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Abstract

In this paper we explore robustness and
domain adaptation issues for Word Sense
Disambiguation (WSD) using Singular
Value Decomposition (SVD) and unlabeled
data. We focus on the semi-supervised do-
main adaptation scenario, where we train
on the source corpus and test on the tar-
get corpus, and try to improve results us-
ing unlabeled data. Our method yields
up to 16.3% error reduction compared to
state-of-the-art systems, being the first to
report successful semi-supervised domain
adaptation. Surprisingly the improvement
comes from the use of unlabeled data from
the source corpus, and not from the target
corpora, meaning that we get robustness
rather than domain adaptation. In addition,
we study the behavior of our system on the
target domain.

1 Introduction

In many Natural Language Processing (NLP)
tasks we find that a large collection of manually-
annotated text is used to train and test supervised
machine learning models. While these models
have been shown to perform very well when tested
on the text collection related to the training data
(what we call the source domain), the performance
drops considerably when testing on text from other
domains (called target domains).

In order to build models that perform well in
new (target) domains we usually find two settings
(Daumé III, 2007): In the semi-supervised setting
the goal is to improve the system trained on the
source domain using unlabeled data from the tar-
get domain, and the baseline is that of the system
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trained on the source domain. In the supervised
setting, training data from both source and tar-
get domains are used, and the baseline is provided
by the system trained on the target domain. The
semi-supervised setting is the most attractive, as it
would save developers the need to hand-annotate
target corpora every time a new domain is to be
processed.

The main goal of this paper is to use unlabeled
data in order to get better domain-adaptation re-
sults for Word Sense Disambiguation (WSD) in
the semi-supervised setting. Singular Value De-
composition (SVD) has been shown to find corre-
lations between terms which are helpful to over-
come the scarcity of training data in WSD (Gliozzo
et al., 2005). This paper explores how this ability
of SVD can be applied to the domain-adaptation of
WSD systems, and we show that SVD and unla-
beled data improve the results of two state-of-the-
art WSD systems (k-NN and SVM). For the sake of
this paper we call this set of experiments the do-
main adaptation scenario.

In addition, we also perform some related exper-
iments on just the target domain. We use unlabeled
data in order to improve the results of a system
trained and tested in the target domain. These re-
sults are complementary to the domain adaptation
experiments, and also provide an upperbound for
semi-supervised domain adaptation. We call these
experiments the target domain scenario. Note
that both scenarios are semi-supervised, in that our
focus is on the use of unlabeled data in addition to
the available labeled data.

The experiments were performed on a publicly
available corpus which was designed to study the
effect of domain in WSD (Koeling et al., 2005). It
comprises 41 nouns closely related to the SPORTS

and FINANCES domains with 300 examples for
each. The 300 examples were drawn from the
British National Corpus (Leech, 1992) (BNC), the
SPORTS section of the Reuters corpus (Leech,
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1992), and the FINANCES section of Reuters in
equal number.

The paper is structured as follows. Section 2 re-
views prior work in the area. Section 3 presents the
datasets used, and Section 4 the learning methods,
including the application of SVD. The experimen-
tal results are presented in Section 5, for the semi-
supervised domain adaptation scenario, and Sec-
tion 6, for the target scenario. Section 7 presents
the discussion and Section 8 the conclusions and
future work.

2 Prior Work

Domain adaptation is a subject attracting more
and more attention. In the semi-supervised set-
ting, Blitzer et al. (2006) use Structural Corre-
spondence Learning and unlabeled data to adapt
a Part-of-Speech tagger. They carefully select so-
called ‘pivot features’ to learn linear predictors,
perform SVD on the weights learned by the pre-
dictor, and thus learn correspondences among fea-
tures in both source and target domains. Our tech-
nique also uses SVD, but we directly apply it to all
features, and thus avoid the need to define pivot
features. In preliminary work we unsuccessfully
tried to carry along the idea of pivot features to
WSD. Zelikovitz and Hirsh (2001) use unlabeled
data (so-called background knowledge) with La-
tent Semantic Indexing (also based on SVD) on a
Text Classification task with positive results. They
use related unlabeled text and include it in the
term-by-document matrix to expand it and capture
better the interesting properties of the data. Their
approach is similar to our SMA method in Section
4.2).

