Efficient Parsing with the Product-Free Lambek Calculus

Timothy A. D. Fowler
Department of Computer Science
University of Toronto
10 King’s College Road, Toronto, ON, M5S 3G4, Canada
tfow er @s.toronto. edu

Abstract grammar (Montague, 1974), allowing the semantic
derivation to exactly parallel the syntactic deriva-
tion. This leads to a semantical form which is eas-
ily extractable from the syntactic parse.

A large number of CG formalisms have been
introduced including, among others, the Lambek
. 5) calculus (Lambek, 1958) and Combinatory Cat-

worst-c_ase time)(n”) when restricted to egorial Grammar (CCG) (Steedman, 2000). Of
a certa_un fragmgnt of the Lampek calcu- these, CCG has received the most zealous com-
Iug which is motlvated by empirical ar_lal- putational attention. Impressive results have been
ysIS. In add.|t|on, a set_ of parameterized achieved culminating in the state-of-the-art parser
mputs are given, showmg why the algo- of Clark and Curran (2004) which has been used as
r_|thm has exponential worst-gase running — yhe parser for the Pascal Rich Textual Entailment
time for the Lambek calculus in general. Challenge entry of Bos and Markert (2005). The
1 Introduction appeal of CCG can be attributed to the existence of
efficient parsing algorithms for it and the fact that
A wide variety of grammar formalisms have beent recognizes a mildly context-sensitive language
explored in the past for parsing natural languagg|ass (Joshi et al., 1989), a language class more
sentences. The most prominent of these fogowerful than the context free languages (CFLS)
malisms has been context free grammars (CFGg)at has been argued to be necessary for natural
but a collection of formalisms known as categoria|anguage syntax. The Lambek calculus provides
grammar (CG) (Ajdukiewicz, 1935; Dowty et al., 5 jdeal contrast between CCG and CFGs by be-

1981; Steedman, 2000) has received interest by a CG formalism like CCG but by recognizing
cause of some significant advantages over CFGsihe CFLs like CFGs (Pentus, 1997).

that all of the variation between grammars is capyp, algorithm for parsing with the Lambek calcu-
tured by the lexicon. This is a result of the richys and to sketch its correctness. Furthermore, a
categories which CG uses in its lexicon to specifyime bound 0fO(n?) will be shown for this algo-
the functor-argument relationships between lexica{tnm when restricted to product-free categories of
items. A distinct advantage of this lexicalizationponded order (see section 2 for a definition). The
is that the processing of sentences depends UPRLtriction to bounded order is not a significant re-
only those categories contained in the string angkyiction, due to the fact that categories in CCG-
not some global set of rules. Second, CG hagyk (Hockenmaier, 2003), a CCG corpus, have a
the advantage that it centrally adopts the prinCimaximum order of and an average order 6f78

ple of compositionality, as outlined in Montaguepy token. In addition to the presentation of the al-

©2008. Licensed under the&Creative Commons gorithm, we will provide a parameterized set of in-
Attribution-Noncommercial-Share Alike 3.0 Unportdd —
cense (http://creativecommons.org/licenses/by-ng-@&/ 1Although CCGbank was built for CCG, we believe that
Some rights reserved. transforming it into a Lambek calculus bank is feasible.

This paper provides a parsing algorithm
for the Lambek calculus which is polyno-
mial time for a more general fragment of
the Lambek calculus than any previously
known algorithm. The algorithm runs in

217
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 217-224
Manchester, August 2008

puts (of unbounded order) on which the algorithm aka
has exponential running time. I'ka ABO F ~ ol + 8
The variant of the Lambek calculus considered ATa\3O F TFa\B
here is the product-free Lambek calculus chosen
for three reasons. First, it is the foundation of
all other non-associative variants of the Lambek
calculus including the original Lambek calculus
(Lambek, 1958) and the multi-modal Lambek cal-
culus (Moortgat, 1996). Second, the calculus with NPFNP 5SS

I'Fa ABOFy Takp
AB/al'® F ~ 'k g/a

Figure 1. The sequent presentation/of

product is NP-complete (Pentus, 2006), while the NP NPASE S
L SkS NP\S+ NP\S
sequent derivability in the product-free fragment
NP+ NP S/(NP\S) NP\SF S

is still unknown. Finally, the only connectives in-
cluded are/ and\, which are the same connectives
as in CCG, providing a corpus for future work such Who loves him

as building a probabilistic Lambek calculus parser. Figure 2: A derivation for “Who loves him?”.

