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Abstract /_H

_ , ®IE % FEEL N
In Japanese dependency parsing, Kudo’s kare-wa hon-wo yomanai hito-da.

relative preference-based method (Kudo (He) (books) | [(doesntread) | |_(man )
and Matsumoto, 2005) outperforms both
deterministic and probabilistic CKY-based
parsing methods. In Kudo’s method, for _ _

®IE % EELL.
each dependent word (or chunk) a log- kare-wa hon-wo yomani,
linear model estimates relative preference (He) books) | [doesn't read )
of all other candidate words (or chunks) for (b) "He doesn’tread books”
being as its head. This cannot be consid-
ered in the deterministic parsing methods. Figure 1: Examples of Japanese sentences.
We propose an algorithm based on a tour-
nament model, in which the relative pref-
erences are directly modeled by one-on-
one games in a step-ladder tournament. In
an evaluation experiment witkyoto Text
Corpus Version 4.0the proposed method
outperforms previous approaches, includ-
ing the relative preference-based method.

(a) “He isa man who doesn’t read books.”

O(n) deterministic algorithm for projective lan-
guages. The model is enhanced for non-projective
languages by Nivre and Nilsson (2005). McDon-
ald et al. (2005) proposed a method based on
search of maximum spanning trees employing the
Chu-Liu-Edmonds algorithm (hereafteCLE al-
gorithm”) (Chu and Liu, 1965; Edmonds, 1967).
1 Introduction Most Japanese dependency parsers are based on
bunsetsu unitswhich are similar concept to En-

The shared tasks of multi-lingual dependency pargjish pase phrases. The constraints in Japanese
ing took place at CoNLL-2006 (Buchholz andgependency structure are stronger than those in
Marsi, 2006) and CONLL-2007 (Nivre et al., gther languages. Japanese dependency structures
2007). Many language-independent parsing alaye the following constraints: head-final, single-
gorithms were proposed there. The algorithmgeaq single-rooted, connected, acyclic and projec-
need to adapt to various dependency Structufge Figure 1 shows examples of Japanese sen-
constraints according to target languages: projegsnces and their dependency structures. Each box
tive vs. non-projective, head-initial vs. head‘ﬁnalrepresents dunsetsu A dependency relation is
and single-rooted vs. multi-rooted. Eisner (19969epresented by an edge from a dependent to its
proposed a CKY-likeO(n?) algorithm. Yamada head. Though sentence (a) is similar to sentence
and Matsumoto (2003) proposed a shift-reducqy) the syntactic structures of these two are differ-
like O(n?) deterministic algorithm. Nivre et al. ent, especially becauskdre-wd directly depends
(2003; 2004) also proposed a shift-reduce-likg, “yomanal in (b) but not in (a).
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cascaded chunking algorithm (hereaft&C' al- The most likely
gorithm”) to Japanese dependency parsing. Ya- ca”didlatehead
mada’s method (Yamada and Matsumoto, 2003)
employed a similar algorithm. Sassano (2004)

proposed a linear-order shift-reduce-like algorithm T % FELL N
(hereafter SR algorithm”), which is similar to ey i I PR I It
Nivre’s algorithm (Nivre, 2003). These determin- | — . /
istic algorithms are biased to select nearer candi- rocused-on Its candidate heads

date heads since they examine the candidates se- dependent

guentially, and once they find a plausible one they

never consider further candidates. Figure 2: Example of a tournament.
We experimented the CLE algorithm with

Japanese dependency parsing, and found that the _ _
CLE algorithm is comparable to or in some case80W the tournament model is applied to Japanese

poorer than the deterministic algorithms in our exdépendency parsing. Section 4 shows the results
periments. Actually, the CLE algorithm is not suit-Of evaluation experiments. Section 5 shows our

able for some of the constraints in Japanese depéfirrent and future work, and Section 6 gives con-

dency structures: head-final and projective. Firsglusions of this research.

head-final means that dependency relation always
goes from left to right. Second, since the CLE al“

gorithm may produce non-projective dependencype t5yrnament model was first introduced by
trees, we need to conduct projectivity check in thgq, ot 51 (2003) for coreference resolution. The
algorithm. model chooses the most likely candidate in a step-
~ Kudo and Matsumoto (2005) proposed a relapgger tournament, that is a sequence of one-on-
tive preference-based method (hereafteldtive  ,ne games between candidate referents for a given
preference method). They defined the parsing gnaphoric expression. In each game, the winner is
algorithm as series of selection steps of the mog},qsen by a binary classifier such as SVMs.