In the supervised setting, a recent paper by
Daumé III (2007) shows that, using a very simple
feature augmentation method coupled with Sup-
port Vector Machines, he is able to effectively
use both labeled target and source data to pro-
vide the best results in a number of NLP tasks.
His method improves or equals over previously ex-
plored more sophisticated methods (Daumé III and
Marcu, 2006; Chelba and Acero, 2004).

Regarding WSD, some initial works made ba-
sic analysis of the particular issues. Escudero et
al. (2000) tested the supervised adaptation set-
ting on the DSO corpus, which had examples from
the Brown corpus and Wall Street Journal cor-
pus. They found that the source corpus did not
help when tagging the target corpus, showing that

tagged corpora from each domain would suffice,
and concluding that hand tagging a large general
corpus would not guarantee robust broad-coverage
WSD. Agirre and Martı́nez (2000) also used the
DSO corpus in the supervised setting to show that
training on a subset of the source corpora that is
topically related to the target corpus does allow
for some domain adaptation. Their work used the
fact that the genre tags of Brown allowed to detect
which parts of the corpus were related to the target
corpus.

More recently, Koeling et al. (2005) presented
an unsupervised system to learn the predominant
senses of particular domains. Their system was
based on the use of a similarity thesaurus induced
from the domain corpus and WordNet. They used
the same dataset as in this paper for evaluation.
Chan and Ng (2007) performed supervised domain
adaptation on a manually selected subset of 21
nouns from the DSO corpus. They used active
learning, count-merging, and predominant sense
estimation in order to save target annotation ef-
fort. They showed that adding just 30% of the tar-
get data to the source examples the same precision
as the full combination of target and source data
could be achieved. They also showed that using
the source corpus allowed to significantly improve
results when only 10%-30% of the target corpus
was used for training. No data was given about the
use of both tagged corpora.

Though not addressing domain adaptation, other
works on WSD also used SVD and are closely re-
lated to the present paper. Gliozzo et al. (2005)
used SVD to reduce the space of the term-to-
document matrix, and then computed the similarity
between train and test instances using a mapping
to the reduced space (similar to our SMA method
in Section 4.2). They combined other knowledge
sources into a complex kernel using SVM. They
report improved performance on a number of lan-
guages in the Senseval-3 lexical sample dataset.
Our present paper differs from theirs in that we
propose an additional method to use SVD (the OMT

method, Section 4.2), and that we evaluate the con-
tribution of unlabeled data and SVD in isolation,
leaving combination for future work.

Ando (2006) used Alternative Structured Op-
timization, which is closely related to Structural
Learning (cited above). He first trained one lin-
ear predictor for each target word, and then per-
formed SVD on 7 carefully selected submatrices
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of the feature-to-predictor matrix of weights. The
system attained small but consistent improvements
(no significance data was given) on the Senseval-
3 lexical sample datasets using SVD and unlabeled
data.

We have previously shown (Agirre et al., 2005;
Agirre and Lopez de Lacalle, 2007) that perform-
ing SVD on the feature-to-documents matrix is a
simple technique that allows to improve perfor-
mance with and without unlabeled data. The use
of several k-NN classifiers trained on a number of
reduced and original spaces was shown to rank first
in the Senseval-3 dataset and second in the Se-
mEval 2007 competition. The present work ex-
tends our own in that we present a comprehensive
study on a domain adaptation dataset, producing
additional insight on our method and the relation
between SVD, features and unlabeled data.

3 Data sets

The dataset we use was designed for domain-
related WSD experiments by Koeling et al. (2005),
and is publicly available. The examples come
from the BNC (Leech, 1992) and the SPORTS and
FINANCES sections of the Reuters corpus (Rose
et al., 2002), comprising around 300 examples
(roughly 100 from each of those corpora) for each
of the 41 nouns. The nouns were selected be-
cause they were salient in either the SPORTS or
FINANCES domains, or because they had senses
linked to those domains. The occurrences were
hand-tagged with the senses from WordNet (WN)
version 1.7.1 (Fellbaum, 1998).

