
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 217–224
Manchester, August 2008

Efficient Parsing with the Product-Free Lambek Calculus

Timothy A. D. Fowler
Department of Computer Science

University of Toronto
10 King’s College Road, Toronto, ON, M5S 3G4, Canada

tfowler@cs.toronto.edu

Abstract

This paper provides a parsing algorithm
for the Lambek calculus which is polyno-
mial time for a more general fragment of
the Lambek calculus than any previously
known algorithm. The algorithm runs in
worst-case timeO(n5) when restricted to
a certain fragment of the Lambek calcu-
lus which is motivated by empirical anal-
ysis. In addition, a set of parameterized
inputs are given, showing why the algo-
rithm has exponential worst-case running
time for the Lambek calculus in general.

1 Introduction

A wide variety of grammar formalisms have been
explored in the past for parsing natural language
sentences. The most prominent of these for-
malisms has been context free grammars (CFGs)
but a collection of formalisms known as categorial
grammar (CG) (Ajdukiewicz, 1935; Dowty et al.,
1981; Steedman, 2000) has received interest be-
cause of some significant advantages over CFGs.

First, CG is inherently lexicalized due to the fact
that all of the variation between grammars is cap-
tured by the lexicon. This is a result of the rich
categories which CG uses in its lexicon to specify
the functor-argument relationships between lexical
items. A distinct advantage of this lexicalization
is that the processing of sentences depends upon
only those categories contained in the string and
not some global set of rules. Second, CG has
the advantage that it centrally adopts the princi-
ple of compositionality, as outlined in Montague

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

grammar (Montague, 1974), allowing the semantic
derivation to exactly parallel the syntactic deriva-
tion. This leads to a semantical form which is eas-
ily extractable from the syntactic parse.

A large number of CG formalisms have been
introduced including, among others, the Lambek
calculus (Lambek, 1958) and Combinatory Cat-
egorial Grammar (CCG) (Steedman, 2000). Of
these, CCG has received the most zealous com-
putational attention. Impressive results have been
achieved culminating in the state-of-the-art parser
of Clark and Curran (2004) which has been used as
the parser for the Pascal Rich Textual Entailment
Challenge entry of Bos and Markert (2005). The
appeal of CCG can be attributed to the existence of
efficient parsing algorithms for it and the fact that
it recognizes a mildly context-sensitive language
class (Joshi et al., 1989), a language class more
powerful than the context free languages (CFLs)
that has been argued to be necessary for natural
language syntax. The Lambek calculus provides
an ideal contrast between CCG and CFGs by be-
ing a CG formalism like CCG but by recognizing
the CFLs like CFGs (Pentus, 1997).

The primary goal of this paper is to provide
an algorithm for parsing with the Lambek calcu-
lus and to sketch its correctness. Furthermore, a
time bound ofO(n5) will be shown for this algo-
rithm when restricted to product-free categories of
bounded order (see section 2 for a definition). The
restriction to bounded order is not a significant re-
striction, due to the fact that categories in CCG-
bank1 (Hockenmaier, 2003), a CCG corpus, have a
maximum order of5 and an average order of0.78
by token. In addition to the presentation of the al-
gorithm, we will provide a parameterized set of in-

1Although CCGbank was built for CCG, we believe that
transforming it into a Lambek calculus bank is feasible.

217



puts (of unbounded order) on which the algorithm
has exponential running time.

The variant of the Lambek calculus considered
here is the product-free Lambek calculus chosen
for three reasons. First, it is the foundation of
all other non-associative variants of the Lambek
calculus including the original Lambek calculus
(Lambek, 1958) and the multi-modal Lambek cal-
culus (Moortgat, 1996). Second, the calculus with
product is NP-complete (Pentus, 2006), while the
sequent derivability in the product-free fragment
is still unknown. Finally, the only connectives in-
cluded are/ and\, which are the same connectives
as in CCG, providing a corpus for future work such
as building a probabilistic Lambek calculus parser.

