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Abstract 

Latent Semantic Analysis (LSA) is 
based on the Singular Value Decompo-
sition (SVD) of a term-by-document 
matrix for identifying relationships 
among terms and documents from co-
occurrence patterns. Among the multi-
ple ways of computing the SVD of a 
rectangular matrix X, one approach is to 
compute the eigenvalue decomposition 
(EVD) of a square 2 × 2 composite ma-
trix consisting of four blocks with X and 
XT in the off-diagonal blocks and zero 
matrices in the diagonal blocks. We 
point out that significant value can be 
added to LSA by filling in some of the 
values in the diagonal blocks (corre-
sponding to explicit term-to-term or 
document-to-document associations) 
and computing a term-by-concept ma-
trix from the EVD.  For the case of mul-
tilingual LSA, we incorporate 
information on cross-language term 
alignments of the same sort used in Sta-
tistical Machine Translation (SMT). 
Since all elements of the proposed 
EVD-based approach can rely entirely 
on lexical statistics, hardly any price is 
paid for the improved empirical results. 
In particular, the approach, like LSA or 
SMT, can still be generalized to virtu-
ally any language(s); computation of the 
EVD takes similar resources to that of 
the SVD since all the blocks are sparse; 
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and the results of EVD are just as eco-
nomical as those of SVD. 

1 Introduction 

It is close to two decades now since Deerwester 
et al. (1990) first proposed the application of the 
Singular Value Decomposition (SVD) to term-
by-document arrays as a statistics-based way of 
representing how terms and documents fit to-
gether within a semantic space. Since the ap-
proach was supposed to ‘get beyond’ the terms 
themselves to their underlying semantics, the 
approach became known as Latent Semantic 
Analysis (LSA). 

Soon after this application of SVD was widely 
publicized, it was suggested by Berry et al. 
(1994) that, with a parallel corpus, the approach 
could be extended to pairs of languages to allow 
cross-language information retrieval (IR). It has 
since been confirmed that LSA can be applied 
not just to pairs of languages, but also simultane-
ously to groups of languages, again given the 
existence of a multi-parallel corpus (Chew and 
Abdelali 2007). 

In this paper, we return to the basics of LSA 
by examining its relationship with SVD, and, in 
turn, the mathematical relationship of SVD to the 
eigenvalue decomposition (EVD). These details 
are discussed in section 2. It has previously been 
suggested (for example, in Hendrickson 2007) 
that IR results could be improved by filling in 
information beyond that available directly in the 
term-by-document matrix, and replacing SVD 
with the more general EVD. To our knowledge, 
however, these suggestions have not been publi-
cized outside the mathematics community, nor 
have they been empirically tested in IR applica-
tions. With multilingual information retrieval as 
a use case, we consider alternatives in section 3 
for implementation of this idea. One of these re-
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lies on no extraneous information beyond what is 
already available in the multi-parallel corpus, and 
is based entirely on the statistics of cross-
language term alignments. ‘Regular’ LSA has 
been shown to work best when a weighting 
scheme such as log-entropy is applied to the 
elements in the term-by-document array (Dumais 
1991), and in section 3 we also consider various 
possibilities for how the term alignments should 
best be weighted. Section 4 recapitulates on a 
framework that allows EVD with term align-
ments to be compared with a number of related 
approaches (including LSA without term align-
ments). This is a recapitulation, because the same 
testing framework has been used previously (for 
other linear-algebra based approaches) by Chew 
and Abdelali (2007) and Chew et al. (2007). The 
results of our comparison are presented and dis-
cussed in section 5, and we conclude upon these 
results and suggest further avenues for research 
in section 6. 

2 The relationship of SVD to EVD, and 
its application to information retrieval 

In the standard LSA framework (Deerwester et 
al. 1990) the (sparse) term-by-document matrix 
X is factorized by the singular value decomposi-
tion (SVD),  

 
X = USV T (1) 

 
where U is an orthonormal matrix of left singular 
vectors, S is a diagonal matrix of singular values, 
and V is an orthonormal matrix of right singular 
vectors (Golub and van Loan 1996). 