Compared to the DSO corpus used in prior work
(cf. Section 2) this corpus has been explicitly cre-
ated for domain adaptation studies. DSO con-
tains texts coming from the Brown corpus and the
Wall Street Journal, but the texts are not classi-
fied according to specific domains (e.g. Sports, Fi-
nances), which make DSO less suitable to study
domain adaptation.

In addition to the labeled data, we also use
unlabeled data coming from the three sources
used in the labeled corpus: the ’written’ part of
the BNC (89.7M words), the FINANCES part of
Reuters (117,734 documents, 32.5M words), and
the SPORTS part (35,317 documents, 9.1M words).

4 Learning features and methods

In this section, we review the learning features, the
two methods to apply SVD, and the two learning

algorithms used in the experiments.

4.1 Learning features

We relied on the usual features used in previous
WSD work, grouped in three main sets. Local
collocations comprise the bigrams and trigrams
formed around the target word (using either lem-
mas, word-forms, and PoS tags1), those formed
with the previous/posterior lemma/word-form in
the sentence, and the content words in a ±4-word
window around the target. Syntactic dependen-
cies2 use the object, subject, noun-modifier, prepo-
sition, and sibling lemmas, when available. Fi-
nally, Bag-of-words features are the lemmas of
the content words in the whole context, plus the
salient bigrams in the context (Pedersen, 2001).

4.2 Features from the reduced space

Apart from the original space of features, we have
the so called SVD features, obtained from the
projection of the feature vectors into the reduced
space (Deerwester et al., 1990). Basically, we set
a term-by-document or feature-by-example matrix
M from the corpus (see section below for more
details). SVD decomposes it into three matrices,
M = UΣV T . If the desired number of dimensions
in the reduced space is p, we select p rows from Σ
and V , yielding Σp and Vp respectively. We can
map any feature vector ~t (which represents either a
train or test example) into the p-dimensional space
as follows: ~tp = ~tT VpΣ−1

p . Those mapped vectors
have p dimensions, and each of the dimensions is
what we call a SVD feature. We can now use the
mapped vectors (~tp) to train and test any learning
method, as usual. We have explored two different
variants in order to build the reduced matrix and
obtain the SVD features, as follows.

Single Matrix for All target words (SVD-
SMA). The method comprises the following steps:
(i) extract bag-of-word features (terms in this case)
from unlabeled corpora, (ii) build the term-by-
document matrix, (iii) decompose it with SVD, and
(iv) project the labeled data (train/test). This tech-
nique is very similar to previous work on SVD

(Gliozzo et al., 2005; Zelikovitz and Hirsh, 2001).
The dimensionality reduction is performed once,
over the whole unlabeled corpus, and it is then ap-
plied to the labeled data of each word. The reduced

1The PoS tagging was performed with the fnTBL toolkit
(Ngai and Florian, 2001)

2This software was kindly provided by David Yarowsky’s
group, from Johns Hopkins University.
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space is constructed only with terms, which corre-
spond to bag-of-words features, and thus discards
the rest of the features. Given that the WSD litera-
ture has shown that all features, including local and
syntactic features, are necessary for optimal per-
formance (Pradhan et al., 2007), we propose the
following alternative to construct the matrix.

One Matrix per Target word (SVD-OMT). For
each word: (i) construct a corpus with its occur-
rences in the labeled and, if desired, unlabeled cor-
pora, (ii) extract all features, (iii) build the feature-
by-example matrix, (iv) decompose it with SVD,
and (v) project all the labeled training and test data
for the word. Note that this variant performs one
SVD process for each target word separately, hence
its name. We proposed this technique in (Agirre et
al., 2005).

An important parameter when doing SVD is the
number of dimensions in the reduced space (p).
We tried two different values for p (25 and 200) in
the BNC domain, and the results were consistent
in that 25 performed better for SVD-OMT and 200
better for SVD-SMA. Those values were chosen for
testing in the SPORTS and FINANCES domains, i.e.
25 for SVD-OMT and 200 for SVD-SMA.

