directed graph P+R |yl + |y

(V,E), whereV is the node set, and is the . .
edge set. Suppose the word lattice is for sententtere, P = % is precision, and? = |y|27y‘\
Cy., = C1..Cy, nodev; € V (i = 1..n — 1) de- is recall. Notice that'(y,y*) isn’t a linear func-
notes the position betweer andC;, 1, while vy  tion, we need access the largést y*| for each
beforeC; is the source node, ang, after C,, is possibldy| in order to determine the diameter with
the sink node. An edge € F departs fromy, and maximumF, or another word, we should know the
arrives atv, (0 < b < e < n), it covers a subse- maximum matched word count for each possible
guence ofCy.,,, which is recognized as a possiblediameter length.

word. Considering Joint S&T, we label each edge The algorithm shown in Algorithm 1 works in
a POS tag to represent a word-POS pair. A series dynamic programming manner. A table node
of adjoining edges forms a path, and a path cor¥[i, j] is defined for sequence spgnj], and it has
necting the source node and the sink node is calledstructureS to remember the begy;.; N y;;,| for
diameter, which indicates a specific pattern of segeach|y;.;|, as well as the back pointer for this best
mentation and POS tagging. For a diameteld| choice. The for-loop in lin@ — 14 processes for
denotes the length af which is the count of edges each nod&[:, j] in a shorter-span-first order. Line
contained in this diameter. In Figure 1, the patl3 — 7 initialize T'[7, j] according to the reference

p = vgv3 — U3 U5 — Us U7 is a diameter, and and the word lattice’s edge skt E. If there exists
Ip| is 3. an edges in L - E covering the spaf, j], then we
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Algorithm 1 Oracle Diametera la Huang (2008, Algorithm 2 Lattice generation algorithm.

Sec. 4.1). 1: Input: character sequend® ..,
1: Input: sentence, reference- and latticeL 2 E - 0
2: for [i, 4] C [1,|s|] in topological ordedo 3:fori«—1..ndo

if Je € L - E s.t.e spans from to j then 4 cands — 0 )
4 if e - label exists inr then g for ¢ 1(-}- m'”(?‘ K)do
g: | Tl g1- 51 =1 7: ;f)rte ilglOJréndo
7 i) 81— 0 & P (wb)

. . ' 9: p - score — Eval(p)

8 for k s.t.T[i, k — 1] andT[k, j] defineddo 10: s —p- score + Best[i — 1]
9 for p .t T, k — 1] - S[p] defineddo 11: Best[i] < maz(s, Best]i])
10: for ¢ S't'T[l.C’J] - Slg] defineddo ) 12: insert(s, p) into cands
11 n — Ti,k—1] - Sp] + T[k, j] - Sq] 13:  sortcands according tos
12: if n > TIi,j]-S[p+ q] then 14: B BU eamdsl] ?\7 .
13: T[%]] -Slp+q] —n % cands|1.. \ l'p
14: T[i,5)- Slp+q| - bp — (k,p,q) 15: Output: edge set of latticeEl

15: t «— argmamt%wm

16: d* «— Tr(T[1,]|s|] - S[t].bp) , .
17: Output: oracle diameterd* of edges that point to the node at positipwe call

this pruning strategyn-degree pruning. The gen-
eration algorithm is shown in Algorithm 2.
defineT[s, j], otherwise we leave this node unde- |jne 3 — 14 consider each charactér, in se-
fined. In the first situation, we initialize this node’'squencecands is used to keep the edges closing at
S structure according to whether the word-PO@ositioni. Line 5 enumerates the candidate words
pair ofeisin the reference (llne— 7) Line8—14 ending withC; and no |0nger tharkl, where K
update?’[i, j]'s .S structure using thé structures s 20 in our experiments. Liné enumerates all
from all possible child-node paif[i, k — 1] and POS tags for the current candidate wargwhere
T'[k, j]. Especially, line) — 10 enumerate all com- pOS denotes the POS tag set. FunctiBnal in
binations ofp and ¢, wherep and g each repre- |ine 9 returns the score for word-POS paifrom
sent a kind of diameter length ififi, k — 1] and  the baseline classifier. The arr&yst preserve the
Tk, j]. Line 12 — 14 refreshes the structur® score for sequena®,.;’s best labelling results. Af-
of node T'[i, j] when necessary, and meanwhileter all possible word-POS pairs (or edges) consid-
a back pointer(k, p, ) is also recorded. When ered, linel3 — 14 select theV edges we want, and
the dynamic programming procedure ends, we s@dd them to edge sét.