Typically for LSA, a truncated SVD is com-
puted such that equality in (1) no longer holds 
and that the best rank-R least-squares approxima-
tion to matrix X is formed by keeping the R larg-
est singular values in S and discarding the rest. 
This also means that the first R vectors of U and 
V are retained, where R indicates the number of 
concept dimensions in LSA. Each column vector 
in U maps the terms to a single arbitrary concept, 
such that terms which are semantically related 
(as determined by patterns of co-occurrence) will 
tend to be grouped together with large values in 
columns of U. 

There are many ways to compute the SVD of a 
sparse matrix. One expedient way is to compute 
the eigenvalue decomposition (EVD) of either 
XTX or XXT, depending on the largest di-
mension of X, to obtain U or V, respectively. 
With U or V, one may compute the rest of the 

SVD by a simple matrix-matrix multiplication 
and renormalization. 

Another way to compute the SVD is to com-
pute the eigenvalue decomposition of the 2-by-2 
block matrix 

B =
0 X

XT 0








.

The eigenvalues of B are the singular values of 
X, replicated as both positive and negative, plus 
a number of zeroes if X is not square. The left 
and right singular vectors are contained within 
the eigenvectors of this composite matrix B. As-
sume that X is of size m × n and that m ≥ n, with 
left singular vectors U = Un Um−n[ ], where Un

corresponds to the n positive singular values and 
Um-n corresponds to the remaining m-n zero sin-
gular values. Let Q denote the orthogonal matrix 
of eigenvectors corresponding to the nonnegative 
eigenvalues of B, then the matrices of left and 
right singular vectors are stacked on top of each 
other, U on top of V, as follows: 

 Q =
1
2

Un 2 ×Um−n

V 0









.

Hence, one may compute the truncated SVD of 
X by computing only the eigenvectors corre-
sponding to the largest R eigenvalues and then 
extracting and rescaling the U and V matrices 
from Q. 
 

Figure 1. Eigenvalue decomposition in multilin-
gual information retrieval 
 

In the context of multilingual LSA using a 
parallel corpus, the block matrix B is depicted in 
Figure 1, where the terms are shaded according 
to each language. Each language may have a dif-
ferent number of terms, so the language blocks 
are not expected to be the same size as one an-
other. The eigenvectors and eigenvalues of B are 
also shown. 

We may obtain a pair of U and S matrices for 
each language by extracting the corresponding 
partition of U from the eigenvectors. We desire 
each language-specific U matrix to have columns 
of unit length, which we accomplish by comput-
ing the length of each of its columns and then 
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rescaling the columns of U by the inverse length 
and multiplying the eigenvalues by these lengths 
for our S matrix. We call this approach ‘Tucker1’ 
because the result is identical to creating a U and 
S matrix for each language from the general 
Tucker1 model found by three-way analysis of 
the terms-by-documents-by-language array 
(Tucker 1966). 

For applications in information retrieval, we 
usually want to compute a measure of similarity 
between documents. Once we have U and S, we 
can estimate similarities by computing the cosine 
of the angle between the document vectors in the 
smaller ‘semantic space’ of the R concepts found 
by LSA. New documents in different languages 
can be projected into this common semantic 
space by multiplying their document vectors 
(formed in exactly the same way as the columns 
for X) by the product US-1, to yield a document-
by-concept vector. 