4.3 Building Matrices
The methods in the previous section can be applied
to the following matrices M :

• TRAIN: The matrix comprises features from
labeled train examples alone. This matrix can
only be used to obtain OMT features.

• TRAIN ∪ BNC: In addition to TRAIN, we
matrix also includes unlabeled examples from
the source corpus (BNC). Both OMT and SMA

features can be obtained.

• TRAIN ∪ {SPORTS,FINANCES}: Like the
previous, but using unlabeled examples from
one of the target corpora (FINANCES or
SPORTS) instead. Both OMT and SMA feature
can be obtained.

Based on previous work (Agirre et al., 2005), we
used 50% of the respective unlabeled corpora for
OMT features, and the whole corpora for SMA.

4.4 Learning methods
We used two well known classifiers, Support Vec-
tor Machines (SVM) and k-Nearest Neighbors (k-
NN). Regarding SVM we used linear kernels imple-
mented in SVM-Light (Joachims, 1999). We esti-
mated the soft margin (C) for each feature space

and each word using a greedy process in a prelim-
inary experiment on the source training data using
cross-validation. The same C value was used in the
rest of the settings.

k-NN is a memory based learning method,
where the neighbors are the k most similar la-
beled examples to the test example. The similarity
among instances is measured by the cosine of their
vectors. The test instance is labeled with the sense
obtaining the maximum the sum of the weighted
vote of the k most similar contexts. We set k to
5 based on previous results (Agirre and Lopez de
Lacalle, 2007).

5 Domain adaptation scenario

In this scenario we try to adapt a general purpose
supervised WSD system trained on the source cor-
pus (BNC) to a target corpus (either SPORTS or FI-
NANCES) using unlabeled corpora only.

5.1 Experimental results

Table 1 shows the precision results for this sce-
nario. Note that all methods have full coverage,
i.e. they return a sense for all test examples, and
therefore precision suffices to compare among sys-
tems. We have computed significance ranges for
all results in this paper using bootstrap resam-
pling (Noreen, 1989). F1 scores outside of these
intervals are assumed to be significantly different
from the related F1 score (p < 0.05).

The table has two main parts, each regarding
to one of the target domains, SPORTS and FI-
NANCES. The use of two target domains allows to
test whether the methods behave similarly in both
domains. The columns denote the classifier and
SVD method used: the MFS column corresponds
to the most frequent sense, k-NN-ORIG (SVM-
ORIG) corresponds to performing k-NN (SVM) on
the original feature space, k-NN-OMT (SVM-OMT)
corresponds to k-NN (SVM) on the reduced dimen-
sions of the OMT strategy, and k-NN-SMA (SVM-
SMA) corresponds to k-NN (SVM) on the reduced
dimensions of the SMA strategy (cf. Section 4.2).
The rows correspond to the matrix used for SVD

(cf. Section 4.3). Note that some of the cells have
no result, because that combination is not applica-
ble, e.g. using the TRAIN ∪ BNC in the original
space.

In the first row (TRAIN) of Table 1 we can
see that in both domains SVM on the original
space outperforms k-NN with statistical signifi-
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BNC→ SPORTS
matrix configuration MFS k-NN-ORIG k-NN-OMT k-NN-SMA SVM-ORIG SVM-OMT SVM-SMA
TRAIN 39.0±1.3 51.7±1.3 53.0±1.6 - 53.9±1.3 47.4±1.5 -
TRAIN ∪ SPORTS - - 47.8±1.5 49.7±1.5 - 51.8±1.5 53.8±1.5
TRAIN ∪ BNC - - 61.4±1.4 57.1±1.5 - 57.1±1.6 57.2±1.5
BNC→ FINANCES
matrix configuration MFS k-NN-ORIG k-NN-OMT k-NN-SMA SVM-ORIG SVM-OMT SVM-SMA
TRAIN 51.2±1.6 60.4±1.6 62.5±1.4 - 62.9±1.6 59.4±1.5 -
TRAIN ∪ FINANCES - - 57.4±1.9 60.6±1.5 - 60.4±1.4 62.7±1.4
TRAIN ∪ BNC - - 65.9±1.5 68.3±1.4 - 67.0±1.3 66.8±1.5

Table 1: Precision for the domain adaptation scenario: training on labeled source corpus, plus unlabeled
corpora.

cance. Those are the baseline systems. On the
same row, working on the reduced space of the
TRAIN matrix with OMT allows to improve the re-
sults of k-NN, but not for SVM.