likely head for eaclibunsetswout of all candidates. We applied the tournament model to Japanese
The method has so far achieved the highest agenongency parsing taking into consideration
curacy in the experiments wityoto Text Cor- Japanese constraints. The projective constraint is

- 1 . . . -
pus Version 3.@ata”, since other deterministic gl met. When selecting candidate heads for the
methods do not consider relative preference among.,sed-on dependent, we only consider those can-

candidate heads but solely consider whether theaies that introduce no crossing dependency.
focused-on pair obunsetsu'ss in a dependency Figure 2 illustrates a tournament. The focused-

relation or not. on dependeribunsetsus “kare-wd, and the can-

we propose a mode] that takgﬂaan;etsuand didate heads are the thrbansetsu’on the right-
two candidate heads into consideration and S&and side: hon-wd “yomanal and “hito-da’

lects the better candidate head out of those tway,. f st game is Hon-wd vs. “yomanal. Then

This step is repeated in a step ladder tournameply, oyt game is the winner of the first game vs.
to get the best candidate head (hereafter we Caplito-dd’ The winner of the second game (i.e

this model as at‘()urngme_nt moder). Th? tour- “hito-dd’) is chosen as the most likely candidate
nament model was first introduced by lida et al ¢ 4 dependent Kare-wd.

(2003) for corefgrence resolution. We applled_ this In the tournament model, the most likely head of
model to selecting the most plausible candidat

head for eachbunsetsiexcept for the sentence finalg given bunsetsu is determined by a series of one-
one P on-one games in a tournament. Below, we present

_ _ the advantages of the tournament model by com-
Section 2 describes the tournament model Conﬂ)'arison with the previous methods

paring with previous research. Section 3 describes

Tournament Model

INote: Sassano’s SR algorithm is the highest by expe-1 ~Scope of Feature Views

iment with the smaller dat&yoto Text Corpus Version 2.0 . . .
Relative preference method and SR algorithm are not conIhe CC algorithm and SR algorithm consider only

pared directly with the same data. a pair ofbunsetsu’s- a dependent and its candidate
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head — in the parsing action determination (herelapanese is a free-order language. Relative posi-
after “2-tuple model’). The same 2-tuple may or tions are more informative since some dependents
may not have a dependency relation when they apend to appear closer to other dependents, such
pear in different context. For example, both (aps objects that tend to appear closer to predicates
and (b) in Figure 1 include the twbunsetsu’s compared with other complements. The tourna-
“kare-wd and “yomanai; in (b) they have a de- ment model represents both the distance and rela-
pendency relation, but not in (a). The 2-tuple modtive position as features.
els and relative preference method cannot discrim- The deterministic algorithms are biased to select
inate between these two patterns without considefiearer candidate heads. As most dependent and
ing contextual feature& The tournament model head pairs appear within a close window, this ten-
can be regarded as &-tuple model” which con-  dency does not cause many errors; deterministic
siders thredunsetsu’s- a dependent and two can-algorithms are weak at finding correct heads that
didate heads. The discriminative performance Qippear in a long distance as pointed out in Kudo
the 3-tuple model is greater than the 2-tuple modand Matsumoto (2005).
els, since it directly compares two candidate heads
and selects the one that is more plausible than the3 Relative Preferences
other candidate. Consider Figure 1 again. In (a),
“kare-wd does not depend orybmanai because What the dependency parsers try to learn is rela-
there is anothebunsetst hito-da’ which is amore  tive preference obunsetsidependency, i.e., how
plausible head. 2-tuple models may use this info@ dependent selects its head among others. The
mation as a contextual feature, but the effect is if€lative preference method (Kudo and Matsumoto,
direct. On the other hand, the tournament mod&005) learns the relative preferences among the
directly compares these candidates and always s@ndidate heads by a discriminative framework.
lects the better one. The situation becomes cruciah€ relative preferences are learned with the log-
when the true head appears outside of the conte€ar model so as to give larger probability to
window of the current candidate. 2-tuple modeléhe correct dependent-head pair over any other
have to select the head without consulting such iftandidates. McDonald’s method (2005) with the
formation. The advantage of the tournament modé&LE algorithm learns the relative preferences by
is its capability of deferring the decision by al-& Perceptron algorithm — MIRA (Crammer and
ways keeping the current best candidate head. Gtinger, 2003), so that the correct dependent-head
the other hand, a disadvantage of the tournamelfik receives a higher score. The tournament
model is its space and time complexity. The size ghodel learns which candidate is more likely to be
features is larger since they come from thiem- the head between two candidates in a one-on-one
setsu’s The size of training instances is also large/g@me in a tournament. Therefore, all of those pars-
ing algorithms try to learn the way to give the high-
2.2 Relative Position in a Sentence est preference to the correct dependent-head pair

