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Abstract

This paper explores the use of the homo-
topy method for training a semi-supervised
Hidden Markov Model (HMM) used for
sequence labeling. We provide a novel
polynomial-time algorithm to trace the lo-
cal maximum of the likelihood function
for HMMs from full weight on the la-
beled data to full weight on the unla-
beled data. We present an experimental
analysis of different techniques for choos-
ing the best balance between labeled and
unlabeled data based on the characteris-
tics observed along this path. Further-
more, experimental results on the field seg-
mentation task in information extraction
show that the Homotopy-based method
significantly outperforms EM-based semi-
supervised learning, and provides a more
accurate alternative to the use of held-out
data to pick the best balance for combin-
ing labeled and unlabeled data.

1 Introduction

In semi-supervised learning, given a sample con-
taining both labeled dataL and unlabeled data
U , the maximum likelihood estimatorΘmle maxi-
mizes:

L(Θ) :=
∑

(x,y)∈L

log P (x,y|Θ)+
∑
x∈U

log P (x|Θ)

(1)
wherey is a structured output label, e.g. a se-
quence of tags in the part-of-speech tagging task,
or parse trees in the statistical parsing task. When
the number of labeled instances is very small com-
pared to the unlabeled instances, i.e.|L| ≪ |U |,
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the likelihood of labeled data is dominated by that
of unlabeled data, and the valuable information in
the labeled data is almost completely ignored.

Several studies in the natural language process-
ing (NLP) literature have shown that as the size of
unlabeled data increases, the performance of the
model with Θmle may deteriorate, most notably
in (Merialdo, 1993; Nigam et al., 2000). One strat-
egy commonly used to alleviate this problem is to
explicitly weigh the contribution of labeled and un-
labeled data in (1) byλ ∈ [0, 1]. This new parame-
ter controls the influence of unlabeled data but is
estimated either by (a) an ad-hoc setting, where
labeled data is given more weight than unlabeled
data, or (b) by using the EM algorithm or (c) by
using a held-out set. But each of these alternatives
is problematic: the ad-hoc strategy does not work
well in general; the EM algorithm ignores the la-
beled data almost entirely; and using held-out data
involves finding a good step size for the search,
but small changes inλ may cause drastic changes
in the estimated parameters and the performance
of the resulting model. Moreover, if labeled data is
scarce, which is usually the case, using a held-out
set wastes a valuable resource1.

In this paper, we use continuation techniques
(Corduneanu and Jaakkola, 2002) for determining
λ for structured prediction tasks involving HMMs,
and more broadly, the product of multinomials
(PoM) model. We provide a polynomial-time al-
gorithm for HMMs to trace the local maxima of
the likelihood function from full weight on the la-
beled data to full weight on the unlabeled data. In
doing so, we introduce dynamic programming al-
gorithms for HMMs that enable the efficient com-
putation over unlabeled data of the covariance be-
tween pairs of state transition counts and pairs
of state-state and state-observation counts. We
present a detailed experimental analysis of differ-
ent techniques for choosing the best balance be-

1Apart from these reasons, we also provide an experimen-
tal comparision between the homotopy based approach, the
EM algorithm, and the use of a held out set.
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tween labeled and unlabeled data based on the
characteristics observed along this path. Further-
more, experimental results on the field segmen-
tation task in information extraction show that
the Homotopy-based method significantly outper-
forms EM-based semi-supervised learning, and
provides a more accurate alternative to the use of
held-out data to pick the best balance for combin-
ing labeled and unlabeled data. We argue this ap-
proach is abest betmethod which is robust to dif-
ferent settings and types of labeled and unlabeled
data combinations.

2 Homotopy Continuation

A continuation method embeds a given hard root
finding problemG(Θ) = 0 into a family of prob-
lems H(Θ(λ), λ) = 0 parameterized byλ such
thatH(Θ(1), 1) = 0 is the original given problem,
andH(Θ(0), 0) = 0 is an easy problemF (Θ) = 0
(Richter and DeCarlo, 1983). We start from a solu-
tion Θ0 for F (Θ) = 0, and deform it to a solution
Θ1 for G(Θ) = 0 while keeping track of the so-
lutions of the intermediate problems2. A simple
deformation or homotopy function is:

H(Θ, λ) = (1− λ)F (Θ) + λG(Θ) (2)

There are many ways to define a homotopy map,
but it is not trivial to always guarantee the exis-
tence of a path of solutions for the intermediate
problems. Fortunately for the homotopy map we
will consider in this paper, the path of solutions
which starts fromλ = 0 to λ = 1 exists and is
unique.