Contrary to our expectations, adding target unla-
beled corpora (TRAIN ∪ SPORTS and TRAIN ∪ FI-
NANCES rows respectively) does not improve the
results over the baseline. But using the source un-
labeled data (TRAIN ∪ BNC), we find that for both
domains and in all four columns the results are sig-
nificantly better than for the best baseline in both
SPORTS and FINANCES corpora.

The best results on the TRAIN ∪ BNC row de-
pend on the domain corpus. While k-NN-OMT ob-
tains the best results for SPORTS, in FINANCES

k-NN-SMA is best. k-NN, in principle a weaker
method that SVM, is able to attain the same or
superior performance than SVM on the reduced
spaces.

Table 3 summarizes the main results, and also
shows the error reduction figures, which range be-
tween 6.9% and 16.3%. As the most important
conclusion, we want to stress that, in this sce-
nario, we are able to build a very robust system
just adding unlabeled source material, and that we
fail to adapt to the domain using the target cor-
pus. These results are relevant to improve a generic
WSD system to be more robust when ported to new
domains.

5.2 Controlling size

In the original experiments reported in the previ-
ous sections, the size of the unlabeled corpora was
not balanced. Due to the importance of the amount
of unlabeled data, we performed two control ex-
periments for the OMT and SMA matrices on the
domain adaptation scenario, focusing on the k-NN

method. Regarding OMT, we used the minimum
number of instances per word between BNC and

each of the target domains. The system obtained
60.0 of precision using unlabeled data from BNC

and 49.5 for SPORTS data (compared to 61.4 and
47.8 in table 1, respectively). We did the same in
the FINANCES domain, and we obtained 65.6 of
precision for BNC and 54.4 for FINANCES (com-
pared to 65.7 and 57.4 in table 1, respectively). Al-
though the contribution of BNC unlabeled data is
slightly lower in this experiment, due to the smaller
amount of data, it still outperforms the target unla-
beled data by a large margin.

In the case of the SMA matrix, we used 25% of
the BNC, which is comparable to the SPORTS and
FINANCES sizes. The results, 56.9 of precision in
SPORTS domain and 68.1 in FINANCES (compared
to 57.1 and 68.3 in table 1, respectively), confirm
that the size is not an important factor for SMA ei-
ther.

6 Target scenario
In this second scenario we focus on the target do-
main. We train and test on the target domain, and
use unlabeled data in order to improve the result.
The goal of these experiments is to check the be-
havior of our method when applied to the target
domain, in order to better understand the results on
the domain adaptation scenario. They also provide
an upperbound for semi-supervised domain adap-
tation.

6.1 Experimental results

The results are presented in table 2. All experi-
ments in this section have been performed using
3-fold cross-validation. Again, we have full cover-
age in all cases, and the significance ranges corre-
spond to the 95% confidence level. The table has
two main parts, each regarding to one of the target
domains, SPORTS and FINANCES. As in Table 1,
the columns specify the classifier and SVD method
used, and the rows correspond to the matrices used
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SPORTS→ SPORTS (xval)
matrix configuration MFS k-NN-ORIG k-NN-OMT k-NN-SMA SVM-ORIG SVM-OMT SVM-SMA
TRAIN 77.8±1.2 84.5±1.0 85.0±1.1 - 85.1±1.0 81.0±1.5 -
TRAIN ∪ SPORTS - - 86.1±0.9 82.7±1.1 - 85.1±1.1 80.3±1.5
TRAIN ∪ BNC - - 84.4±1.0 80.4±1.5 - 84.3±0.9 79.8±1.2
FINANCES→ FINANCES (xval)
matrix configuration MFS k-NN-ORIG k-NN-OMT k-NN-SMA SVM-ORIG SVM-OMT SVM-SMA
TRAIN 82.3±1.3 87.1±1.0 87.4±1.0 - 87.0±1.0 85.5±1.1 -
TRAIN ∪ SPORTS - - 87.8±0.8 84.3±1.4 - 86.4±0.9 82.9±1.1
TRAIN ∪ BNC - - 87.4±1.2 83.5±1.2 - 85.7±0.9 84.3±1.1