2 Problem specification

Parsing with the Lambek calculus is treated as a
logical derivation problem. First, the words of a
sentence are assignedcategorieswhich are built
from basic categories(e.g. NP and S ) and the
connectives\ and/. For example, the category for
transitive verbs is(NP\S )/NP and the category
for adverbs is(S/NP)\(S/NP)2. Intuitively, the
\ and/ operators specify the arguments of a word
and the direction in which those arguments need to
be found. Next, thesequentis built by combining
the sequence of the categories for the words with
the⊢ symbol and the sentence category (e.g.S ).

Strictly speaking, this paper only considers the
parsing of categories without considering multi-
ple lexical entries per word. However, using tech-
niques such as supertagging, the results presented
here yield an efficient method for the broader prob-
lem of parsing sentences. Therefore, we can take
the size of the inputn to be the number ofbasic
categories in the sequent.

A parse tree for the sentence corresponds to a
proof of its sequent and is restricted to rules fol-
lowing the templates in figure 1. In figure 1, lower-
case Greek letters represent categories and upper-
case Greek letters represent sequences of cate-
gories. A proof for the sentence ”Who loves him?”
is given in figure 2.

The version of the Lambek calculus presented
above is known as the product-free Lambek calcu-
lus allowing empty premises and will be denoted
by L. In addition, we will consider the fragment
Lk, obtained by restrictingL to categories of order
bounded byk. Theorder of a category, which can

2We use Ajdukiewicz notation, not Steedman notation.

α ⊢ α

Γ ⊢ α ∆βΘ ⊢ γ

∆Γα\βΘ ⊢ γ

αΓ ⊢ β

Γ ⊢ α\β
Γ ⊢ α ∆βΘ ⊢ γ

∆β/αΓΘ ⊢ γ

Γα ⊢ β

Γ ⊢ β/α

Figure 1: The sequent presentation ofL.

NP ⊢ NP

S ⊢ S

NP ⊢ NP S ⊢ S
NP NP\S ⊢ S

NP\S ⊢ NP\S
S/(NP\S) NP\S ⊢ S

S/(NP\S) (NP\S)/NP NP ⊢ S

Who loves him

Figure 2: A derivation for “Who loves him?”.

be viewed as the depth of the nesting of argument
implications, is defined as:

o(α) = 0 for α a basic category

o(α/β) = o(β\α) = max(o(α), o(β) + 1)

For example,o((NP\S)/NP) = 1 ando((S/
NP)\(S/NP )) = 2.

3 Related work

Two other papers have provided algorithms similar
to the one presented here.

Carpenter and Morrill (2005) provided a graph
representation and a dynamic programming algo-
rithm for parsing in the Lambek calculus with
product. However, due to there use of the Lam-
bek calculus with product and to their choice of
correctness conditions, they did not obtain a poly-
nomial time algorithm for any significant fragment
of the calculus.

Aarts (1994) provided an algorithm forL2

which is not correct forL. Ours is polynomial time
for Lk, for any constantk, and is correct forL, al-
beit in exponential running time.

A number of authors have provided polynomial
time algorithms for parsing with CCG which gives
some insight into how good our bound ofO(n5)
is. In particular, Vijay-Shanker and Weir (1994)
provided a chart parsing algorithm for CCG with a
time bound ofO(n6).

4 An algorithm for parsing with L

This section presents a chart parsing algorithm
similar to CYK where entries in the chart are arcs
annotated with graphs. The graphs will be referred

218



to as abstract term graphs (ATGs) since they are
graph representations of abstractions over seman-
tic terms. ATGs will be presented in this section
by construction. See section 5 for their connection
to the proof structures of Roorda (1991).

The algorithm consists of two steps. First, the
base case is computed by building thebase ATG
B and determining the set ofsurface variablesby
using the proof frames of Roorda (1991). Second,
the chart is filled in iteratively according to the al-
gorithms specified in the appendix. The details for
these two steps can be found in sections 4.1 and
4.2, respectively. Section 4.3 introduces a proce-
dure for culling extraneous ATGs which is nec-
essary for the polynomial time proof and section
4.4 discusses recovery of proofs from the packed
chart. An example of the algorithm is given in fig-
ure 3.