. _ among all possibilities though in different settings.
We name the two candidate heads in the 3-tuple \ypje the relative preference method and Mc-

n;odel asd‘_‘éhe nﬁaredr::angldzte hezd” ani“the fa|50nald’s. method consider all candidate heads in-
ther candi ate head.” The depen e.nt, the near(%pendently in a discriminative model, the tour-
candidate head and the farther candidate head Hhment model evaluates which candidate is more
pear in this order in Japanese sentences. The OrggL . o e the head between the latest winner and
defines the relative position of the contextual feathe new candidate. The latest winner has already
tures.. The dlsta_nce between the dependent andyacea1eq all of the preceding candidates. If the
candidate head is another feature to represent tHSW candidate beats the latest winner, it becomes
relative position. In previous research, the distanc&'\e new winner, meaning that it is the most pre-
has been repre;ented by feature buckets, such a?e]rred candidate among others so far considered.
ﬁ'S’ or 6:]-' :]Nh”f] for_some dgpendents ?‘”‘?' theW'hrough this way of comparison with the runner-
eads whether t € d|stgnce Is 1 or not is 'mPO"up candidates, the tournament model uses richer
tant, absolute distance is not so important SNSRformation in learning relative preferences than

2Contextual features are features neither in the dependelit® mOdeIS_ in which all candidates are indepen-
nor in the candidate head(s). dently considered.
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/I N: # of bunsetsu’s in input sentence /I N: # of bunsetsu’s in

/I true_head[j]: bunsetsu j's head at I input sentence

i training data /I head[]: (analyzed-) head of bunsetsu
/I gen(j,il,i2,LEFT): generate /I classify(j,i1,i2): ask SVM

/I an example where bunsetsu j is /I which candidate (i1 or i2) is

/I dependent of il /I more likely for head of j.

/I gen(j,i1,i2,RIGHT): generate /I return LEFT if i1 wins.

/l  an example where bunsetsu j is /I return RIGHT if i2 wins.

I dependent of i2
head[] = {2,3,...,N-1,N,EOS};

for j = 1 to N-1 do for j = N-1 downto 1 do
h = true_head[j]; h = j+1;
for i = j+1 to h-1 do i = head[h];
gen(j,i,h,RIGHT); while i '= EOS do
for i = h+1 to N do if classify(j,h,i))==RIGHT
gen(j,h,i,LEFT); then h = i
end-for; i = head][i];
end-while;

Figure 3: Pseudo code of training example gene(rehg_efg‘gm =h
ation procedure. ‘
Figure 4: Pseudo code of parsing algorithm.

3 Proposed Algorithm
Note that the structure of the tournament has lit-
tle effect on the results<( 0.1) in our preliminary
As shown in Figure 3, for each dependent, we gergxperiments. We tried x 2 options: the depen-
erate pairs of the correct head and all other candilents are picked from right to left or from left to
date heads. On the example generation, the prodéght; and the games of the tournament are per-
dure does not take into account the projective coriormed from right to left or from left to right. We
straint; allbunsetsu’sn the right-hand side of the choose the most natural combination for Japanese
focused-on dependent are candidate heads. ~ dependency parsing, which is easy to implement.
Table 1 shows all examples generated from twag )
sentences shown in Figure 1. 2-tuple models geﬁ’- Experiment
erate training examples formed as (dependent, caf1  Settings
didate). So, from the sentences of Figure 1, itgen- .
erates opposite classes to the pharé-wa hito- We implemented the tournament model, the CC al-

da). On the other hand, the examples generated 15 rithm (Kudo and Matsumoto, 2002), SR algo-

the tournament model do not contain such incor- hm (Sassano, 2004) _and CLE algo_rythm (Mc-
sistency. Donald et al., 2005) with SVM classifiers. We

evaluated dependency accuracy and sentence accu-
racy usingKkyoto Text Corpus Version 4.@hich is
composed by newspaper articles. Dependency ac-
The tournament model has quite wide freeness racy is the percentage of correct dependencies
the parsing steps. We introduce one of the tougut of all dependency relations. Sentence accuracy
nament algorithms, in which the dependents arg the percentage of sentences in which all depen-
picked from right to left; and the games of the tourgencies are determined correctly. Dependency ac-
nament are performed from left to right. This parscuracy is calculated excluding the rightmadstn-

ing algorithm takes into account the projective andetsuof each sentencé. Sentences that consist of
head-final constraints. onebunsetstare not used in our experiments.