3 From SVD to term-alignment-based 
EVD 

If we compute just the SVD of a term-document 
matrix X, then the technique we use to accom-
plish this (whether computing the EVD of the 
block matrix B or otherwise) is immaterial from 
a computational linguist’s point of view: there is 
no advantage in one technique over another. 
However, the technique of EVD allows one to 
augment the LSA framework with additional in-
formation beyond just the term-document matrix. 
In Figure 1, the two diagonal blocks contain only 
zeroes, but we envision augmenting B with term 
alignment information such that the upper diago-
nal block captures any term-to-term similarities. 
Additional term-term alignment information 
serves to enhance the term-by-concept vectors in 
U by providing explicit, external knowledge so 
that LSA can learn more refined concepts. While 
not explored in this paper, we also envision in-
corporating any document-to-document similari-
ties into the lower diagonal block. 

Let D1 and D2 denote symmetric matrices. We 
augment the block matrix B and redefine it as a 
more general symmetric matrix, 

 B =
D1 X
XT D2









.

If both D1 and D2 are equal to the identity matrix, 
then the eigenvalues of B are shifted by one, but 
the eigenvectors are not affected. 

Since our use case here is multilingual infor-
mation retrieval, imagine for the moment that an 

oracle provides dictionary information that 
matches up words in each of our language pairs 
(Arabic-English, Arabic-French, etc.) by mean-
ing. Thus, for example, we might have a pairing 
between English house and French maison. This 
information may be encoded in the diagonal 
block D1 by replacing zeroes in the cells for 
(house, maison) and its symmetric entry with 
some nonzero value indicating the strength of 
association for the two terms. Completing all 
relevant entries in D1 in this fashion serves to 
strengthen the co-occurrence information in the 
parallel corpus that LSA normally finds via the 
SVD.  

In the simplest approach, if the oracle indi-
cates a match between two terms i and j, then a 
one could be inserted in D1 at positions (i,j) and 
(j,i). If D1 were filled with such term alignment 
information, the matrix B would still be sparse. 
Without any document-document information, 
then D2 could be either the identity matrix or the 
zero matrix. Our experience has shown that D2 =
0 works slightly better in practice. Figure 2 
shows a block matrix augmented with term 
alignments in this fashion. 

Figure 2. Augmented block matrix with term 
alignments 
 

The eigenvalue decomposition of B now in-
corporates this extra term information provided 
in D1, and the eigenvectors show stronger corre-
spondence between those terms indicated. How-
ever, with each term aligned with one or more 
other terms, the row and column norms of D1 are 
unequal, which means that some terms may be 
biased to appear more heavily in the eigenvec-
tors. In addition, the magnitude or ‘weight’ of D1
relative to X needs to be considered, otherwise 
the explicit alignments in D1 and the co-
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occurrence information in X may be out of bal-
ance with one another. Properly normalizing and 
scaling D1 may mitigate both of these risks. 

There are several possibilities for normalizing 
the matrix D1. Sinkhorn balancing (Sinkhorn 
1964) is a popular technique for creating a dou-
bly stochastic matrix (rows and columns all sum 
to 1) from a square matrix of nonnegative ele-
ments. Sinkhorn balancing is an iterative algo-
rithm in which, at each step, the row and column 
sums are computed and then subsequently used 
to rescale the matrix. For balancing the matrix A, 
each iteration consists of two updates 

A ← WRA
A ← AWC

where WR is a diagonal matrix containing the 
inverse of row sums of A, and WC is a diagonal 
matrix containing the inverse of column sums of 
A. This algorithm exhibits linear convergence, so 
many iterations may be needed. The algorithm 
may be adapted for normalizing the row and col-
umn vectors according to any norm.  Our experi-
ence has shown that normalizing D1 with respect 
to the Euclidean norm works well in practice. 

In terms of scaling D1 relative to X, we simply 
multiply D1 by a positive scalar value, which we 
denote with the variable β. The optimal value of 
β appears to be problem dependent. 

Let us return for the moment to the question of 
how we populate D1 in the first place, and what 
each entry in that block represents. In the simple 
case described above, the existence of a 1 at po-
sition (i,j) indicates that an alignment exists be-
tween terms i and j, and a zero indicates that no 
alignment exists. But in reality, a binary encod-
ing like this may be too simplistic. In this re-
spect, it is instructive to consider how we 
populate D1 in the light of the weighting scheme 
used for X, since the latter is discussed in Du-
mais (1991) and is by now quite well understood.  