For parsing with L, the input is a sequent and for
parsing withLk, the input is a sequent with cate-
gories whose order is bounded byk. Upon com-
pletion, the algorithm outputs “YES” if there is an
arc from0 to n− 1 and “NO” otherwise.

4.1 Computing the base case

Computing the base case consists of building the
proof frame and then translating it into a graph,
the base ATGB.

4.1.1 Building the proof frame

Proof frames are the part of the theory of proof
nets which we need to build the base ATG. The
proof frame for a sequent is a structure built on top
of the categories of the sentence. To build the proof
frame, all categories in the sequent are assigned
a polarity and labelled by a fresh variable. Cate-
gories to the left of⊢ are assigned negative polarity
and the category to the right of⊢ is assigned pos-
itive polarity. Then, the four decomposition rules
shown in table 1 are used to build a tree-like struc-
ture (see figure 3). The decomposition rules are
read from bottom to top and show how to decom-
pose a category based on its main connective and
polarity. In table 1,d is the label of the category
being decomposed,f , g andh are fresh variables
and order of premises is important.

The bottom of the proof frame consists of the
original sequent’s categories with labels and po-
larities. These are calledterminal formulae. The
top of the proof frame consists of basic categories
with labels and polarities. These are called theax-
iomatic formulae. In addition, we will distinguish

α
+
: f β

−
: df

α\β −
: d

β
+
: h α

−
: g

α\β +
: d

α
−
: df β

+
: f

α/β
−
: d

β
−
: g α

+
: h

α/β
+
: d

Table 1: The proof frame decomposition rules.

the leftmost variable in the label of each axiomatic
formula as itssurface variable. See figure 3 for an
example.

4.1.2 Building the Base ATG

The base ATGB is built from the proof frame in
the following way. The vertices of the base ATG
are the surface variables plus a new special ver-
tex τ . The edges of ATGs come in two forms:
Labelled and unlabeled, specified as〈s, d, l〉 and
〈s, d〉, respectively, wheres is the source,d is the
destination andl, where present, is the label.

To define the edge set ofB, we need the follow-
ing:

Definition. For a variableu that labels a positive
category in a proof frame, theaxiomatic reflection,
ρ(u), is the unique surface variablev such that on
the upward path fromu andv in the proof frame,
there is no formula of negative polarity. For exam-
ple, in figure 3,ρ(b) = c.

The edgesetE of the base ATG is as follows:

1. 〈m,ρ(pi)〉 ∈ E for 1 ≤ i ≤ k where
mp1 . . . pk appears as the label of some nega-
tive axiomatic formula

2. 〈τ, ρ(t)〉 ∈ E wheret is the label of the posi-
tive terminal formula

3. For each rule with a positive conclusion,
negative premise labelled byg and positive
premise labelled byh, 〈ρ(h), g, g〉 ∈ E

A labeled edge in an ATG specifies that its
source must eventually connect to its destination
to complete a path corresponding to its label. For
example,G1 contains the edge〈c, e, d〉 which in-
dicates that to complete the path fromc to d, we
must connectc to e. In contrast, an unlabeled edge
in an ATG specifies that its source is already con-
nected to its destination. For example, in figure 3,
G3 contains the edge〈a, f〉 which indicates that
there is some path, over previously deleted nodes,
which connectsa to f .

219



0 1 2 3 4 5 6 7
a c d g e f h i

S
−
: ab S

+
: c NP

−
: d

NP\S +
: b

S/(NP\S)
−
: a

NP
+
: g S

−
: efg

NP\S −
: ef

NP
+
: f

(NP\S)/NP
−
: e

NP
−
: h S

+
: i

Who loves him ?

τ
G6 =

τ i
aG5 =

τ i
a f
h

G3 =
τ g
a c ddG4 =

τ i
a c e fd

h
G1 =

τ i
a c dd
e g

G2 =

B =

τ i
a c dd
e f

g
h

B B B B B B B

Sentence

Proof
Frame

Surface
Variables

Chart

Figure 3: The algorithm’s final state on the sequentS/(NP\S) (NP\S)/NP NP ⊢ S.