This algorithm is shown in Figure 4. The over- We use January 1st to 8th (7,587 sentences) for
all parsing process moves from right to left. Orthe training data. We use January 9th (1,213 sen-
selecting the head for a dependent all of - tences), 10th (1,479 sentences) and 15th (1,179
setsts to the right of the dependent have alreadgentences) for the test data. We use TinyS¥YM
been decided. In Figure 4, the arrajead” as a binary classifier. Cubic polynomial kernel is
Store? the parged results and ensure§ that only nOﬂMWCh such as Kudo’s (2005) uses this criteria.
crossing candidate heads are taken into considera-«,./jchasen.org/ ~taku/software/
tion. TinySVM/

3.1 Training Example Generation Algorithm

3.2 Parsing Algorithm
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Sentence Focused-on dependent_eft(Nearer) candidate Right(Farther) candidat€lass label
(@) kare-wa hon-wo hito-da. RIGHT
(a) kare-wa yomanai hito-da. RIGHT
(@ hon-wo yomanai hito-da. LEFT
(b) kare-wa hon-wo yomanai. RIGHT

Table 1: Generated examples from sentences in Figure 1.

used for the kernel function. Cost of constraint viby Sassano (2004). The case particle feature is
olation is 1.0. These SVM settings are the sameewly introduced in this paper. Features corre-
as previous research (Kudo and Matsumoto, 2008ponding to the already-determined dependency
Sassano, 2004). All experiments were performeitlation are calledlynamicfeatures, and the other
on Dual Core Xeon 3GHz x 2 Linux machines. contextual features are callsthticfeatures. Stan-
dard and additional features are static features,
4.2 Features and case particle features are dynamic features.

Here we describe features used in our experiment4/hether a dynamic feature is available for a pars-
Note that for the tournament model, features cotng algorithm depends on the parsing order of the
responding to candidates are created for each 8fgorithm.
the nearer and farther candidates. We define the )
information of a word as the following features: 4-3 Parsing Accuracy
lexical forms, coarse-grained POS tags, full POShe parsing accuracies of our model and previ-
tags and inflected forms. We also defineitfer-  ous models are summarized in Table 2. Note that,
mationof abunsetswas wordinformationfor each  since the CLE algorithm is non-deterministic and
of syujiandgokei Syujiis the head content word dynamic features are not available for this algo-
of the bunsetsudefined as the rightmost contentrithm, we use only astandard and additionalea-
word. Gokeiis the representative function word ofture set instead of aall feature set. By McNemar
the bunsetsu defined as the rightmost functionaltest p < 0.01) on the dependency accuracy, the
word. tournament model significantly outperforms most
Existence of punctuations or brackets, whethesf other methods except for the SR algorithm on
the bunsetsus the first bunsetsu in the sentencejJanuary 10th data with all features & 0.083)
and whether it is the final bunsetsu in the sentenand the CC algorithm on January 10th data with
are also members afiformationof a bunsetsu all features = 0.099). The difference between
Standard features are the followingtnforma- the tournament models with all features and with
tion of the dependent and the candidate heads, dibe standard feature only is significant except for
tance between the dependent and the candidaie January 9th data (= 0.25).
heads (1, 2-5 or 6bunsetsu’s all punctuations,  The highest dependency accuracy reported for
brackets and all particles between the dependefdnuary 9th oKyoto Text Corpus Version 2i8
and the candidate heads. 89.56% by Sassano(2004)’s SR algorittim.
Additional features are the following: All case Since we don’t have the outputs of Sassano’s ex-
particles in the dependent and the candidate heagi&riments, we cannot do a McNemar test between
informationof the leftmost word in the candidate the tournament model and Sassano’s results. Our
heads, and the lexical form of the neighbormm- model outperforms Sassano’s results by the depen-
setsuto the right of the candidate heads. dency accuracy, but the difference between these
Case particle features are the following: All two is not significant by prop tesp (= 0.097).
case particles appearing in the candidates’ depen-When we add the additional and case particle
dent. These features are intended to take into cofeatures, the improvement of our model is less than
sideration the correlation between the case partihat of other algorithms. This is interpreted that
cles in the dependent of a head. When the headdsir model can consider richer contextual informa-
a verb, it has a similar effect of learning case frame—— _ )
This accuracy in Sassano (2004) is not Kyoto Text