In the simplest case, an entry of 1 in X at posi-
tion (i,j) can denote that term i occurs in docu-
ment j, just as in our simple case with D1. A
slightly more refined alternative is to replace 1 
with fi,j, where fi,j denotes the raw frequency of 
term i within document j. But, as Dumais (1991) 
shows, it is significantly better in practice to use 
a ‘log-entropy’ weighting scheme. This adjusts 
fi,j first by ‘dampening’ high-frequency terms 
(using the log of the frequency), and secondly by 
giving a lower weight to terms which occur in 
many documents.2 The former adjustment is re-
 
2 One can also raise the global weight in the log-entropy 
scheme to a power (which we denote with the variable α). 

lated to an insight from Zipf’s law, which is that 
the dampened term frequency will be in propor-
tion to the log of the term’s rank in frequency. 
The latter adjustment is based on information 
theory; a term which is scattered across many 
documents (such as ‘and’ in English) has a high 
entropy, and therefore lower intrinsic informa-
tion content. 

Suppose, therefore, that our ‘dictionary’ oracle 
could not only indicate the existence of an 
alignment, but also provide some numerical 
value for the strength of association between two 
aligned terms. (In practice, this is probably more 
than one could hope for even from the best pub-
lished bilingual dictionaries.) This information 
could then replace the ones in D1 prior to Sink-
horn balancing and matrix weighting. 

While one cannot expect to obtain this infor-
mation from published dictionaries, there is in 
fact a statistical approach to gathering the neces-
sary information, which we borrow from SMT 
(Brown et al. 1994). All that is required is the 
existence of a parallel corpus, which we already 
have in place for multilingual LSA. 

Here, an entry fi,j in D1 is based on the mutual 
information of term I and term J, or I(I;J) (capi-
tals are used to indicate that the terms are treated 
here as random variables). It is an axiom that: 

 
I(I;J) = H(I) + H(J) – H(I,J) (2) 

 
where H(I) and H(J) are the marginal entropies 
of I and J respectively, and H(I,J) is the joint en-
tropy of I and J. Properties of H(I,J) include the 
following: 
 

H(I,J) ≥ H(I) ≥ 0
H(I,J) ≥ H(J) ≥ 0
H(I,J) ≤ H(I) + H(J) (3) 

 
Considering (2) and (3) together, it should be 

clear that I(I;J) will range between 0 and the 
maximum value for H(I) or H(J). 

For the purposes of populating D1, we com-
pute the entropy of a term i by considering the 
number of documents where i occurs, and the 
number of documents where i does not occur, 
and express these as probabilities. For the joint 
entropy H(I,J), we need to compute four prob-
abilities based on all the possibilities: documents 
where both terms occur, those where I occurs 
without J, those where J occurs without I, and 

 
Selecting α ≠ 1 can, in practice, yield better results in the 
applications we have tested. 
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those where neither occur. The result of this is 
that a numerical value is attached to each align-
ment: higher values indicate that terms are 
strongly correlated, and lower values indicate 
that one term predicts little about the other. For 
each pair of words (i,j) which co-occur in any 
text chunk in the parallel corpus, we can say that 
an alignment exists if, among all the possibilities, 
mutual information for i is maximized by select-
ing j, and vice versa. (Since the maximization of 
mutual information is not necessarily reciprocal, 
the effect of this is to be conservative in postulat-
ing alignments.) The weight of this alignment is 
its mutual information (equivalent to the ‘global 
weight’ of log-entropy) multiplied by the log of 
one plus the number of text chunks in which that 
alignment appears (equivalent to the ‘local 
weight’ of log-entropy). 

Some examples of English-French pairs at ei-
ther end of this spectrum (where mutual informa-
tion is non-zero) are given in Table 1. 
 