Note that all nodes in an ATG have unlabeled
in-degree of either0 or 1 and that the vertices of
an ATG are the surface variables found outside its
arc.

4.2 Filling in the chart

Once the base ATG and the sequence of surface
variables is determined, we can begin filling in the
chart. The termentry refers to the collection of
arcs beginning and ending at the same nodes of the
chart. An arc’slength is the difference between
its beginning and end points, which is always odd.
Note that each entry in the example in figure 3 con-
tains only one arc. We will iterate across the en-
tries of the chart and at each entry, we will attempt
aBracketingand a number ofAdjoinings. If an at-
tempt results in aviolation, no new ATG is inserted
into the chart. Otherwise, a new ATG is computed
and inserted at an appropriate entry.

Bracketing is an operation on a single ATG
where we attempt to extend its arc by connecting
two nodes with the same basic category and op-
posite polarity. For example,G3 is the result of
bracketingG1. Adjoining, on the other hand, is an
operation on two adjacent ATGs where we attempt
to unify their ATGs into one larger ATG. For ex-
ample,G5 is the result of adjoiningG3 andG2.

The chart filling process is described by algo-
rithm 1 in the appendix. The chart in figure 3 is
filled by the graphsG1, . . . , G6, in that order. A

walk through of the example is given in the re-
mainder of this section. Arcs of length1 are treated
specially, since they are derived directly from the
base ATG. To show this, the base ATG is shown at
pseudo-nodes, labeled by Bs.

4.2.1 Inserting arcs of length1
This section corresponds to lines 1-2 of algo-

rithm 1 in the appendix. For each arc fromi to
i+1, we will attempt to bracket the base ATG from
axiomatic formulai to axiomatic formulai + 1.

To follow our example, the first step is to con-
sider inserting an arc from0 to 1 by bracketingB.
Bracketing causes a positive surface variable to be
connected to a negative surface variable and in this
case, a cycle froma to c and back toa is formed
resulting in the violation on line 12 of algorithm 2.
Therefore, no arc is inserted.

Then, the second step considers inserting an arc
from 1 to2. However, axiomatic formula1 has cat-
egoryS and axiomatic formula2 has categoryNP
which results in the violation on line 3 of algorithm
2 since they are not the same.

Next, we attempt to insert an arc from2 to 3.
In this case, no violations occur meaning that we
can insert the arc. The intuition is that the ATG
for this arc is obtained by connectingg to d in
the base ATG. Sincec must eventually connect
to d (c →d d), and nowg connects tod, the in-
degree constraint on ATG nodes requires that the
path connectingc to d pass throughg. Further-

220



- -
τ i
a c e fd

h

τ i
a c e f
h

τ i
a f
h

Figure 4: The intuition for bracketing fromc to e.

more, the only way to connectc to g is throughe.
Soc →d e. Then, we deleted andg.

This procedure continues until we have consid-
ered all possible arcs of length1.

4.2.2 Inserting arcs of length3 and greater

Next, we iterate across graphs in the chart and
for each, consider whether its ATG can be brack-
eted with the axiomatic formulae on either side of
it and whether it can be adjoined with any of the
other graphs in the chart. This process closely re-
sembles CYK parsing as described on lines 3-10
of algorithm 1. The choice of shortest to longest
is important because part of the invariant of our
dynamic program is that all derivable ATGs on
shorter arcs have already been added.

Following our example, the first graph to be con-
sidered isG1. First, we attempt to bracket it from
axiomatic formulae1 to 4. As before, this intu-
itively involves connectingc to e in the ATG for
this arc. This is allowed because no cycles are
formed and no labelled edges are prohibited from
eventually being connected. Then, as before, we
delete the verticesc ande and as a result connect
a to f , resulting inG3. The bracketing process is
illustrated in figure 4.