S/(NlP\S) (NP\;S) /NP NP S

2 Problem specification be viewed as the depth of the nesting of argument

Parsing with the Lambek calculus is treated as @nplications, is defined as:

logical derivation problem. First, the words of a _

sentence are assignedtegorieswhich are built o(a) = 0 for o a basic category

from basic categorieqe.g. NP and S) and the o(a/B) = o(B\a) = max(o(),o(f) + 1)
connectives, and/. For example, the category for

transitive verbs i NP\ S)/NP and the category ~ FOr examplep((NP\S)/NP) = 1 ando((5/
for adverbs ig.S/NP)\(5/NP)2. Intuitively, the NP)\(S/NP)) = 2.

\ and/ operators specify the arguments of a WOI‘(%
and the direction in which those arguments need { Related work

be found. Next, theequenis built by combining Two other papers have provided algorithms similar
the sequence of the categories for the words witfp the one presented here.
thel- symbol and the sentence category (. Carpenter and Morrill (2005) provided a graph
Strictly speaking, this paper only considers thgepresentation and a dynamic programming algo-
parsing of categories without considering multitrithm for parsing in the Lambek calculus with
ple lexical entries per word. However, using techproduct. However, due to there use of the Lam-
niques such as supertagging, the results presentgsk calculus with product and to their choice of
here yield an efficient method for the broader probeorrectness conditions, they did not obtain a poly-
lem of parsing sentences. Therefore, we can takgmial time algorithm for any significant fragment
the size of the input to be the number dbasic of the calculus.
categories in the sequent. Aarts (1994) provided an algorithm fof.2
A parse tree for the sentence corresponds tovghich is not correct for.. Ours is polynomial time
proof of its sequent and is restricted to rules folfor L%, for any constank, and is correct foi, al-
lowing the templates in figure 1. In figure 1, lower-peit in exponential running time.
case Greek letters represent categories and upperA number of authors have provided polynomial
case Greek letters represent sequences of cafigne algorithms for parsing with CCG which gives
gories. A proof for the sentence "Who loves him?"some insight into how good our bound 6fn°)
is given in figure 2. is. In particular, Vijay-Shanker and Weir (1994)
The version of the Lambek calculus presenteg@rovided a chart parsing algorithm for CCG with a
above is known as the product-free Lambek calcuiime bound ofO(nS).
lus allowing empty premises and will be denoted
by L. In addition, we will consider the fragment4 An algorithm for parsing with L
L*, obtained by restricting, to categories of order

bounded by:. Theorder of a category, which can This section presents a chart parsing algorithm

similar to CYK where entries in the chart are arcs
2We use Ajdukiewicz notation, not Steedman notation. annotated with graphs. The graphs will be referred

218

to as abstract term graphs (ATGs) since they are atf gTdf BTh ayg
graph representations of abstractions over seman- aA\g<d a\gtd
tic terms. ATGs will be presented in this section o df gty B7g atn
by construction. See section 5 for their connection - +
a/f :d a/f i d

to the proof structures of Roorda (1991).

The algorithm consists of two steps. First, the Taple 1: The proof frame decomposition rules.
base case is computed by building these ATG
B and determining the set slirface variabledby
the chart is filled in iteratively according to the al-formula as itssurface variable See figure 3 for an
gorithms specified in the appendix. The details fofXample.
these two steps can be found in sections 4.1 a’lﬁll_z Building the Base ATG

4.2, respectively. Section 4.3 introduces a proce-)))
dure for culling extraneous ATGs which is nec- | N€ base ATG3 is built from the proof frame in

essary for the polynomial time proof and sectiori€ following way. The vertices of the base ATG
4.4 discusses recovery of proofs from the packe@® the surface variables plus a new special ver-

chart. An example of the algorithm is given in fig-1€X 7- The edges of ATGs come in two forms:
ure 3. Labelled and unlabeled, specified @sd,) and

'45, d), respectively, where is the sourced is the
destination and, where present, is the label.
To define the edge set &f, we need the follow-

For parsing with L, the input is a sequent and fo
parsing withL¥, the input is a sequent with cate-
gories whose order is bounded by Upon com-
pletion, the algorithm outputs “YES” if there is an'"9:
arc from0 ton — 1 and “NO” otherwise. Definition. For a variableu that labels a positive
category in a proof frame, thaxiomatic reflection
p(u), is the unigue surface variablesuch that on
Computing the base case consists of building thiae upward path fromx andv in the proof frame,
proof frame and then translating it into a graphthere is no formula of negative polarity. For exam-
the base ATGB. ple, in figure 3,0(b) = c.