In order to find the path numerically, we seek
a curveΘ(λ) which satisfiesH(Θ(λ), λ) = 0.
This is found by differentiating with respect toλ
and solving the resulting differential equation. To
handle singularities along the path and to be able
to follow the path beyond them, we introduce a
new variables (which in our case is the unit path
length) and solve the following differential equa-
tion for (Θ(s), λ(s)):

∂H(Θ, λ)
∂Θ

dΘ
ds

+
∂H(Θ, λ)

∂λ

dλ

ds
= 0 (3)

subject to||(dΘ
ds , dλ

ds )||2 = 1 and the initial con-
dition (Θ(0), λ(0)) = (Θ0, 0). We use the Euler

2This deformation gives us a solutionpath (Θ(λ), λ)

in Rd+1 for λ ∈ [0, 1], where each component of thed-
dimensional solution vectorΘ(λ) = (θ1(λ), .., θd(λ)) is a
function ofλ.

method (see Algorithm 1) to solve (3) but higher
order methods such as Runge-Kutta of order 2 or 3
can also be used.

3 Homotopy-based Parameter Estimation

One way to control the contribution of the labeled
and unlabeled data is to parameterize the log like-
lihood function asLλ(Θ) defined by

1− λ

|L|
∑

(x,y)∈L

log P (x, y|Θ) +
λ

|U |
∑
x∈U

log P (x|Θ)

How do we choose the bestλ? An operator called
EMλis used with the property that its fixed points
(locally) maximizeLλ(Θ). Starting from a fixed
point of EMλ whenλ is zero3, the path of fixed
point of this operator isfollowed for λ > 0 by
continuation techniques. Finally the best value for
λ is chosen based on the characteristics observed
along the path. One option is to choose an allo-
cation value where the first critical4 point occurs
had we followed the path based onλ, i.e. without
introducings (see Sec. 2). Beyond the first criti-
cal point, the fixed points may not have their roots
in the starting point which has all the informa-
tion from labeled data (Corduneanu and Jaakkola,
2002). Alternatively, an allocation may be cho-
sen which corresponds to the model that gives the
maximum entropy for label distributions of unla-
beled instances (Ji et al., 2007). In our experi-
ments, we compare all of these methods for de-
termining the choice ofλ.

3.1 Product of Multinomials Model

Product of Multinomials (PoM) model is an im-
portant class of probabilistic models especially for
NLP which includes HMMs and PCFGs among
others (Collins, 2005). In the PoM model, the
probability of a pair(x,y) is

P (x,y|Θ) =
M∏

m=1

∏
ω∈Ωm

Θm(ω)Count(x,y,ω) (4)

whereCount(x,y, ω) shows how many times an
outcomeω ∈ Ωm has been seen in the input-output
pair (x,y), andM is the total number of multino-
mials. A multinomial distribution parameterized

3In general,EM0 can have multiple local maxima, but in
our case,EM0 has only one global maximum, found analyti-
cally using relative frequency estimation.

4A critical point is where a discontinuity or bifurcation oc-
curs. In our setting, almost all of the critical points correspond
to discontinuities (Corduneanu, 2002).
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by Θm is put on each discrete spaceΩm where the
probability of an outcomeω is denoted byΘm(ω).
So for each spaceΩm, we have

∑
ω∈Ωm

Θm(ω) =
1.

Consider an HMM withK states. There are
three types of parameters: (i) initial state probabili-
tiesP (s) which is a multinomial over statesΘ0(s),
(ii) state transition probabilitiesP (s′|s) which are
K multinomials over statesΘs(s′) , and (iii) emis-
sion probabilitiesP (a|s) which areK multinomi-
als over observation alphabetΘs+K(a). To com-
pute the probability of a pair(x,y), normally we
go through the sequence and multiply the proba-
bility of the seen state-state and state-observation
events:

P (x,y|Θ) = Θ0(y0)Θy1+K(x1)

|y|Y
t=2

Θyt−1(yt)Θyt+K(xt)

which is in the form of (4) if it is written in terms
of the multinomials involved.