Next, we consider all graphs to whichG1 could
adjoin and there are none, since such graphs would
need to annotate arcs which either end at1 or begin
at 4. After processingG1, we processG2, which
has a successful bracketing resulting inG4 and no
successful adjoinings.

Next, we processG3. Bracketing it is prohib-
ited, as it would result in a cycle froma to f and
back toa. However, it is possible to adjoinG3 with
G2, since they are adjacent.

The adjoining of two graphs can be viewed as a
kind of intersection of the two ATGs, in the sense
that we are combining the information in both
graphs to yield a single more concise graph. At-
tempting an adjoining involves traversing the two
graphs being adjoined and the base ATG in both a
forward and a backward direction as specified in
algorithms 4 and 5 in the appendix.

The intuition behind these traversals is to gen-
erate a picture of what the combination of the two

@@R

���

-

τ i
a f
h

τ i
a c dd

e g

τ i
a c e f

g
h
d

τ i
a

Figure 5: The intuition for adjoining two ATGs.

graphs must look like as illustrated in figure 5. In
general, we can only reconstruct those parts of the
graph which are necessary for determining the re-
sultant ATG and no more. The dotted edges in-
dicate uncertainty about the edges present at this
stage of the algorithm. AdjoiningG2 andG3 does
not fail and the resultant graph isG5.

Note that this example does not contain any
instances of two identical ATGs being inserted
multiple times into the chart which occurs often
in large examples yielding significant savings of
computation.

4.3 Culling of extraneous ATGs

It often happens that an entry in the chart contains
two ATGs such that if one of them is extendable
to a complete proof then the other necessarily is as
well. In this case, the former can be discarded. We
will outline such a method here that is important
for the polynomial time proof.

Definition. ATGs G1 and G2 are equivalent if
some surjection of edge labels to edge labels ap-
plied to the those ofG1 yields those ofG2.

Then, if two ATGs in a chart are equivalent, one
can be discarded.

4.4 Recovering proofs from a packed chart

The algorithm as described above is a method for
answering the decision problem for sequent deriv-
ability in the Lambek calculus. However, we can
annotate the ATGs with the ATGs they are derived
from so that a complete set of Roorda-style proof
nets, and thus the proofs themselves, can be recov-
ered.

5 Correctness

Correctness of the algorithm is obtained by using
structural induction to prove the equivalence of the
constructive definition of ATGs outlined in section
4 and a definition based on semantic terms given
in this section:

221



S
−
: ab

S
+
: c NP

−
: d

NP\S +
: b

S/(NP\S)
−
: a

NP
+
: g S

−
: efg

NP\S −
: ef NP

+
: f

(NP\S)/NP
−
: e NP

−
: h S

+
: i

Figure 6: A proof structure for “Who loves him?”.

Definition. A partial proof structure is a proof
frame together with a matching of the axiomatic
formulae. Aproof structureis a partial proof struc-
ture whose matching is complete.

An example is given in figure 6. Proof struc-
tures correspond to proofs under certain conditions
and our conditions will be based on the semantic
term of the proof given to us by the Curry-Howard
isomorphism for the Lambek calculus (Roorda,
1991). To do this, we interpret left rules as func-
tional application and right rules as functional ab-
straction of lambda terms. Under this interpreta-
tion, the semantic term obtained from the proof
structure in figure 6 isaλd.ehd.

As in Roorda (1991), proof structures corre-
spond to a proof if the semantic term assigned to
the sentence category is a well formed lambda term
which includes all the terms assigned to the words
of the sentence. Then, ATGs are graph represen-
tations of abstractions of the undetermined portion
of semantic terms of partial proof structures. Unla-
beled edges correspond to functional applications
whose arguments must still be determined and la-
belled edges correspond to functional abstractions
whose body does not yet contain an instance of the
abstracted variable. The violations which occur
during the execution of the algorithm correspond
to the various ways in which a lambda term can be
ill formed.