information. o ] Corpus Version 4.®ut Version 2.0The feature set of Sas-
Standard and additional features are introducegno’s experiment is also different from our experiment.
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Method Features Jan. 9th Jan.10th Jan. 15th
Tournament Standard feature only | 89.89/49.63 89.63/48.34 89.40/49.70
All features 90.09/49.71 90.11/49.02 90.35/52.59
SR algorithm Standard feature only | 88.18/45.92 88.80/44.76 88.03/47.24
(Sassano, 2004) All features 89.22/47.90 89.79/47.87 89.55/49.79
CC algorithm Standard feature only | 88.17/45.92 88.80/44.76 88.00/47.24
(Kudo and Matsumoto, 2002) All features 89.22/47.90 89.80/47.94 89.53/49.79
CLE algorithm Standard feature only | 88.64/45.34 88.16/43.14 88.07/45.21
(McDonald et al., 2005) Standard and Additional 89.21/46.83 89.05/45.03 88.90/48.43

Table 2: Dependency and sentence accuracy [%] using 7,587 sentences as training data.

tion within the algorithm itself than other models. if the length is one as Kudo and Matsumoto (2005)
This result also shows that the accuracies of theid.
SR algorithm and CC algorithm are comparable The results are shown in Table 4. Note that
when using the same features. However, this doé&ido and Matsumoto (2005) and our feature sets
not mean that their substantial power is comparare different. Only the CC Algorithm is tested with
ble because the parsing order limits the availableoth feature sets. Our feature set looks better than
dynamic features. Kudo’s. By McNemar testy( < 0.01) on the de-
pendency accuracy, the tournament model outper-
4.4 Parsing Speed forms both the SR and CC algorithms significantly.
Parsing time and the size of the training examSince we don't have the outputs of relative prefer-
ples are shown in Table 3. All features wereence methods, we cannot do a McNemar test be-
used. The column “# Step” represents the numbéween the tournament model and the relative pref-
of SVM classification steps in parsing all the teserence methods. By prop tegt € 0.01) on the
data. Time complexity of the tournament modeflependency accuracy, our model significantly out-
and CC algorithm ar®(n?) and that of the SR al- performs the relative preference method of Kudo
gorithm isO(n). The tournament model needs 1.7and Matsumoto (2005). Though our model outper-
times more SVM classification steps and is 4 timeforms the “combination” model of Kudo and Mat-
slower than the SR algorithm. The reason for thisumoto (2005) by the dependency accuracy, the
difference in steps (x1.7) and time (x4) is the numdifference between these two is not significant by

ber of training examples and features in the SVMProp test f = 0.014). ©
classification. Note that, a log-linear model is used in Kudo’s

experiment. The log-linear model has shorter
4.5 Comparison to Relative Preference training time than SVM. The log-linear model re-
Method quires feature combination engineering by hand,

We performed another experiment under the samf@ile SVMs automatically consider the feature
settings as Kudo’s (2005) to compare the tournZ0mbination by the use of polynomial kernels.
ment model and relative preference method. Th : .

) P . . Discussion and Future Work
corpus isKyoto Text Corpus Version 3.8ince
Kudo and Matsumoto (2005) used this corpusin our error analysis, many errors are observed in
Training data is articles from January 1st to 11tlzoordination structures. Sassano (2004) reported
and editorials from January to August (24,263 serthat introduction of features of coordinatédn-
tences) Test ,dat_a is articles from January 14 5The “combination” model is the combination of the CC
to 17th and editorials from October to Decembegigorithm and relative preference method. In Kudo's exper-