3.2 EMλ Operator for the PoM Model

Usually EM is used to maximizeL(Θ) and esti-
mate the model parameters in the situation where
some parts of the training data are hidden. EM has
an intuitive description for the PoM model: start-
ing from an arbitrary value for parameters, itera-
tively update the probability mass of each event
proportional to its count in labeled data plus itsex-
pectedcount in the unlabeled data, until conver-
gence.

By changing the EM’s update rule, we get an
algorithm for maximizingLλ(Θ):

Θ̃m(ω) =
1− λ

|L|
∑

(x,y)∈L

Count(x,y, ω) +

λ

|U |
∑
x∈U

∑
y∈Yx

Count(x,y, ω)P (y|x,Θold) (5)

whereΘ̃m is the unnormalized parameter vector,

i.e. Θm(ω) = Θ̃m(ω)P
ω∈Ωm

Θ̃m(ω)
. The expected counts

can be computed efficiently based on the forward-
backward recurrence for HMMs (Rabiner, 1989)
and inside-outside recurrence for PCFGs (Lari and
Young, 1990). The right hand side of (5) is an op-
erator we callEMλ which transforms the old pa-
rameter values to their new (unnormalized) values.
EM0 andEM1 correspond respectively to purely
supervised and unsupervised parameter estimation
settings, and:

EMλ(Θ) = (1− λ)EM0(Θ) + λEM1(Θ) (6)

3.3 Homotopy for the PoM Model

The iterative maximization algorithm, described in
the previous section, proceeds until it reaches a
fixed pointEMλ(Θ) = Θ̃, where based on (6):

(1− λ) (Θ̃− EM0(Θ))| {z }
F (Θ)

+λ (Θ̃− EM1(Θ))| {z }
G(Θ)

= 0 (7)

The above condition governs the (local) maxima
of EMλ. Comparing to (2) we can see that (7) can
be viewed as a homotopy map.

We can generalize (7) by replacing(1− λ) with
a functiong1(λ) andλ with g2(λ)5. This corre-
sponds to other ways of balancing labeled and un-
labeled data log-likelihoods in (1). Moreover, we
may partition the parameter set and use the homo-
topy method to just estimate the parameters in one
partition while keeping the rest of parameters fixed
(to inject some domain knowledge to the estima-
tion procedure), or repeat it through partitions. We
will see this in Sec. 5.2 where the transition matrix
of an HMM is frozen and the emission probabili-
ties are learned with the continuation method.

Algorithm 1 describes how to use continuation
techniques used for homotopy maps in order to
trace the path of fixed points for theEMλ oper-
ator. The algorithm uses the Euler method to solve
the following differential equation governing the
fixed points ofEMλ:

[ λ∇Θ̃EM1(Θ)− I EM1(Θ)− EM0 ]
[

dΘ̃
dλ

]
= 0

For PoM models∇Θ̃EM1(Θ) can be written com-
pactly as follows6:

1
|U |

∑
x∈U

COVP (y|x,Θ)

[
Count(x,y)

]
·H (8)

where COVP (y|x,Θ)[Count(x,y)] is the con-
ditional covariance matrix of all features
Count(x,y, ω) given an unlabeled instance
x. We denote the entry corresponding to eventsω1

andω2 of this matrix byCOVP (y|x,Θ)(ω1, ω2); H
is a block diagonal matrix built fromHΩi where

HΩi = (Θ̃i(α1), .., Θ̃i(α|Ωi|)) · I−
1|Ωi|×|Ωi|∑
α∈Ωi

Θ̃i(α)

5However the following two conditions must be satisfied:
(i) the deformation map is reduced to(Θ̃−EM0(Θ)) atλ =

0 and(Θ̃−EM1(Θ)) atλ = 1, and (ii) the path of solutions
exists for Eqn. (2).

6A full derivation is provided in (Haffari and Sarkar, 2008)
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Algorithm 1 Homotopy Continuation forEMλ

1: Input: Labeled data setL
2: Input: Unlabeled data setU
3: Input: Step sizeδ
4: Initialize [Θ̃ λ] = [EM0 0] based onL
5: ηold ← [0 1]
6: repeat
7: Compute∇Θ̃EM1(Θ) andEM1(Θ) based

on unlabeled dataU
8: Computeη = [dΘ̃ dλ] as the kernel of

[λ∇Θ̃EM1(Θ)− I EM1(Θ)− EM0]

9: if η · ηold < 0 then
10: η ← −η
11: end if
12: [Θ̃ λ]← [Θ̃ λ] + δ η

||η||2
13: ηold ← η
14: until λ ≥ 1

Computing the covariance matrix in (8) is a
challenging problem because it consists of sum-
ming quantities over all possible structuresYx as-
sociated with each unlabeled instancex, which is
exponential in the size of the input for HMMs.