6 Asymptotic Running Time Complexity

In this section we provide proof sketches for the
runtime of the algorithm. Letf(n) be a bound
on the number of arcs occurring in an entry in the
chart wheren is the number of axiomatic formu-
lae. Then, observe that the number of edges within
an ATG isO(n2) and the number of edges adja-
cent to a vertex isO(n), due to basic properties of
ATGs.

Then, it is not hard to prove that the worst case
running time of Bracketing isO(n2), which is
dominated by the for loops of lines 20-23 of al-
gorithm 2.

Next, with some effort, we can see that the worst
case running time of Adjoining is dominated by the
execution of the procedures Fore and Back. But,
since there are at most a linear number of labelsl
and for each labell we need to visit each vertex in
G1 andG2 at most a constant number of times, the
worst case running time isO(n2).

Then, for each ATG, we attempt at most one
bracketing and adjoinings with at most2n+1 other
entries for which there can be(2n+1)f(n) ATGs.
Therefore, each entry can be processed in worst
case timeO(n3f(n)2).

Finally, there areO(n2) entries in the chart,
which means that the entire algorithm takes time
O(n5f(n)2) in the worst case. Sections 6.1 and
6.2 discuss the functionf(n).

6.1 Runtime for Lk

By structural induction on the proof frame decom-
position rules and the base ATG building algo-
rithm, it can be proven that inLk the length of the
longest path in the base ATG is bounded byk.

Next, consider a partition of the surface vari-
ables into a pair of sets such that the axiomatic
formulae corresponding to the surface variables
within each set are contiguous. For the example in
figure 3, one such pair of sets isS1 = {a, c, d, g}
andS2 = {e, f, h, i}. Then, given such a partition,
it can be proven that there is at least one maximal
path P in the base ATG such that all vertices in
one set that are adjacent to a vertex in the other
set are either inP or adjacent to some vertex in
P . For example, a maximal path forS1 andS2 is
P = e → g.

An entry in the chart induces two such parti-
tions, one at the left edge of the entry and one at
the right edge. Therefore, we obtain two such max-
imal paths and for any ATGG in this entry and any
vertexv not in or adjacent to one of these paths, ei-
therv is not inG or v has the same neighbourhood
in G as it has in the base ATG. Then, the number
of vertices adjacent to vertices in these paths can
be as many asn. However, if we put these vertices
into sets such that vertices in a set have identical

222



neighbourhoods, the number of sets is dependant
only onk.

In the worst case, the out-neighbourhood of one
of these sets can be any set of these sets. So, we
get a bound forf(n) to beO(k24k). Therefore,
becausek is constant inLk, f(n) is constant and
the running time of the algorithm forLk is O(n5)
in the worst case.

6.2 Runtime for L

Despite the results of section 6.1, this algorithm
has an exponential running time forL. We demon-
strate this with the following set of parameterized
sequents:

F (1) = ((A/A)\A)\A
F (i) = ((A/(A/Fi−1))\A)\A for i > 1
U(n) = Fn Fn ⊢ A\A

Theorem. There are (2n−1)!
n!(n−1)! ∈ Θ(4n) distinct

arcs in the entry fromn to 3n − 1 in the chart for
U(n).

Proof. By induction and a mapping from the pos-
sible matchings to the possible permutations of a
sequence of length2n − 1 such that two subse-
quences of lengthn andn− 1 are in order.

7 Conclusions and Future Work

We have presented a novel algorithm for parsing in
the Lambek calculus, sketched its correctness and
shown that it is polynomial time in the bounded-
order case. Furthermore, we presented a set of pa-
rameterized sequents proving that the algorithm is
exponential time in the general case, which aids
future research in finding either a polynomial time
algorithm or an NP-completeness proof forL.

In addition, this algorithm provides another step
toward evaluating the Lambek calculus against
both CFGs (to evaluate the importance of Cate-
gorial Grammar) and CCG (to evaluate the impor-
tance of the mildly context-sensitive languages).

In the future, we plan on determining the run-
ning time of this algorithm on an actual corpus,
such as a modified version of CCGbank, and
then to empirically evaluate the Lambek calculus
for natural language processing. In addition, we
would like to investigate extending this algorithm
to more complex variants of the Lambek calculus
such as the multi-modal calculus using the proof
nets of Moot and Puite (2002).