lect the diameter lengthof the top nod€el'[1,[s|], ~ Though this pruning strategy seems relative
which maximizes the F-measure formula in |inQ‘0ugh I Simp|e pruning for edge set while no
15, then we use functioff’r to find the oracle di- pruning for node set, we still achieve a promising
ameterd* by tracing the back pointéip. improvement by reranking on such lattices. We be-

52 Generation of the Word Lattice !leve more elaborate pruning strategy will results
in more valuable pruned lattice.

We can generate the pruned word lattice using the _
baseline classifier, with a slight modification. The3 Reranking

classifier conducts decoding by considering eacR hified framework can be applied to describing

character in a left-to-right fashion. At each ConSidFeranking for both-best list and pruned word lat-

ering position;, the classifier enumerates all cany; g (Collins, 2000; Huang, 2008). Given the can-
didate results for subsequence,;, by attaching  gigate setand(s) for sentence, the reranker se-
each current candidate word-POS pato the tail  |ots the best itery) from cand(s):

of each candidate result ats prior position, as

the endmost of the new generated candidate. We g = argmax w-f(y) (2)
give eachp a score, which is the highest, among y&eand(s)

all C1.;'s candidates that hayeas their endmost. For reranking:-best list,cand(s) is simply the set
Then we selectV word-POS pairs with the high- of n best results from the baseline classifier. While
est scores, and insert them to the lattice’s edge sér reranking word latticecand(s) is the set of
This approach of selecting edges implies that, faall diameters that are impliedly built in the lattice.
the lattice’s node set, we generate a nodat each w - f(y) is the dot product between a feature vec-
position:. BecauseV is the limitation on the count tor f and a weight vectow, its value is used to
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Algorithm 3 Perceptron training for reranking  Algorithm 4 Cube pruning for non-local features.

1: Input: Training examplefcand(s;), y; 11y 1: function CUBE(L)
22w+0 2 for v € L - V in topological ordedo
3:fort«—1..Tdo 3 NBEST(v)
4: for i< 1.. Ndo 4: return D, [1]
5 g arg mazyecand(s;) W - (y) 5: procedure NBEST(v)
6: if § # y; then 6 heap — ()
£ wo—w+f(y7) - £(7) 7 for v’ topologically beforey do
8: Output: Parametersw 8: A « all edges from’ tov
9: p — (Dys, A)
Non-local Template Comment i(l) g’j 1>'360;e ‘; Eval(p,1)
WoTo current word-POS pair : SH((p, 1), heap)
W_, word 1-gram beforéV, Tp 12:  HeAPIFY(heap)
T, POS1-gram befordvo T 13: buf <0
T 2T 1 POS2-gram beforév, T, 14: while |heap| > 0 and|buf| < N do
T 5T 5T 4 POS3-gram beforéVoTo o Zatgg; ertZSnP:[l\)/lbif} (heap)
Table 1: Non-local feature templates used fofj RusHSUCC(item, heap)
- 8: sortbuf to Dy,
reranking 19: procedure PusHSucc((p, j), heap)
20: pis (vecy, vecs)
. L 21: for i +— 1..2 do
rerankcand(s). Following usual practice in pars- 22: j —j+b
ing, the first featuref, (v) is specified as the score 23: if [veci| > ji then

(p,J')-score — Eval(p, ')

outputted by the baseline classifier, and its valu%éi PUSH((p, '), heap)

is a real number. The other features are non-locat
ones such as word- and PO&-grams extracted
from candidates im-best list (forn-best rerank- gjlizing the information ahead of the current con-
ing) or diameters (for word lattice reranking), antsigering node.

they ared — 1 valued.