4 Efficient Computation of the Covari-
ance Matrix

The entryCOVP (y|x,Θ)(ω1, ω2) of the features co-
variance matrix is

E[Count(x,y, ω1)Count(x,y, ω2)]−
E[Count(x,y, ω1)]E[Count(x,y, ω2)]

where the expectations are taken underP (y|x,Θ).
To efficiently calculate the covariance, we need
to be able to efficiently compute the expectations.
Thelinear count expectations can be computed ef-
ficiently by the forward-backward recurrence for
HMMs. However, we have to design new algo-
rithms forquadraticcount expectations which will
be done in the rest of this section.

We add a specialbegin symbol to the se-
quences and replace the initial probabilities with
P (s|begin). Based on the terminology used in (4),
the outcomes belong to two categories:ω = (s, s′)
where states′ follows states, and ω = (s, a)
where symbola is emitted from states. De-
fine the feature functionfω(x,y, t) to be 1 if the
outcomeω happens at time stept, and 0 other-
wise. Based on the fact thatCount(x,y, ω) =∑|x|

t=1 fω(x,y, t), we have

E[Count(x,y, ω1)Count(x,y, ω2)] =

∑
t1

∑
t2

∑
y∈Yx

fω1(x,y, t1)fω2(x,y, t2)P (y|x,Θ)

which is the summation of|x|2 different expecta-
tions. Fixing two positionst1 andt2, each expec-
tation is the probability (over all possible labels) of
observingω1 andω2 at these two positions respec-
tively, which can be efficiently computed using the
following data structure. Prepare an auxiliary table
Zx containingP (x[i+1,j], si, sj), for every pair of
statessi andsj for all positionsi, j (i ≤ j):

Zx
i,j(si, sj) =

X
si+1,..,sj−1

j−1Y
k=i

P (sk+1|sk)P (xk+1|sk+1)

Let matrixMx
k = [Mx

k (s, s′)] whereMx
k (s, s′) =

P (s′|s)P (xk|s′); thenZx
i,j =

∏j−1
k=i Mx

k . Forward
and backward probabilities can also be computed
from Zx, so building this table helps to compute
both linear and quadratic count expectations.

With this table, computing the quadratic counts
is straightforward. When both events are of type
state-observation, i.e.ω = (s, a) andω′ = (s′, a′),
their expected quadratic count can be computed as∑

t1

∑
t2

δxt1 ,aδxt2 ,a′
[∑

k

P (k|begin)Zx
1,t1(k, s).

Zx
t1,t2(s, s

′).
∑

k

Zx
t2,n(s′, k)P (end|k)

]
whereδxt,a is 1 if xt is equal toa and0 otherwise.
Likewise we can compute the expected quadratic
counts for other combination of events: (i) both
are of type state-state, (ii) one is of type state-state
and the other state-observation.

There areL(L+1)
2 tables needed for a sequence

of lengthL, and the time complexity of building
each of them isO(K3) whereK is the number of
states in the HMM. When computing the covari-
ance matrix, the observations are fixed and there
is no need to consider all possible combinations
of observations and states. The most expensive
part of the computation is the situation where the
two events are of type state-state which amounts
to O(L2K4) matrix updates. Noting that a single
entry needsO(K) for its updating, the time com-
plexity of computing expected quadratic counts for
a single sequence isO(L2K5). The space needed
to store the auxiliary tables isO(L2K2) and the
space needed for covariance matrix isO((K2 +
NK)2) whereN is the alphabet size.