4.1.1 Building the proof frame The edgesel of the base ATG is as follows:

4.1 Computing the base case

Proof frames are the part of the theory of proof
nets which we need to build the base ATG. The
proof frame for a sequent is a structure built on top
of the categories of the sentence. To build the proof
frame, all categories in the sequent are assigned,
a polarity and labelled by a fresh variable. Cate-
gories to the left of- are assigned negative polarity
and the category to the right 6fis assigned pos- 3. For each rule with a positive conclusion,
itive polarity. Then, the four decomposition rules negative premise labelled hy and positive
shown in table 1 are used to build a tree-like struc- premise labelled by, (p(h),g,9) € E
ture (see figure 3). The decomposition rules are
read from bottom to top and show how to decom- A labeled edge in an ATG specifies that its
pose a category based on its main connective asdurce must eventually connect to its destination
polarity. In table 1,4 is the label of the category to complete a path corresponding to its label. For
being decomposed;, g andh are fresh variables example,GG; contains the edgé:, e, d) which in-
and order of premises is important. dicates that to complete the path franto d, we

The bottom of the proof frame consists of thenust connect to e. In contrast, an unlabeled edge
original sequent’s categories with labels and pan an ATG specifies that its source is already con-
larities. These are callegrminal formulae The nected to its destination. For example, in figure 3,
top of the proof frame consists of basic categorie&'s contains the edgea, f) which indicates that
with labels and polarities. These are calleddite there is some path, over previously deleted nodes,
iomatic formulae In addition, we will distinguish which connects: to f.

1. (m,p(pi)) € Eforl < i < k where
mp1 ... pg appears as the label of some nega-
tive axiomatic formula

(1, p(t)) € E wheret is the label of the posi-
tive terminal formula

219

Chart

2 i ?c Z] Surface
z X Z T _ T _ + .4 Variables
S :ab S:ec NP : d NP : g S:efg NP :f NP : h S i
NP\S b NP\S * ef FPrf:rﬂ';
S/(NP\S) : a (NP\S)/NP : ¢ |
Who loves him ? | Sentence

Figure 3: The algorithm’s final state on the sequentNP\S) (NP\S)/NP NPF S.

Note that all nodes in an ATG have unlabeledvalk through of the example is given in the re-
in-degree of eithef or 1 and that the vertices of mainder of this section. Arcs of lengtrare treated
an ATG are the surface variables found outside itspecially, since they are derived directly from the
arc. base ATG. To show this, the base ATG is shown at

pseudo-nodes, labeled by Bs.

4.2 Filling in the chart 4.2.1 Inserting arcs of lengthl

Once the base ATG and the sequence of surfaceThjs section corresponds to lines 1-2 of algo-

variables is determined, we can begin filling in thgjthm 1 in the appendix. For each arc froitto
chart. The termentry refers to the collection of ;1 we will attempt to bracket the base ATG from
arcs beginning and ending at the same nodes of thjomatic formulai to axiomatic formula + 1.
chart. An arc'slengthis the difference between 1o follow our example, the first step is to con-
its beginning and end points, which is always oddsjder inserting an arc fromito 1 by bracketingB.
Note that each entry in the example in figure 3 congracketing causes a positive surface variable to be
tains only one arc. We will iterate across the enconnected to a negative surface variable and in this
tries of the chart and at each entry, we will attempgase, a cycle from to ¢ and back taz is formed
aBracketingand a number oAdjoinings Ifan at- resylting in the violation on line 12 of algorithm 2.
tempt results in @iolation, no new ATG is inserted Therefore, no arc is inserted.
into the chart. Otherwise, a new ATG is computed Then, the second step considers inserting an arc
and inserted at an appropriate entry. from 1 to 2. However, axiomatic formula has cat-
Bracketing is an operation on a single ATGegorysS and axiomatic formula has categoryV P
where we attempt to extend its arc by connectinghich results in the violation on line 3 of algorithm
two nodes with the same basic category and op-since they are not the same.
posite polarity. For examples is the result of Next, we attempt to insert an arc frotnto 3.
bracketingG:. Adjoining, on the other hand, is anIn this case, no violations occur meaning that we
operation on two adjacent ATGs where we attempian insert the arc. The intuition is that the ATG
to unify their ATGs into one larger ATG. For ex- for this arc is obtained by connectingto d in
ample,G; is the result of adjoiningz; andGs. the base ATG. Since must eventually connect
The chart filling process is described by algoto d (¢ —4 d), and nowg connects tal, the in-
rithm 1 in the appendix. The chart in figure 3 isdegree constraint on ATG nodes requires that the
filled by the graph<.,...,Gg, in that order. A path connecting: to d pass throughy. Further-