3.1 Training of the Reranker 3.3 Reranking by Cube Pruning

We adopt the perceptron algorithm (Collins, zoozpecause of the non-local features such as word-
to train the reranker. as shown in Algorithm 3. Weand POSn-grams, the reranking procedure is sim-
use a simple refinement strategy of “averaged pgar to machine translation decoding with inter-
rameters” of Collins (2002) to alleviate overfitting9rated language models, and should maintain a
on the training corpus and obtain more stable pelist of IV best candidates at each node of the lat-
formance. tice. To speed up the procedure of obtaining the
For every training examplécand(s;), y'}, y? N best candidates, following Huang (2008, Sec.
denotes the best candidate dand(s;). Forn- 3.3), we adapt the cube pruning method from ma-
best reranking, the best candidate is easy to finghine translation (Chiang, 2007; Huang and Chi-
whereas for word lattice reranking, we should us@nd 2007) which is based on efficient k-best pars-
the algorithm in Algorithm 1 to determine the or-ing algorithms (Huang and Chiang, 2005).
acle diameter, which represents the best candidateAs shown in Algorithm 4, cube pruning works
result. topologically in the pruned word lattice, and main-
tains a list of N best derivations at each node.
When deducing a new derivation by attaching a
The non-local feature templates we use to train theurrent word-POS pair to the tail of a antecedent
reranker are listed in Table 1. Notice that all feaderivation, a functiorEval is used to compute the
tures generated from these templates don’t contaimew derivation’s score (liné0 and24). We use
“future” words or POS tags, it means that we onlya max-heapheap to hold the candidates for the
use current or history word- or POS-grams to next-best derivation. Lin& — 11 initialize heap
evaluate the current considering word-POS paito the set of top derivations along each deducing
Although it is possible to use “future” information source, the vector paiDy, ., A).Here, A de-
in n-best list reranking, it's not the same when wenotes the vector of current word-POS pairs, while
rerank the pruned word lattice. As we have to trab,,__, denotes the vector aV best derivations
verse the lattice topologically, we face difficulty inat A’s antecedent node. Then at each iteration,

3.2 Non-local Feature Templates
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Non-lexical-target Instances
Cn (n = —2..2) 072:‘]‘—, CfleTTJ, C():?t\, 012%74, 02:@
C,LC”H (n = —2..1) C,QC,F’FﬁFv, 07100213?771:\, 0001=71:\M'"4, 0102:%@
C_101 C_101=1%J£&
Lexical-target Instances
C()Cn (n = —2..2) 00072:}\’]:, 00071:71:\&7, 0000:71:\7t\, CoCl=7t\i’&, 0002:71:\@
CoCﬂ,Cn+1 (’IL = —2..1) 000_20_1:71\_’:@, Coc_lcoziﬁ?]}:\, 000001:71\71:\i&, 000102:71\}&@
0007101 C()Cf1C1 = K\ﬁi{{’»

Table 2: Feature templates and instances. Suppose we consider the dnirckeh®X.” in the sequence
“TRRME”.

we pop the best derivation frotheap (line 15), these positional tags, the segmentation transforms
and push its successors inteap (line 17), until to a classification problem. For Joint S&T, we
we getN derivations otheap is empty. In line22  expand positional tags by attaching POS to their
of function RusHSuUcc, j is a vector composed of tails as postfix. As each tag now contains both
two index numbers, indicating the two candidatespositional- and POS- information, Joint S&T can
indexes in the two vectors of the deducing sourcalso be resolved in a classification style frame-
p, where the two candidates are selected to dedussrk. It means that, a subsequence is a word with
a new derivation.j’ is a increment vector, whose POSt, only if the positional part of the tag se-
ith dimension isl, while others aré). As non- quence conforms te or bm*e pattern, and each
local features (word- and PO%-grams) are used element in the POS part equalsttoFor example,

by function Eval to compute derivation’s score, a tag sequence NN m_NN e_N N represents a
the derivations extracted fromeap may be out of three-character word with POS tAg\V .

order. So we use a bufféw f to keep extracted

derivations (linel6), then sorbu f and put its first

N items toDy, (line 18). 4.2 Feature Templates

4 Baseline Perceptron Classifier The features we use to build the classifier are gen-
41 Joint S&T as Classification erated from_the templates of _Ng an_d Low (2004).
] ) ) For convenience of comparing with other, they
Following Jiang et al. (2008), we describe segmenyignt adopt the ones containing external knowl-
tation and Joint S&T as below: _ edge, such as punctuation information. All their
For a given Chinese sentence appearing asygy|ates are shown in Table @.denotes a char-
character sequence: acter, while its subscript indicates its position rela-
Cin=0C10C2..Cy tive to the current considering character(it has the
the goal of segmentation is splitting the sequencgubscrip).