I(I;J) Alignment 
weight 

I J

0.000176 0.000176 hearing écoutait 
0.000217 0.000217 misery misérable 

…
0.270212 2.884297 house maison 
0.321754 3.506663 king roi 
0.415702 6.025456 and et 
0.472925 5.798080 I je 

Table 1. Term alignment and mutual information 
 
We believe that this approach, which weights 

alignments based on mutual information, fits 
very well with the log-entropy scheme used for 
X, since both are solidly based on the same 
foundation of information theory. 

All together, we call this particular process 
LSATA, which stands for LSA with term align-
ments.  

4 Testing framework 

Since the inception of the Cross-Language 
Evaluation Forum (CLEF) in 2000, there has 
been growing interest in cross-language IR, and a 
number of parallel corpora have become avail-
able (for example through the Linguistic Data 
Consortium). Widely used examples include the 
Canadian Hansard parliament proceedings (in 
French and English). Harder to obtain are multi-
parallel corpora – those where the same text is 
translated into more than two parallel languages. 

One such corpus which has not yet gained 
wide acceptance, perhaps owing to the percep-

tion that it has less relevance to real-world appli-
cations than other parallel corpora, is the Bible. 
Yet the range of languages covered is unarguably 
unmatched elsewhere, and one might contend 
that its relevance is in some ways greater than, 
say, Hansard’s, as its impact on Western culture 
has been broader than that of Canadian govern-
ment debates. Similarly, the Quran, while not 
translated into as many languages as the Bible, 
has had a significant impact on another large 
segment of the world’s population. 

But the relevance or otherwise of the Bible 
and/or Quran, and the extent to which they have 
been accepted by the computational linguistics 
community at large as parallel corpora, are some-
what beside the point for us here. Our interest is 
in developing theory and applications which 
have universal applicability to as many lan-
guages as possible, regardless of the subject mat-
ter or whether the languages are ancient or 
modern. One might compare this approach to 
Chomsky’s quest for Universal Grammar 
(Chomsky 1965), except that the theory in our 
case is based on lexical statistics and linear alge-
bra rather than rule-based generative grammar. 

The Bible and Quran have in fact previously 
been used for experiments similar to ours (e.g., 
Chew et al. 2007). By using these texts as paral-
lel corpora, therefore, we facilitate direct com-
parison of our results with previous ones. But 
besides this, the Bible has some especially attrac-
tive properties for our current purposes. First, the 
carefulness of the translations means that we are 
relatively unlikely to encounter situations where 
cross-language term alignments are impossible 
because some text is missing in one of the trans-
lations. Secondly, the relatively small size of the 
parallel text chunks (by and large, each chunk is 
a verse, most of which are about a sentence in 
length) greatly facilitates the process of statistical 
term alignment. (This is based on the combina-
torics: the number of possible term-to-term 
alignments increases approximately quadratically 
with the number of terms per text chunk.) 

Thus, our framework is as follows. In our 
term-by-document matrix X, the documents are 
verses, and the terms are distinct wordforms in 
any of the five languages used in the test data in 
Chew et al. (2007): Arabic (AR), English (EN), 
French (FR), Russian (RU) and Spanish (ES). As 
in Chew et al. (2007), too, our test data consists 
of the text of the Quran in the same 5 languages. 
In this case, the ‘documents’ are the 114 parallel 
suras (or chapters) of the Quran. We obtained all 
translations of the Bible and Quran from openly-
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available websites such as that of Biola Univer-
sity (2005-2006) and http://www.kuran.gen.tr. 

As already mentioned, SVD of a term-by-
document matrix is equivalent to EVD of a block 
matrix in which two of the blocks (the non-
diagonal ones) are X and XT. As described in 

section 3, we fill in some of the values of D1 with 
nonzeroes (from term alignments derived from 
the Bible). In all cases (both SVD and EVD), we 
performed a truncated decomposition in either 
60, 240, or 300 dimensions. 