5 Experimental Results

In the field segmentation task, a document is con-
sidered to be a sequence of fields. The goal is
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[EDITORA. Elmagarmid, editor.] [TITLE Transaction Models for Advanced Database Applications] [PUBLISHERMorgan-

Kaufmann,] [DATE1992.]
Figure 1: A field segmentation example for Citations dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

λ

E
rr

or
 (

pe
r 

po
si

tio
n)

EMλ2
freez Error on Citation Test (300L5000U)

 

 

Viterbi Decoding
SMS Decoding

λ
MLE

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

λ

E
rr

or
 (

pe
r 

po
si

tio
n)

EMλ
freez Error on Citation Test (300L5000U)

 

 

Viterbi Decoding
SMS Decoding

λ
MLE

(b)

Figure 2:EMλ error rates while increasing the allocation from 0 to 1 by thestep size0.025.

to segment the document into fields, and to label
each field. In our experiments we use the bibli-
ographic citation dataset described in (Peng and
McCallum, 2004) (see Fig. 1 for an example of
the input and expected label output for this task).
This dataset has 500 annotated citations with 13
fields; 5000 unannotated citations were added to
it later by (Grenager et al., 2005). The annotated
data is split into a 300-document training set, a
100-document development (dev) set, and a 100-
document test set7.

We use a first order HMM with the size of hid-
den states equal to the number of fields (equal to
13). We freeze the transition probabilities to what
has been observed in the labeled data and only
learn the emission probabilities. The transition
probabilities are kept frozen due to the nature of
this task in which the transition information can
be learned with very little labeled data, e.g. first
start with ’author’ then move to ’title’ and so on.
However, the challenging aspect of this dataset is
to find the segment spans for each field, which de-
pends on learning the emission probabilities, based
on the fixed transition probabilities.

At test time, we use both Viterbi (most probable
sequence of states) decoding and sequence of most
probable states decoding methods, and abbreviate
them by Viterbi and SMS respectively. We report
results in terms of precision, recall and F-measure
for finding the citation fields, as well as accuracy
calculated per position, i.e. the ratio of the words
labeled correctly for sequences to all of the words.
The segment-based precision and recall scores are,

7From http://www.stanford.edu/grenager/data/unsupie.tgz

of course, lower than the accuracy computed on
the per-token basis. However, both these numbers
need to be taken into account in order to under-
stand performance in the field segmentation task.
Each input word sequence in this task is very long
(with an average length of 36.7) but the number of
fields to be recovered is a small number compar-
atively (on average there are 5.4 field segments in
a sentence where the average length of a segment
is 6.8). Even a few one-word mistakes in finding
the full segment span leads to a drastic fall in pre-
cision and recall. The situation is quite different
from part-of-speech tagging, or even noun-phrase
chunking using sequence learning methods. Thus,
for this task both the per-token accuracy as well as
the segment precision and recall are equally impor-
tant in gauging performance.

Smoothing to remove zero components in the
starting point is crucial otherwise these features do
not generalize well and yet we know that they have
been observed in the unlabeled data. We use a sim-
ple add-ǫ smoothing, whereǫ is .2 for transition
table entries and .05 for the emission table entries.
In all experiments, we deal with unknown words in
test data by replacing words seen less than 5 times
in training by the unknown word token.

5.1 Problems with MLE

MLE chooses to setλ = |U |
|L|+|U | which almost

ignores labeled data information and puts all the
weight on the unlabeled data8. To see this empir-
ically, we show the per position error rates at dif-

8One anonymous reviewer suggests usingλ = |L|
|L|+|U|

but the “best bet” for different tasks that we mention in the
Introduction may not necessarily be a smallλ value.
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ferent source allocation for HMMs trained on 300
labeled and 5000 unlabeled sequences for the Ci-
tation dataset in Fig. 2(a). For each allocation we
have runEMλ algorithm, initialized to smoothed
counts from labeled data, until convergence. As
the plots show, initially the error decreases asλ in-
creases; however, it starts to increase afterλ passes
a certain value. MLE has higher error rates com-
pared to complete data estimate, and its perfor-
mance is far from the best way of combining la-
beled and unlabeled data.

In Fig. 2(b), we have done similar experiment
with the difference that for each value ofλ, the
starting point of theEMλ is the final solution
found in the previous value ofλ. As seen in the
plot, the intermediate local optima have better per-
formance compared to the previous experiment,
but still the imbalance between labeled and unla-
beled data negatively affects the quality of the so-
lutions compared to the purely supervised solution.