220

T—1 T—1 T—1 T—1
a—~c—-e—~f |~ |a—~c—e—~f|>|a—~f a—~f N
h h h T—i T—i
_ a»c»e<£:}gz -~|a
.] o : —
Figure 4: The intuition for bracketing fromto e. 4—C—ind] Ve
e—~9

more, the only way to conneetto g is throughe.
Soc —4 e. Then, we deletd andg. Figure 5: The intuition for adjoining two ATGs.
This procedure continues until we have consid-

dall ibl flength . : o
ered all possible arcs or'eng graphs must look like as illustrated in figure 5. In

4.2.2 Inserting arcs of length3 and greater general, we can only reconstruct those parts of the

Next, we iterate across graphs in the chart an@raph which are necessary for determining the re-
for each, consider whether its ATG can be bracksultant ATG and no more. The dotted edges in-
eted with the axiomatic formulae on either side officate uncertainty about the edges present at this
it and whether it can be adjoined with any of thestage of the algorithm. Adjoining’; andGs does
other graphs in the chart. This process closely réwot fail and the resultant graph ds.
sembles CYK parsing as described on lines 3-10 Note that this example does not contain any
of algorithm 1. The choice of shortest to longestnstances of two identical ATGs being inserted
is important because part of the invariant of oufultiple times into the chart which occurs often
dynamic program is that all derivable ATGs onin large examples yielding significant savings of
shorter arcs have already been added. computation.

Following our example, the first graph to be con- .
sidered i97;. First, we attempt to bracket it from 4.3 Culling of extraneous ATGs
axiomatic formulael to 4. As before, this intu- It often happens that an entry in the chart contains
itively involves connecting: to e in the ATG for two ATGs such that if one of them is extendable
this arc. This is allowed because no cycles ar® a complete proof then the other necessarily is as
formed and no labelled edges are prohibited frorwell. In this case, the former can be discarded. We
eventually being connected. Then, as before, waill outline such a method here that is important
delete the vertices ande and as a result connect for the polynomial time proof.

ato f, resulting inG:3. The bracketing process is pefinition. ATGs G, and G are equivalentif
illustrated in figure 4. some surjection of edge labels to edge labels ap-

Next, we consider all graphs to which could pjied to the those ofy; yields those of3s.
adjoin and there are none, since such graphs would

need to annotate arcs which either end at begin
at4. After processing~;, we processys, which
has a successful bracketing resultingdnand no 4 4 Recovering proofs from a packed chart
successful adjoinings.

Next, we processss. Bracketing it is prohib-
ited, as it would result in a cycle fromto f and

Then, if two ATGs in a chart are equivalent, one
can be discarded.

The algorithm as described above is a method for
answering the decision problem for sequent deriv-

back toa. However, itis possible to adjoifis with ability in the Lambek calculus. However, we can
G, since they are ’a djacent annotate the ATGs with the ATGs they are derived

The adjoining of two graphs can be viewed as gom so that a complete set of Roorda-style proof
kind of intersection of the two ATGs, in the sensd'®tS: and thus the proofs themselves, can be recov-

that we are combining the information in bothered'

graph; to yleld_a_ s_lngl_e more concise graph. At5 Correctness

tempting an adjoining involves traversing the two

graphs being adjoined and the base ATG in both @orrectness of the algorithm is obtained by using

forward and a backward direction as specified istructural induction to prove the equivalence of the

algorithms 4 and 5 in the appendix. constructive definition of ATGs outlined in section
The intuition behind these traversals is to gend and a definition based on semantic terms given

erate a picture of what the combination of the twan this section:

221

| — |
+

Ste NP : d NPTy S :efg
S ab NP\S T b NP\S * ef NPT

S/(NP\S) : a (NP\S)/NP : e NP h sty

Figure 6: A proof structure for “Who loves him?”.