into several subsequences: The table’s upper column lists the templates that

Criey Cert1ies -+ Cepy_1+1iem immediately from Ng and Low (2004). they
While in Joint S&T, each of these subsequences iTamed these templatesn-lexical-target because
labelled a POS tag: predications derived from them can predicate with-
Cliey /t1 Ceratien /[t . Coiitier, [tm out considering the current charact€s. Tem-

plates calledexical-target in the column below are

r) denotes the subsequence ranging ft@o C, , introduced py Jiang et_a_tl. (20(_)8). They are gener-

andt;(i = 1..m,m < n) denotes the POS tag of atgd by adding an additional field, to eachnon-

Cor 1 itien- !eX| (_:al—target template, S0 they can carry out pred-
If we label each character a positional tag inlcatlon.not only according to the cgntext, but also

dicating its relative position in an expected subse"’lccordlng to the current character itself.

guence, we can obtain the segmentation result ac-Notice that features derived from the templates

cordingly. As described in Ng and Low (2004) andn Table 2 are all local features, which means all

Jiang et al. (2008), we useindicating asingle- features are determined only by the training in-

character word, whilé, m ande indicating thebe-  stances, and they can be generated before the train-

gin, middle andend of a word respectively. With ing procedure.

WhereC;(i = 1..n) denotes a characte®;., (I <
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Algorithm 5 Perceptron training algorithm. Perceptron Learning Curves

1: Input: Training example$z;, y;) — T T T

> e 0 0.96 | ]
3:fort«— 1..7do 0.95 - 7
4; fori« 1..Ndo £ o094 7
5: Zi < argMaT,cGEN (a;) P (Ti, 2) - 8 o093} g
6 if z; 7§ Yi then Lgl_ 0.92 + s T
7 a—a+ ®(zi,y) — Plas, zi) 091 L /)<»»/«></>*"’><’”‘X' _ |
8: Output: Parametersx oo b ISeg:mﬁgjLattls?_? P

0O 1 2 3 4 5 6 7 8 9 10
number of iterations

4.3 Training of the Classifier
Collins  (2002)'s perceptron training aIgorithmFigure 2: Baseline averaged perceptron learning

were adopted again, to learn a discriminative cla&Urves for segmentation and Joint S&T.
sifier, mapping from inputss € X to outputs

y € Y. Herex is a character sequence, ands ,,_pest reranking, based on this baseline classifier.
the sequence of classification result of each chaggr each experiment, we give accuracies on seg-
acter inx. For segmentation, the classification rementation and Joint S&T. Analogous to the situa-
sult is a positional tag, while for Joint S&T, it is tion in parsing, the accuracy of Joint S&T means
an extended tag with POS informatiol. denotes  that, a word-POS is recognized only if both the
the set of character sequence, whilalenotes the positional- and POS- tags are correctly labelled for

corresponding set of tag sequence. each character in the word'’s span.
According to Collins (2002), the function

GEN(x) generates all candidate tag sequences f6t1 Baseline Perceptron Classifier

the character sequenae, the representatio® The perceptron classifier are trained on the train-

maps each training exampc{le,y) € X xYto ing set using features generated from the templates
a feature vecto®(z,y) < R, and the parameter ;"1 2, and the development set is used to

vectora € R is the weight vector Corresloondingdetermine the best parameter vector. Figure 2
to the expected perceptron model’s feature spacg,