Acknowledgments

Many thanks to Gerald Penn, for his insightful
comments and for guiding this research.

References

Aarts, Erik. 1994. Proving Theorems of the Second
Order Lambek Calculus in Polynomial Time.Studia
Logica, 53:373–387.

Ajdukiewicz, Kazimierz. 1935. Die syntaktische Kon-
nexitat.Studia Philosophica, 1(1-27).

Bos, Johan and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference.Proceedings
of HLT and EMNLP, pages 628–635.

Carpenter, Bob and Glyn Morrill. 2005. Switch Graphs
for Parsing Type Logical Grammars.Proceedings of
IWPT ’05, Vancouver.

Clark, Steven and James R. Curran. 2004. Parsing the
WSJ using CCG and log-linear models.Proceedings
of ACL ’04, pages 104–111.

Dowty, David R., Robert E. Wall, and Stanley Peters.
1981.Introduction to Montague Semantics. Reidel.

Hockenmaier, Julia. 2003.Data and Models for Sta-
tistical Parsing with Combinatory Categorial Gram-
mar. Ph.D. thesis, University of Edinburgh.

Joshi, Aravind K., K. Vijay-Shanker, and David J. Weir.
1989. The Convergence of Mildly Context-sensitive
Grammar Formalisms. University of Pennsylvania.

Lambek, Joachim. 1958. The mathematics of sen-
tence structure.American Mathematical Monthly,
65:154–170.

Montague, Richard. 1974.Formal philosophy: se-
lected papers of Richard Montague. Yale University
Press New Haven.

Moortgat, Michael. 1996. Multimodal linguistic infer-
ence.Journal of Logic, Language and Information,
5(3):349–385.

Moot, Richard and Quintijn Puite. 2002. Proof Nets for
the Multimodal Lambek Calculus.Studia Logica,
71(3):415–442.

Pentus, Mati. 1997. Product-Free Lambek Calculus
and Context-Free Grammars.The Journal of Sym-
bolic Logic, 62(2):648–660.

Pentus, Mati. 2006. Lambek calculus is NP-complete.
Theoretical Computer Science, 357(1-3):186–201.

Roorda, Dirk. 1991. Resource Logics: Proof-
theoretical Investigations. Ph.D. thesis, Universiteit
van Amsterdam.

Steedman, Mark. 2000.The Syntactic Process. Brad-
ford Books.

223



Vijay-Shanker, K. and David J. Weir. 1994. Parsing
Some Constrained Grammar Formalisms.Computa-
tional Linguistics, 19(4):591–636.

Appendix. Algorithm Pseudocode

The term source set refers to the out-
neighbourhood ofτ . The termminus variable
refers to surface variables obtained from negative
axiomatic formulae plusτ . Xi refers to theith

axiomatic formula.

Algorithm 1 Chart Iteration
1: for i = 0 to n− 1 do
2: Bracketing(B, Xi, Xi+1)
3: for l = 1, 3, 5, . . . to n− 1 do
4: for e = 0 to n− l − 1 do
5: for each arc frome to e + l with ATG G do
6: Bracketing(G, Xe−1 to Xe+l+1)
7: Adjoin G to ATGs frome− l − 1 to e− 1
8: for al = 1, 3, ..., l − 2 do
9: Adjoin G to ATGs frome− al − 1 to e− 1

10: AdjoinG to ATGs frome+l+1 toe+l+al+1

Algorithm 2 Bracketing(G, Xi, Xj)

1: Ci
pi
: li = Xi andCj

pj
: lj = Xj

2: if Ci 6= Cj then
3: V iolation : Mismatched Basic Categories
4: if pi = pj then
5: V iolation : Mismatched Polarities
6: Let m,p ∈ {i, j} such thatpm is negative andpp is

positive
7: if G is not from1 to n− 1 and the source set ofG is the

singletonlp andlm has out-degree0 in G then
8: V iolation : Empty Source Set
9: if the edge〈lm, lp〉 ∈ G then