 
Term alignment  

settings 
SVD/EVD 
dimensions 

Type of  
decomposition 

Include term  
alignments? / 

weighting type Sinkhorn 
balanced? 

β

Global 
weight
α*

Average 
P1 

Average
MP5 

SVD 0.7116 0.5702 
Tucker1 0.7170 0.5770 
PARAFAC2 

N/A 1.8 
0.7420 0.6580 

no N/A 0.7000 0.5691 
4.0 1.8 0.7611 0.6474 
1.0 0.7716 0.5972 yes (binary) yes 
4.0 1.6 0.7979 0.6467 

no N/A 0.6481 0.3804 
1.0 0.7393 0.5972 

12.0 
1.8 

0.8088 0.6972 
1.0 0.7488 0.5789 

60 

LSATA 

yes (log-MI) yes 

12.0 1.6 0.7933 0.6586 
SVD 0.8761 0.6554 240 
PARAFAC2 

N/A 1.8 
0.8975 0.7853 

SVD N/A 1.8 0.8796 0.6575 
yes (binary) 4.0 1.6 0.9421 0.7695 

1.8 0.8982 0.8000 
300 LSATA yes (log-MI) yes 12.0 1.6 0.9182 0.8067 

*See footnote 2. 
Table 2. Results with various linear algebraic decomposition methods and weighting schemes 
 

To evaluate the different methods against one 
another, we use similar measures of precision as 
were used with the same dataset by Chew et al. 
(2007): precision at 1 document (P1) (the aver-
age proportion of cases where the translation of a 
document ranked highest among all retrieved 
documents of the same language) and multilin-
gual precision at 5 documents (MP5) (the aver-
age proportion of the top 5 ranked documents 
which were translations of the query document 
into any of the 5 languages, among all retrieved 
documents of any language). By definition, MP5 
is always less than or equal to P1; MP5 measures 
success in multilingual clustering, while P1 
measures success in retrieving documents when 
the source and target languages are pre-specified. 

5 Results and Discussion 

Table 2 above presents a summary of our results. 
The main point to note is that the addition of in-
formation on term alignments is clearly benefi-
cial. An approach based on the Tucker1 

decomposition algorithm, without any informa-
tion on term alignments, achieves P1 of 0.7170 
and MP5 of 0.5770. With scaled term alignment 
information, the results improve to 0.7611 and 
0.6474, respectively. Using a chi-squared test, 
we tested the significance of the increase in P1 
and found it to be highly significant (p ≈ 1.7 ×
10-7). 

The results also show, however, that one needs 
to be careful about how the word-alignment in-
formation is added. Without some form of bal-
ancing and scaling of D1, there is little 
improvement (and often significant deterioration) 
in the results when alignment information is in-
cluded. 

In addition to comparing a block EVD ap-
proach with term alignments to one without, we 
also compared against another decomposition 
method, PARAFAC2, which has been found to 
be more effective than SVD in cross-language IR 
(Chew et al. 2007). Here, the results are more 
equivocal. P1 is slightly higher under the 
LSATA approach (with binary values in D1) than 
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under PARAFAC2, while the reverse is true for 
MP5. The difference for P1 is significant at p < 
0.05 but not at p < 0.01. In any case, there are 
risks in making a comparison between 
PARAFAC2 and LSATA. For one thing, 
PARAFAC2, as implemented here, includes no 
mechanism for incorporating term-alignment 
information. It is not clear to us yet whether such 
a mechanism could (mathematically or practi-
cally) be incorporated into PARAFAC2. Sec-
ondly, we are not yet confident that we have 
found the optimal weighting scheme for the D1
block under the LSATA model. Our experiments 
with different weighting and normalization 
schemes for the D1 block are still in relatively 
initial stages, though it can also be seen from 
Table 2 that by selecting certain settings under 
LSATA (replacing binary weighting in D1 with 
mutual-information-based weighting, and apply-
ing scaling with beta = 12.0), we were able to 
improve upon PARAFAC2 under both measures. 