For a given input character sequengé¢he mission
of the classifier is to find the tag sequenEér)

ows the learning curves for segmentation and
Joint S&T on the development set. We choose
the averaged parameter vector aftéerations for

safisfying: the final test, this parameter vector achieves an F-
measure 0f).973 on segmentation, an@925 on
Fz) — argmax ®(z,y)-a 3) Joint S&T. Although the accuracy on segmentation

yeGEN(z) is quite high, it is obviously lower on Joint S&T.
Experiments of Ng and Low (2004) on CTB0
The inner product® (z, y) - « is the score of the also shown the similar trend, where they obtained
resulty givenz, it represents how much plausibly F-measure).952 on segmentation, anel919 on
we can label character sequencas tag sequence Joint S&T.
y. The training algorithm is depicted in Algorithm
5. We also use the “averaged parameters” strate§y2 Preparation for Reranking

to alleviate overfitting. Forn-best reranking, we can easily generatsest
results for every training instance, by a modifica-
tion for the baseline classifier to hotdbest can-
Our experiments are conducted on the Penn Chilidates at each considering point. For word lattice
nese Treebank.0 (CTB 5.0). Following usual reranking, we use the algorithm in Algorithm 2 to
practice of Chinese parsing, we choose chaptegenerate the pruned word lattice. Given a training
1—260 (18074 sentences) as the training set, chapinstances;, its n best result list or pruned word
ters301 — 325 (350 sentences) as the developmeniattice is used as a reranking instaneed(s;),
set, and chapterg71 — 300 (348 sentences) as the best candidate result (of thebest list) or or-
the final test set. We report the performance dcle diameter (of the pruned word lattice) is the
the baseline classifier, and then compare the perranking targey;. We find the best result of the
formance of the word lattice reranking against the. best results simply by computing each result's

5 Experiments
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F-measure, and we determine the oracle diamg2-Pest | OraSeg | TstSeg | OraS&T | TstS&T
er of th d word latt ng the algorithm—22 0.9827 | 0.9749 | 0.9455 0.9280
er or the pruned word lattice using the algo 50 0.9903 | 0.9754 | 0.9552 0.9302

depicted in Algorithm 1. All pairs ofand(s;) 100 0.9907 | 0.9755 0.9558 0.9305
andy’ deduced from the baseline model’s training Degree | Ora Seg | Rk Seg | Ora S&T | RNk S&T
instances comprise the training set for reranking. 2 0.9898 | 0.9753 0.9549 0.9296

5 0.9927 | 0.9774 | 0.9768 0.9336

The development set and test set for reranking are 10
obtained in the same way. For the reranking train-
ing set{cand(s;),y; 1Y, {y;}Y, is called oracle Table 3: Performance of-best list reranking and
set, and the F-measure §§; }¥, against the ref- word lattice reranking.n-best: the size of the-
erence set is called oracle F-measure. We use thest list forn-best list reranking; Degree: the in de-
oracle F-measure indicating the utmost improvegree limitation for word lattice reranking; Ora Seg:
ment that an reranking algorithm can achieve. oracle F-measure on segmentatiomdfest lists or
word lattices; Ora S&T: oracle F-measure on Joint
S&T of n-best lists or word lattices; Rnk Seg: F-
The flows of then-best list reranking and the measure on segmentation of reranked result; Rnk
pruned word lattice reranking are similar to theS&T: F-measure on Joint S&T of reranked result
training procedure for the baseline classifier. The
training set for reranking is used to tune the param-
eter vector of the reranker, while the devek)pmerhase“ne classifier. While fot-best reranking with
set for reranking is used to determine the optimaiettingn = 50, the Joint S&T’s error reduction is
number of iterations for the reranker’s training pro5-9% , and the segmentation’s error reduction is
cedure. 8.9%. We can see that reranking on pruned word
We compare the performance of the word latlattice is a practical method for segmentation and
tice reranking against the-best list reranking. Ta- POS tagging. Even with a much small data rep-
ble 3 shows the experimental results. The urfesentation, it obtains obvious advantage over the
per four rows are the experimental results for n-best list reranking.
best list reranking, while the four rows below are Comparing between the baseline and the two
for word lattice reranking. Im-best list rerank- reranking techniques, We find the non-local infor-
ing, with list size 20, the oracle F-measure onmation such as word- or POS- grams do improve
Joint S&T is0.9455, and the reranked F-measureaccuracy of segmentation and POS tagging, and
i50.9280. When list size grows up ta0, the oracle we also find the reranking technique is effective to
F-measure on Joint S&T jumps 9552, while utilize these kinds of information. As even a small
the reranked F-measure beconie@302. How- scalen-best list or pruned word lattice can achieve
ever, whem grows to100, it brings tiny improve- a rather high oracle F-measure, reranking tech-
ment over the situation of = 50. In word lat- nique, especially the word lattice reranking would
tice reranking, there is a trend similar to that irbe a promising refining strategy for segmentation
n-best reranking, the performance difference beand POS tagging. This is based on this viewpoint:
tweenin_degree = 2 andin_degree = 5is ob- On the one hand, compared with the initial input
vious, whereas the setting_degree = 10 does character sequence, the pruned word lattice has a
not obtain a notable improvement over the perforguite smaller search space while with a high ora-
mance ofin_degree = 5. We also notice that even cle F-measure, which enables us to conduct more
with a relative smalin_degree limitation, such as precise reranking over this search space to find the
in_degree = 5, the oracle F-measures for segbest result. On the other hand, as the structure of
mentation and Joint S&T both reach a quite highhe search space is approximately outlined by the
level. This indicates the pruned word lattice contopological directed architecture of pruned word
tains much more possibilities of segmentation anlttice, we have a much wider choice for feature se-
tagging, compared to-best list. lection, which means that we would be able to uti-
With the settingin_degree = 5, the oracle F- lize not only features topologically before the cur-
measure on Joint S&T reach@9774, and the rent considering position, just like those depicted
reranked F-measure climbs @®336. It achieves in Table 2 in sectior, but also information topo-
an error reduction 0f6.3% on Joint S&T, and an logically after it, for example the next woiid; or
error reduction 011.9% on segmentation, over the the next POS ta@;. We believe the pruned word