10: V iolation : Cycle Exists
11: if lp is in the source set ofG and there exists an in-edge

of m with labell such that no edge fromp to m has label
l and no edge from a vertex other thanp to a vertex other
thanm has labell then

12: V iolation : Path Completion Impossible
13: if m has out-degree0 and and there exists an out-edge

of p with labell such that no edge fromp to m has label
l and no edge from a vertex other thanp to a vertex other
thanm has labell then

14: V iolation : Path Completion Impossible
15: CopyG to yieldH
16: for each edge〈lp, lm, l〉 ∈ G do
17: Delete all edges fromH with labell
18: Deletelm, lp and all their incident edges fromH
19: Letinp be the in-neighbour oflp in G
20: for eachq in the out-neighbourhood oflm in G do
21: Insert〈inp, q〉 into H
22: for each edge〈p, d, l〉 in G do
23: Insert〈q, d, l〉 into H
24: for each edge〈q, m, l〉 in G do
25: Insert〈q, inp, l〉 into H
26: if H contains a cyclethen
27: V iolation : Future Cycle Required

28: return H

Algorithm 3 Adjoining(G1 , G2)
1: LetVH be the intersection of the vertices inG1 andG2

2: if VH 6= τ andFore(τ, G1, G2) ∩ VH = ∅ then
3: V iolation : Empty Source Set
4: for eachl such thatl labels an edge inG1 andG2 do
5: Let 〈p, m, l〉 be the unique edge labelledl in B
6: if Fore(p,G1, G2, l)∩Back(m,G1, G2) = ∅ then
7: if Fore(p) ∩ VH = ∅ then
8: V iolation : Path Completion Impossible
9: if Back(m) ∩ VH = τ then

10: V iolation : Path Completion Impossible
11: LetH be the graph with vertex setVH and no edges
12: for each minus variablem ∈ VH do
13: for eachp ∈ Fore(m,G1, G2, ∅) do
14: Insert〈m,p〉 into H
15: for eachl such thatl labels an edge inG1 andG2 do
16: Let〈p, m, l〉 be the unique edge labelledl in B
17: if Fore(p,G1, G2, l)∩Back(m,G1, G2) = ∅ then
18: for eachq ∈ Fore(p,G1, G2, l) ∩ VH do
19: Insert〈q, Back(m, G1, G2) ∩ VH , l〉 into H

20: return H

Algorithm 4 Fore(v, G1, G2, l)
1: if v ∈ G1 andv ∈ G2 then
2: return {v}
3: else
4: if v is a minus vertexthen
5: S =∪i∈{1,2}Out-neighbourhoodGi

v
6: else ifv is a plus vertexthen
7: Let j be such thatv ∈ Gj

8: S =∪e∈Edges labelled bylSource of e
F = S

9: while S is not emptydo
10: Remove any elementu from S
11: Letm be the in-neighbour ofu in B
12: if u does not appear in one ofG1, G2 andm does

not appear in the otherthen
13: Leti be such thatm ∈ Gi

14: LetO be the out-neighbourhood ofm in Gi

15: S = S ∪ O
16: F = F ∪ O
17: F = F ∪ {m}
18: return F

Algorithm 5 Back(m, G1, G2)
1: if m ∈ G1 andm ∈ G2 then
2: return {m}
3: else
4: Let i, j ∈ {1, 2} be such thatm ∈ Gi andm /∈ Gj

5: Let m′ be the destination of the edges labelled bym
in Gj

6: M = {m, m′}
7: while m′ /∈ G1 andm′ /∈ G2 do
8: Let i′, j′ ∈ {1, 2} be such thatm′ ∈ Gi′ andm′ /∈

Gj′
9: Letp ∈ Gj′ be an out-neighbour ofm′ in B

10: Letm′′ be the in-neighbour ofp in Gj′
11: m′ = m′′

12: M = M ∪ {m′′}
13: return M

224