The likelihood surface is non-convex and has
many local maxima. Here EM performs hill climb-
ing on the likelihood surface, and arguably the re-
sulting (locally optimal) model may not reflect the
quality of the globally optimal MLE. But we con-
jecture that even the MLE model(s) which globally
maximize the likelihood may suffer from the prob-
lem of the size imbalance between labeled and un-
labeled data, since what matters is the influence
of unlabeled data on the likelihood. (Chang et.
al., 2007) also report on using hard-EM on these
datasets9 in which the performance degrades com-
pared to the purely supervised model.

5.2 Choosingλ in Homotopy-based HMM

We analyze different criteria in picking the best
value ofλ based on inspection of the continuation
path. The following criteria are considered:
• monotone: The first iteration in which the
monotonicity of the path is changed, or equiva-
lently the first iteration in which the determinant
of λ∇Θ̃EM1(Θ)−I in Algorithm 1 becomes zero
(Corduneanu and Jaakkola, 2002).
• minEig: Instead of looking into the determinant
of the above matrix, consider its minimum eigen-
value. Across all iterations, choose the one for
which this minimum eigenvalue is the lowest.
•maxEnt: Choose the iteration whose model puts
the maximum entropy on the labeling distribution
for unlabeled data (Ji et al., 2007).

9In Hard-EM, the probability mass is fully assigned to the
most probable label, instead of all possible labels.

The second criterion is new, and experimentally
has shown a good performance; it indicates the
amount of singularity of a matrix.
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Figure 3: λ values picked by different methods.
The size of the labeled data is fixed to 100, and
results are averaged over 4 runs. Theλ values
picked by MaxEnt method for 500 unlabeled ex-
amples was .008.

We fix 100 labeled sequences and vary the num-
ber of unlabeled sequences from 100 to 500 by a
step of 50. All of the experiments are repeated
four times with different randomly chosen unla-
beled datasets, and the results are the average over
four runs. The chosen allocations based on the de-
scribed criteria are plotted in Figure 3, and their
associated performance measures can be seen in
Figure 4.

Figure 3 shows that as the unlabeled data set
grows, the reliance of ’minEig’ and ’monotone’
methods on unlabeled data decreases whereas in
EM it increases. The ’minEig’ method is more
conservative than ’monotone’ in that it usually
chooses smallerλ values. The plots in Fig-
ure 4 show that homotopy-based HMM always
outperforms EM-based HMM. Moreover, ’max-
Ent’ method outperforms other ways of picking
λ. However, as the size of the unlabeled data in-
creases, the three methods tend to have similar per-
formances.

5.3 Homotopy v.s. other methods

In the second set of experiments, we compare
the performance of the homotopy based method
against the competitive methods for picking the
value ofλ.

We use all of the labeled sequences (size is 300)
and vary the number of unlabeled sequences from
300 to 1000 by the step size of 100. For the first
competitive method, 100 labeled sequences are put
in a held out set and used to select the best value
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Figure 4: The comparison of different techniques
for choosing the best allocation based on datasets
with 100 labeled sequences and varying number of
unlabeled sequences. Each figure shows the av-
erage over 4 runs. F-measure is calculated based
on thesegments, and total accuracy is calculated
based on tokens in individual positions. The two
plots in the top represent Viterbi decoding, and the
two plots in the bottom represent SMS decoding.

of λ based on brute-force search using a fixed step
size; afterwards, this value is used to train HMM
(based on 200 remaining labeled sequences and
unlabeled data). The second competitive method,
which we call ’Oracle’, is similar to the previous
method except we use the test set as the held out set
and all of the 300 labeled sequences as the train-
ing set. In a sense, the resulting model is the best
we can expect from cross validation based on the
knowledge of true labels for the test set. Despite
the name ’Oracle’, in this setting theλ value is se-
lected based on the log-likelihood criterion, so it is
possible that the ’Oracle’ method is outperformed
by another method in terms of precision/recall/f-
score. Finally, EM is considered as the third base-
line.

The results are summarized in Table 1. When
decoding based on SMS, the homotopy-based
HMM outperforms the ’Held-out’ method for all
of performance measures, and generally behaves
better than the ’Oracle’ method. When decoding
based on Viterbi, the accuracy of the homotopy-
based HMM is better than ’Held-out’ and is in
the same range as the ’Oracle’; the three meth-
ods have roughly the same f-score. Theλ value

found by Homotopy gives a small weight to unla-
beled data, and so it might seem that it is ignoring
the unlabeled data. This is not the case, even with
a small weight the unlabeled data has an impact,
as can be seen in the comparison with the purely
Supervised baseline in Table 1 where the Homo-
topy method outperforms the Supervised baseline
by more than 3.5 points of f-score with SMS-
decoding. Homotopy-based HMM with SMS-
decoding outperforms all of the other methods.