0.9934 0.9774 0.9779 0.9337

5.3 Results and Analysis
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lattice reranking technique will obtain higher im-Jiang, Wenbin, Liang Huang, Yajuan Lv, and Qun Liu.
provement, if we develop more precise reranking 2008. A cascaded linear model for joint chinese

. . word segmentation and part-of-speech tagging. In
algorithm and more appropriate features. Proceedings of the 46th Annual Meeting of the Asso-

6 Conclusion ciation for Computational Linguistics.

. . . fferty, John, Andrew McCallum, and Fernando
This paper describes a reranking strategy Callel-d’ijereira. 2001. Conditional random fields: Proba-

word lattice reranking. As a derivation of the for-  pjjistic models for segmenting and labeling sequence
est reranking of Huang (2008), it performs rerank- data. InProceedings of the 23rd International Con-
ing on pruned word lattice, instead of enbest  ference on Machine Learning, pages 282-289, Mas-
list. Using word- and POS- gram information, this  Sachusetts, USA.
reranking technique achieves an error reduction ofg, Hwee Tou and Jin Kiat Low. 2004. Chinese part-
16.3% on Joint S&T, and 1.9% on segmentation, ~ of-speech tagging: One-at-a-time or all-at-once?
over the baseline classifier, and it also outperforms Word-based or character-based? Phoceedings of
king om-best list. It confirms that word lat- the Empirical Methods in Natural Language Pro-
rgran 9 X C i cessing Conference.
tice reranking can effectively use non-local infor- . .
mation to select the best candidate result, from Eab'”iﬂ Law[jer;ce. 5- }98t9-d A tt|4tort|_al on h|ddenh
: : o markov models and selected applications in speec
rel_atlve_ small representation structure while with a recognition. InProceedings of IEEE, pages 257—
quite high oracle F-measure. However, our rerank- »gg
ing implementation is relative coarse, and it must _ _ .
have many chances for improvement. In futur&@naparkhi and Adwait. 1996. A maximum entropy
K il devel . . | part-of-speech tagger. Proceedings of the Empir-
WOI‘. » we will aeve Qp more prgmse pruning al-jcal Methods in Natural Language Processing Con-
gorithm for word lattice generation, to further cut ference.
down the search space while maintaining the ora;(— Ni d Libin Sh 2003. Chi q
: : : ue, Nianwen and Libin Shen. : inese wor
cle F-measure. We will also mvestlgat_e the feqture segmentation as Imr tagging. Iroceedings of
selection strategy under the word lattice architec- gGHAN Workshop.

ture, for effective use of non-local information.
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