Table 2: Precision for the target scenario: training on labeled target corpora, plus unlabeled corpora.

to obtain the features.
Table 2 shows that k-NN-OMT using the tar-

get corpus (SPORTS and FINANCES, respectively)
slightly improves over the k-NN-ORIG and SVM-
ORIG classifiers, with significant difference in the
SPORTS domain. Contrary to the results on the
previous section, the source unlabeled corpus de-
grades performance, but the target corpus does al-
low for small improvements. Note that, in this sce-
nario, both SVM and k-NN perform similarly in the
original space, but only k-NN is able to profit from
the reduced space. Table 3 summarizes the best
result, alongside the error reduction.

The results of these experiments allow to con-
trast both scenarios, and to get deeper insight about
the relation between the labeled and unlabeled data
when performing SVD, as we will examine in the
next section.

7 Discussion

The main contribution of this paper is to show
that we obtain robustness when faced with do-
main shifts using a semi-supervised strategy. We
show that we can obtain it using a large, general,
unlabeled corpus. Note that our semi-supervised
method to attain robustness for domain shifts is
very cost-effective, as it does not require costly
hand-tagged material nor even large numbers of
unlabeled data from each target domain. These
results are more valuable given the lack of sub-
stantial positive results on the literature on semi-
supervised or supervised domain adaptation for
WSD (Escudero et al., 2000; Martı́nez and Agirre,
2000; Chan and Ng, 2007).

Compared to other settings, our semi-supervised
results improve over the completely unsupervised
system in (Koeling et al., 2005), which had 43.7%
and 49.9% precision for the SPORTS and FI-
NANCES domains respectively, but lag well behind
the target domain scenario, showing that there is

still room for improvement in the semi-supervised
setting.

While these results are based on a lexical sam-
ple, and thus not directly generalizable to an all-
words corpus, we think that they reflect the main
trends for nouns, as the 41 nouns where selected
among those exhibiting domain dependence (Koel-
ing et al., 2005). We can assume, though it would
be needed to be explored empirically, that other
nouns exhibiting domain independence would de-
grade less when moving to other domains, and thus
corroborate the robustness effect we have discov-
ered.

The fact that we attain robustness rather than do-
main adaptation proper deserves some analysis. In
the domain adaptation scenario only source unla-
beled data helped, but the results on the target sce-
nario show that it is the target unlabeled data which
is helping, and not the source one. Given that
SVD basically finds correlations among features,
it seems that constructing the term-by-document
(or feature-by-example) matrix with the training
data and the unlabeled corpus related to the train-
ing data is the key factor in play here.

The reasons for this can be traced back as fol-
lows. Our source corpus is the BNC, which is a
balanced corpus containing a variety of genres and
domains. The 100 examples for each word that
have been hand-tagged were gathered at random,
and thus cover several domains. For instance, the
OMT strategy for building the matrix extracts hun-
dreds of other examples from the BNC, and when
SVD collapses the features into a reduced space,
it effectively captures the most important corre-
lations in the feature-by-example matrix. When
faced with examples from a new domain, the re-
duced matrix is able to map some of the features
found in the test example to those in the train ex-
ample. Such overlap is more difficult if only 100
examples from the source domain are available.
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SPORTS FINANCES sign. E.R (%) method
53.9±1.3 62.9±1.6 - - labeled source (SVM-ORIG: baseline )
57.1±1.5 68.3±1.4 ++ 6.9/14.5 labeled source + SVD on unlabeled source (k-NN-SMA)
61.4±1.4 65.9±1.5 ++ 16.3/8.1 labeled source + SVD on unlabeled source (k-NN-OMT)
85.1±1.0 87.0±1.0 - - labeled target (SVM-ORIG: baseline)
86.1±0.9 87.8±0.8 + 6.7/6.1 labeled target + SVD on unlabeled target (k-NN-OMT)