Definition. A partial proof structureis a proof Next, with some effort, we can see that the worst
frame together with a matching of the axiomaticcase running time of Adjoining is dominated by the
formulae. Aproof structureis a partial proof struc- execution of the procedures Fore and Back. But,
ture whose matching is complete. since there are at most a linear number of labels
L o and for each labdlwe need to visit each vertex in
An example is given in figure 6. Proof struc- :

. ... (G71 andG, at most a constant number of times, the
tures correspond to proofs under certain conditions

- - - 2
and our conditions will be based on the semanti\(’:vorSt case running time 9(n").
Then, for each ATG, we attempt at most one

term of the proof given to us by the Curry-Howard
P g y y bracketing and adjoinings with at m@st+1 other

isomorphism for the Lambek calculus (Roorda,

1991). To do this, we interpret left rules as funcEntries for which there can kien +1)f(n) ATGs.

tional application and right rules as functional ab:r hereiforz ee;ch entry can be processed in worst
straction of lambda terms. Under this interpreta®®>€ M (n”f(n)%).

- 2 - -
tion, the semantic term obtained from the proof Finally, there areO(n”) entries in the chart,
structure in figure 6 iaAd.chd. which means that the entire algorithm takes time

5 e i -
As in Roorda (1991), proof structures correl (" /(7)°) in the worst case. Sections 6.1 and

spond to a proof if the semantic term assigned tg'z discuss the functiofi(n).

the_ser_1tence category is a well fqrmed lambda ter®, Runtime for L

which includes all the terms assigned to the words

of the sentence. Then, ATGs are graph represeﬁy structural induction on the proof frame decom-
tations of abstractions of the undetermined portioROSition rules and the base ATG building algo-
of semantic terms of partial proof structures. Unlalithm, it can be proven that it* the length of the
beled edges correspond to functional applicatiol@ngest path in the base ATG is boundediby
whose arguments must still be determined and la- Next, consider a partition of the surface vari-
belled edges correspond to functional abstractior@les into a pair of sets such that the axiomatic
whose body does not yet contain an instance of tfermulae corresponding to the surface variables
abstracted variable. The violations which occulithin each set are contiguous. For the example in
during the execution of the algorithm correspondigure 3, one such pair of sets$§ = {a,c,d, g}

to the various ways in which a lambda term can b@ndSz = {e, f. h,i}. Then, given such a partition,
ill formed. it can be proven that there is at least one maximal

path P in the base ATG such that all vertices in
6 Asymptotic Running Time Complexity =~ one set that are adjacent to a vertex in the other

set are either inP or adjacent to some vertex in
In this section we provide proof sketches for theP?. For example, a maximal path f&f and .S is
runtime of the algorithm. Letf(n) be a bound P =¢ — g.
on the number of arcs occurring in an entry in the An entry in the chart induces two such parti-
chart wheren is the number of axiomatic formu- tions, one at the left edge of the entry and one at
lae. Then, observe that the number of edges withithe right edge. Therefore, we obtain two such max-
an ATG isO(n?) and the number of edges adja-imal paths and for any AT@! in this entry and any
cent to a vertex i$)(n), due to basic properties of vertexv not in or adjacent to one of these paths, ei-
ATGs. therv is not inG or v has the same neighbourhood

Then, it is not hard to prove that the worst casén G as it has in the base ATG. Then, the number

running time of Bracketing i<D(n?), which is of vertices adjacent to vertices in these paths can
dominated by the for loops of lines 20-23 of al-be as many as. However, if we put these vertices
gorithm 2. into sets such that vertices in a set have identical