We noticed that accuracy was better for 700 un-
labeled examples in this dataset, and so we include
those results as well in Table 1. We observed some
noise in unlabeled sequences; so as the size of the
unlabeled data set grows, this noise increases as
well. In addition to finding the right balance be-
tween labeled and unlabeled data, this is another
factor in semi-supervised learning. For each par-
ticular unlabeled dataset size (we experimented us-
ing 300 to 1000 unlabeled data with a step size of
100) the Homotopy method outperforms the other
alternatives.

6 Related Previous Work

Homotopy based parameter estimation was orig-
inally proposed in (Corduneanu and Jaakkola,
2002) for Naı̈ve Bayes models and mixture of
Gaussians, and (Ji et al., 2007) used it for HMM-
based sequenceclassificationwhich means that an
input sequencex is classified into a class label
y ∈ {1, . . . , k} (the class label is not structured,
i.e. not a sequence of tags). The classification is
done using a collection ofk HMMs by computing
Pr(x, y | Θy) which sums over all states in each
HMM Θy for input x. The algorithms in (Ji et al.,
2007) could be adapted to the task of sequence la-
beling, but we argue that our algorithms provide a
straightforward and direct solution.

There have been some studies using the Cita-
tion dataset, but it is not easy to directly compare
their results due to differences in preprocessing,
the amount of the previous knowledge and rich
features used by the models, and the training data
which were used. (Chang et. al., 2007) used a first
order HMM in order to investigate injecting prior
domain knowledge to self-training style bootstrap-
ping by encoding human knowledge into declara-
tive constraints. (Grenager et al., 2005) used a first
order HMM which has a diagonal transition matrix
and a specialized boundary model. In both works,
the number ofrandomlyselected labeled and un-
labeled training data is varied, which makes a di-
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size of λ Viterbi decoding SMS decoding
unlab data p, r, f-score accuracy p, r, f-score accuracy

Homotopy
700 .004 .292, .290, .290 87.1% .321, .332,.326 89%
1000 .004 .292, .291, .291 87.9% .296, .298, .296 88.6%

Held-out
700 .220 .311, .291, .297 87.1% .295, .288, .289 87.2%
1000 .320 .300, .276, .283 86.9% .308, .281, .287 87.2%

Oracle
700 .150 .284, .293, .287 87.8% .295, .313, .303 88%
1000 .200 .285, .294, .289 87.9% .277, .292, .284 88.7%

EM
700 .700 .213, .211, .211 84.8% .213, .220, .216 85.2%
1000 .770 .199, .198, .198 83.7% .187, .198, .192 83.6%

Supervised 0 0 .281, .278, .279 87% .298, .280, .288 88.4%

Table 1: Results using entire labeled data with segment precision/recall/f-score and token based accuracy.

rect numerical comparison impossible. (Peng and
McCallum, 2004) used only labeled data to train
conditional random fields and HMMs with second
order state transitions where they allow observa-
tion in each position to depend on the current state
as well as observation of the previous position.

7 Conclusion

In many NLP tasks, the addition of unlabeled data
to labeled data candecreasethe performance on
that task. This is often because the unlabeled data
can overwhelm the information obtained from the
labeled data. In this paper, we have described a
methodology and provided efficient algorithms for
an approach that attempts to ensure that unlabeled
data does not hurt performance. The experimen-
tal results show that homotopy-based training per-
forms better than other commonly used compet-
itive methods. We plan to explore faster ways
for computing the (approximate) covariance ma-
trix, e.g., label sequences can be sampled from
P (y|x,Θ) and an approximation of the covari-
ance matrix can be computed based on these sam-
ples. Also, it is possible to compute the covariance
matrix in polynomial-time for labels which have
richer interdependencies such as those generated
by a context free grammars (Haffari and Sarkar,
2008). Finally, in Algorithm 1 we used a fixed
step size; the number of iterations in the homo-
topy path following can be reduced greatly with
adaptive step size methods (Allgower and Georg,
1993).
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