Table 3: Summary with the most important results for the two scenarios (best results for each in bold).
The significance column shows significance over baselines: ++ (significant in both target domains),
+ (significant in a single domain). The E.R column shows the error reduction in percentages over the
baseline methods.

The unlabeled data and SVD process allow to cap-
ture correlations among the features occurring in
the test data and those in the training data.

On the other hand, we are discarding all original
features, as we focus on the features from the re-
duced space alone. The newly found correlations
come at the price of possibly ignoring effective
original features, causing information loss. Only
when the correlations found in the reduced space
outweigh this information loss do we get better
performance on the reduced space than in the orig-
inal space. The experiment in Section 6 is impor-
tant in that it shows that the improvement is much
smaller and only significant in the target domain
scenario, which is in accordance with the hypothe-
sis above. This information loss is a motivation for
the combination of the features from the reduced
space with the original features, which will be the
focus of our future work.

Regarding the learning method and the two
strategies to apply SVD, the results show that k-
NN profits from the reduced spaces more than
SVM, even if its baseline performance is lower
than SVM. Regarding the matrix building system,
in the domain adaptation scenario, k-NN-OMT ob-
tains the best results (with statistical significance)
in the SPORTS corpus, and k-NN-SMA yields the
best results (with statistical significance) in the FI-
NANCES domain. Averaging over both domains,
k-NN-OMT is best. The target scenario results con-
firm this trend, as k-NN-OMT is superior to k-NN-
SMA in both domains. These results are in ac-
cordance with our previous experience on WSD
(Agirre et al., 2005), where our OMT method got
better results than SMA and those of (Gliozzo et
al., 2005) (who also use a method similar to SMA)
on the Senseval-3 lexical sample. While OMT re-
duces the feature-by-example matrix of each tar-
get word, SMA reduces a single term-by-document
matrix. SMA is able to find important correlations
among similar terms in the corpus, but it misses the

rich feature set used by WSD systems, as it focuses
on bag-of-words alone. OMT on the other hand is
able to find correlations between all features which
are relevant to the target word only.

8 Conclusions and Future Work

In this paper we explore robustness and domain
adaptation issues for Word Sense Disambiguation
using SVD and unlabeled data. We focus on the
semi-supervised scenario, where we train on the
source corpus (BNC), test on two target corpora
(SPORTS and FINANCES sections of Reuters), and
improve the results using unlabeled data.

Our method yields up to 16.3% error reduction
compared to SVM and k-NN on the labeled data
alone, showing the first positive results on domain
adaptation for WSD. In fact, we show that our re-
sults are due to the use of a large, general, unla-
beled corpus, and rather than domain-adaptation
proper we show robustness in face of a domain
shift. This kind of robustness is even more cost-
effective than semi-supervised domain adaptation,
as it does not require large unlabeled corpora and
repeating the computations for each new target do-
main.

This paper shows that the OMT technique to ap-
ply SVD that we proposed in (Agirre et al., 2005)
compares favorably to SMA, which has been previ-
ously used in (Gliozzo et al., 2005), and that k-NN

excels SVM on the features from the reduced space.
We also show that the unlabeled data needs to be
related to the training data, and that the benefits of
our method are larger when faced with a domain
shift (compared to test data coming from the same
domain as the training data).

In the future, we plan to combine the features
from the reduced space with the rest of features,
either using a combination of k-NN classifiers
(Agirre et al., 2005; Agirre and Lopez de Lacalle,
2007) or a complex kernel (Gliozzo et al., 2005).
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A natural extension of our work would be to apply
our techniques to the supervised domain adapta-
tion scenario.
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