222

neighbourhoods, the number of sets is dependaAcknowledgments

only onk. L
In the worst case, the out-neighbourhood of on'e\:/lany thanks to Ger?"?‘ Pehn, for his insightful
comments and for guiding this research.
of these sets can be any set of these sets. So, we
get a bound forf(n) to be O(k24%). Therefore,

becausek is constant inL*, f(n) is constant and References

- . . k, . 5
the running time of the algorithm fat™ is O (n") Aarts, Erik. 1994. Proving Theorems of the Second

in the worst case. Order Lambek Calculus in Polynomial Tim8tudia
) Logica 53:373-387.
6.2 Runtime for L
. Ajdukiewicz, Kazimierz. 1935. Die syntaktische Kon-
Despite the results of section 6.1, this algorithm ™ heyitat. Studia Philosophical (1-27).
has an exponential running time fbr We demon-

strate this with the following set of parameterized?©S: Johan and Katja Markert. 2005. Recognising tex-

tual entailment with logical inferenceProceedings

sequents: of HLT and EMNLP pages 628-635.
F(1) = ((4/A)\A)\A Carpenter, Bob and Glyn Morrill. 2005. Switch Graphs
. . for Parsing Type Logical GrammarBroceedings of
F@) = ((A/(A/Fi-1))\A)\Afori>1 IWPT 05, Vancouver

Uln) = Fn bk A\A Clark, Steven and James R. Curran. 2004. Parsing the

(2n-1)! o WSJ using CCG and log-linear modeRroceedings
Theorem. There are—% € ©(4") distinct of ACL '04, pages 104-111.

nl(n—1)!

arcs in the entry from to 3n — 1 in the chart for Dowty, David R., Robert E. Wall, and Stanley Peters.

U(n). 1981.Introduction to Montague SemantidReidel.

Proof. By induction and a mapping from the pos-Hockenmaier, Julia. 2003Data and Models for Sta-
sible matchings to the possible permutations of a tistical Parsing with Combinatory Categorial Gram-
sequence of lengtBn — 1 such that two subse- mar. Ph.D. thesis, University of Edinburgh.

qguences of length andn — 1 areinorder. [0 Joshi, Aravind K., K. Vijay-Shanker, and David J. Weir.
1989. The Convergence of Mildly Context-sensitive

7 Conclusions and Future Work Grammar FormalismsUniversity of Pennsylvania.

. ..l ambek, Joachim. 1958. The mathematics of sen-
We have presented a novel algorithm for parsing Ih tence structure. American Mathematical Monthly

the Lambek calculus, sketched its correctness andgsg-154-170.
shown that it is polynomial time in the bounded-
order case. Furthermore, we presented a set of H\A
rameterized sequents proving that the algorithm is
exponential time in the general case, which aids _ _ o
future research in finding either a polynomial timg\ioortgat, Michael. 1996. Multimodal linguistic infer-
algorithm or an NP-completeness proof for ence. Journal of Logic, Language and Information

g T _ P S P 5(3):349-385.

In addition, this algorithm provides another step _ o _
toward evaluatlng the Lambek Calculus agaJnéYloot, RIChaI’d and QU|nt|Jn Puite. 2002. P_I’OOf NetS for
both CFGs (to evaluate the importance of Cate- t7h1e(3'\)/lzlfénﬂa2| Lambek Calculus Studia Logica
gorial Grammar) and CCG (to evaluate the impor- ' '
tance of the mildly context-sensitive languages). Pentus, Mati. 1997. Product-Free Lambek Calculus

In the future, we plan on determining the run- 2nd Context-Free Grammardhe Journal of Sym-

. . ') bolic Logic, 62(2):648—660.

ning time of this algorithm on an actual corpus,
such as a modified version of CCGbank, anéentus, Mati. 2006. Lambek calculus is NP-complete.
then to empirically evaluate the Lambek calculus Theoretical Computer Sciencgs7(1-3):186-201.
for natural language processing. In addition, Woorda, Dirk. 1991. Resource Logics: Proof-
would like to investigate extending this algorithm theoretical InvestigationsPh.D. thesis, Universiteit
to more complex variants of the Lambek calculus van Amsterdam.

such as the multi-modal calculus using the proo§ieedman, Mark. 2000The Syntactic Processrad-
nets of Moot and Puite (2002). ford Books.

ontague, Richard. 1974 Formal philosophy: se-
lected papers of Richard Montagu¥ale University
Press New Haven.

223

Vijay-Shanker, K. and David J. Weir. 1994. Parsing
Some Constrained Grammar Formalisif@@mputa-
tional Linguistics 19(4):591-636.

Appendix. Algorithm Pseudocode

The

term source set refers to

neighbourhood ofr. The termminus variable

refers to surface variables obtained from negativ

axiomatic formulae plus. X; refers to theit”
axiomatic formula.