(9,287 sentences). We did not perform parameténent, whereas the relative preference method outperforms
. - e CC algorithm for long-distance relations, it is reversed for
engineering by development data, although KUdﬁwort-distance relations. They determined the optimal combi-

and Matsumoto (2005) performed it. The criterianation (the threshold set Btinsetstiength 3) using the devel-
for dependency accuracy are the same as the expgtent set. In our experiment, the tournament model outper-
. oo forms the CC and SR algorithms for relations of all lengths.
iments above. However, the criteria for Senteno?herefore, the tournament model doesn’t need such ad hoc

accuracy in this section include all sentences, eveambination.
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Method # Step Time[s]| # Example # Feature
Tournament 26396 371 374579 56165
SR algorithm (Sassano, 2004) 15641 80 94669 37183
CC algorithm (Kudo and Matsumoto, 200218922 99 112759 37183

Table 3: Parsing time and the size of the training examples.

Method Features Dep. Acc. Sentence Acc.
Tournament All 91.96 57.44
SR algorithm (Sassano, 2004) All 91.48 55.67
CC algorithm (Kudo and Matsumoto, 2002) All 91.47 55.65
Combination — CC and Relative preference Kudo’s (2005)| 91.66 56.30
Relative preference (Kudo and Matsumoto, 200%udo’s (2005)| 91.37 56.00
CC algorithm (Kudo and Matsumoto, 2002) Kudo’s (2005)| 91.23 55.59

Table 4. Dependency and sentence accuracy [%] using 24,263 sentences as training data with all features:
comparison with Kudo(2005)’s experiments.

setsuimproves accuracy. liKyoto Text Corpus (Watanabe et al., 2008). The unlabeled syntac-
Version 4.0 coordination and apposition are annotic dependency accuracy of 90.73% for WSJ data
tated with different types of dependency relationshows that the model is also effective in other (not
We did not use this information in parsing. A sim-strictly head final, non-projective) languages. In
ple extension is to include those dependency typesarsing word sequenceé)(n?) time complexity
Another extension is to employ a coordination anasecomes a serious problem compared to parsing
lyzer as a separate process as proposed by Shimhnsetsusequences. Since launsetsus a base
and Hara (2007). phrase in Japanese, the numberbahsetsu’ss
Incorporating co-occurrence information will Much less than the number of words. One solution

also improve the parsing accuracy. One usage & t0 perform base phrase chunking in advance and
such information is verb-noun co-occurrence inf0 @Pply dependency parsing on the base phrase se-
formation that would represent selectional prefedUences.

ence for case-frame information. Abekawa and A reviewer pointed out similarities between our
Okumura (2006) proposed a reranking methofodel and RankSVM. RankSVM compares pairs
of k-best dependency analyzer outputs using c&f elements to find out relative ordering between
occurrence information. We have already deveflements. Our tournament model is a special case
oped a method to outpktbest dependency trees.where two elements are compared, but with a spe-
One of our future works is to test the rerankingFific viewpoint of a focused dependent.

method using co-occurrence information on khe

best dependency trees. 6 Conclusions

Multilingual parsing is another goal. Japanes&Ve proposed a Japanese dependency parsing al-
is a strict head-final language. However, most largorithm using the tournament model. The tour-
guages do not have such constraint. A differemtament model is a 3-tuplbunsetsumodel and
parsing algorithm should be employed for othemmproves discriminative performance of selecting
less constrained languages so as to relax this corerrect head compared with the conventional 2-
straint. A simple solution is to introduce a discrim-tuple models. The most likely candidate head is
ination model according to whether the head is oselected by one-on-one games in the step-ladder
the left-hand-side or on the right-hand-side of a ddournament. The proposed model considers the
pendent. Existence of projective constraint doelative position between the nearer and farther
not matter for the tournament model. The tournacandidates. The model also considers all candi-
ment model can be extended to relax the projedate heads, which are not considered in determin-
tive constraint. The preliminary results for Englishistic parsing algorithms. The tournament model
are shown in our CoNLL Shared Task 2008 repotis robust for the free-order language. The accu-
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racy of our model significantly outperforms thatNivre, Joakim and Jens Nilsson.

2005. Psuedo-

of the previous methods in most experiment set- Projective Dependency Parsing. ACL-2005: Pro-

tings. Even though the problem of parsing speed
remains, our research showed that considering

ceedings of 43rd Annual Meeting of the Association
for Computational Linguisticpages 99-106.

two or more candidate heads simultaneously ca¥ivre, Joakim and Mario Scholz. 2004. Deterministic

achieve more accurate parsing.
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