Although we have not tested all settings, Table 
2 also shows our best results to date with this 
dataset, which have come from applying EVD to 
the block matrix that includes D1. The precise 
optimal settings for EVD appear to depend on 
whether the objective is to maximize P1 or MP5. 
For P1, our best results (0.9421) were obtained 
with binary weighting, global term α = 1.6, and β
= 4.0. For MP5, the best results (0.8067) were 
obtained with mutual-information based weight-
ing, α = 1.8, and β = 12.0. It appears in all cases 
that D1 needs to be balanced if it contains term 
alignment information. 

The evidence, then, appears to be strongly in 
favor of incorporating information beyond term-
to-document associations within an IR approach 
based on linear algebra. It happens that LSATA 
offers an obvious way to do this, while other 
methods such as PARAFAC2 may or may not. 
Here, we have examined just one form of infor-
mation besides term-to-document statistics: term-
to-term statistics. However, there is no reason to 
suppose that the results might not be improved 
still further by incorporating information on 
document-to-document associations, or for that 
matter associations between terms or documents 
and other linguistic, grammatical, or contextual 
objects. 

6 Conclusion 

In this paper, we have discussed the mathe-
matical relationship between SVD and EVD, and 
specifically the fact that SVD is a special case of 

EVD. For information retrieval, the significance 
of this is that SVD allows for explicit encoding 
of associations between terms and documents, 
but not between terms and terms, or between 
documents and documents. 

By moving from the special case of SVD to 
the general case of EVD, however, we open up 
the possibility that additional information can be 
encoded prior to decomposition. We have exam-
ined a particular use case for SVD: multilingual 
information retrieval. This use case presents an 
interesting example of additional information 
which could be encoded on the term-by-term 
diagonal block: cross-language pairings of 
equivalent terms (such as house/maison). Such 
pairs can be obtained from bilingual dictionaries, 
but we can save ourselves the trouble of obtain-
ing and using these. Multilingual LSA requires 
that a parallel corpus have already been obtained, 
and well-understood statistical term alignment 
procedures can be applied to obtain cross-
language term-to-term associations. Moreover, if 
the corpus is multi-parallel, we can ensure that 
the statistical basis for alignment is the same 
across all language pairs. 

Our results show that by including term-to-
term alignment information, then performing 
EVD, we can improve the results of cross-
language IR quite significantly. 

It should be pointed out that while we have 
successfully used statistics-based information in 
the term-by-term diagonal block, there is no rea-
son to suppose that similar or better results might 
not be achieved by manually filling in nonzeroes 
in either diagonal block. The additional informa-
tion encoded by these nonzeroes could include 
associations known a priori between documents 
(e.g., they were written by the same author) or 
terms (e.g., they occur together in a thesaurus), 
or both. While in these examples the additional 
information required might not be available from 
the training corpus, and its encoding could in-
volve moving away from an entirely statistics-
based model, the additional effort could be justi-
fied depending upon the intended application. 

In future work, we would like to examine in 
particular whether still further statistically-
derivable (or readily available) data could be in-
corporated into the model. For example, one can 
conceive of a block EVD involving ‘levels’ be-
yond the ‘term level’ and the ‘document level’. 
In a 3×3 block EVD, for example, one might in-
clude n-grams, terms, and documents; this ap-
proach should also be extensible to essentially all 
languages. Might the addition of further informa-
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tion lead to even higher precision? Avenues for 
research such as this raise their own questions, 
such as the type of weighting scheme which 
would have to be applied in a 3×3 block matrix. 

In summary, however, our results give us 
some confidence that there can be significant 
benefit in making more linguistic and/or statisti-
cal information available to linear algebraic IR 
approaches such as EVD. Cross-language term 
alignments are just one example of the type of 
additional information which could be included; 
we believe that future research will uncover 
many more similar examples. 
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