Algorithm 1 Chart Iteration

1:

QuoNURwWN

[EEY

fori=0ton —1do
BracketingB, X, Xi+1)
fori=1,3,5,...ton —1do
fore=0ton—1—1do
for each arc frone to e + [with ATG G do
Bracketing(G, Xc—1t0 Xcqi41)
Adjoin G to ATGs frome — [— 1toe — 1
foral=1,3,...,1 —2do
Adjoin G to ATGs frome —al —1toe — 1
AdjoinGto ATGs frome+I+1toe+i+al+1

Algorithm 2 Bracketing(, X;, X;)

N

10:
11:

12:
13:

C; pq li = X; ande p:'7 lj = Xj
if C; # C; then
Violation : Mismatched Basic Categories
if Di = Dj then
Violation : Mismatched Polarities
Letm,p € {i,j} such thatp,, is negative ang, is
positive
if G is not from1 ton — 1 and the source set @f is the
singletoni,, andl,,, has out-degre@ in G then
Violation : Empty Source Set

. if the edg€(l,, 1) € G then

Violation : Cycle Exists

if I, is in the source set @& and there exists an in-edge

of m with labell such that no edge fromto m has label
I and no edge from a vertex other thato a vertex other
thanm has label then

Violation : Path Completion Impossible

if m has out-degreé and and there exists an out-edge

of p with labell such that no edge fromto m has label
[and no edge from a vertex other thato a vertex other
thanm has label then

Violation : Path Completion Impossible

: CopyG toyield H
: for each edgél,, i, 1) € G do

Delete all edges frorfiy with labell

. Deletd,,, [, and all their incident edges frold
. Letin, be the in-neighbour df, in G
. for eachg in the out-neighbourhood @f, in G do

Insert(in,, q) into H
for each edgép, d,l) in G do
Insert(q, d, 1) into H
for each edgéq, m,!) in G do
Insert(q, inp, l) into H

. if H contains a cycléhen

Violation : Future Cycle Required

D return H

the out-

Algorithm 3 Adjoining(G1, G2)

1:

11:
. for each minus variable: € Vg do

2
3
4
5:
6:
7:
€3
9

Let Vg be the intersection of the vertices@ andG»

. if Vg # 7andFore(r,G1,G2) N Vg = () then

Violation : Empty Source Set

for eachl such that labels an edge i/, andG- do

Let (p, m,) be the unique edge labelléih B
if Fore(p, G1,G2,l) N Back(m,G1,G2) = () then
if Fore(p) N Vg = () then
Violation : Path Completion Impossible
if Back(m) N Vg = 7 then
Violation : Path Completion Impossible
Let H be the graph with vertex s&ty and no edges

for eachp € Fore(m,G1,G2,0) do
Insert(m, p) into H

. for eachi such that labels an edge i’y andG-2 do

Let(p, m,!) be the unique edge labelléih B
if Fore(p,G1,G2,1) N Back(m,G1,G2) = () then
for eachg € Fore(p,G1,G2,1) N Vg do
Insert(q, Back(m,G1,G2) N Vg, 1) into H

: return H

Algorithm 4 Foref, G4, Ga,)

1:

if v € G; andv € G2 then
return {v}
else
if v is a minus vertexhen
S :uie{m}Out-neighbourhoogiv
else ifv is a plus vertexhen
Letj be such that € G;
S =UccEdges labelled ySOUrce of e
F=S
while S'is not emptydo
Remove any elementfrom S
Letm be the in-neighbour of in B
if u does not appear in one 6f;, G2 andm does
not appear in the otheéhen
Leti be such thatn € G,
LetO be the out-neighbourhood ot in G;
S=S5U0
F=FUO
F=FU{m}
return F

Algorithm 5 Back(m, G, Gs)

1:

N

10:

12:
13:

if m € G1 andm € G2 then
return {m}
else
Leti, 5 € {1,2} be such thatn € G; andm ¢ G;
Letm’ be the destination of the edges labelledrby
in Gj
M = {m,m'}
while m’ ¢ Gy andm’ ¢ G2 do
Leti’,j/ € {1,2} be such thatn’ € G,y andm’ ¢
Letp € G, be an out-neighbour of.’ in B
Letm” be the in-neighbour of in G,

[

m m
M=Mu{m"}
return M

224

