
Deep Linguistic Analysis for the Accurate Identification of
Predicate-Argument Relations

Yusuke Miyao
Department of Computer Science

University of Tokyo
yusuke@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii
Department of Computer Science

University of Tokyo
CREST, JST

tsujii@is.s.u-tokyo.ac.jp

Abstract
This paper evaluates the accuracy of HPSG
parsing in terms of the identification of
predicate-argument relations. We could directly
compare the output of HPSG parsing with Prop-
Bank annotations, by assuming a unique map-
ping from HPSG semantic representation into
PropBank annotation. Even though PropBank
was not used for the training of a disambigua-
tion model, an HPSG parser achieved the ac-
curacy competitive with existing studies on the
task of identifying PropBank annotations.

1 Introduction
Recently, deep linguistic analysis has successfully
been applied to real-world texts. Several parsers
have been implemented in various grammar for-
malisms and empirical evaluation has been re-
ported: LFG (Riezler et al., 2002; Cahill et al.,
2002; Burke et al., 2004), LTAG (Chiang, 2000),
CCG (Hockenmaier and Steedman, 2002b; Clark et
al., 2002; Hockenmaier, 2003), and HPSG (Miyao
et al., 2003; Malouf and van Noord, 2004). How-
ever, their accuracy was still below the state-of-the-
art PCFG parsers (Collins, 1999; Charniak, 2000) in
terms of the PARSEVAL score. Since deep parsers
can output deeper representation of the structure of
a sentence, such as predicate argument structures,
several studies reported the accuracy of predicate-
argument relations using a treebank developed for
each formalism. However, resources used for the
evaluation were not available for other formalisms,
and the results cannot be compared with each other.

In this paper, we employ PropBank (Kingsbury
and Palmer, 2002) for the evaluation of the accu-
racy of HPSG parsing. In the PropBank, semantic
arguments of a predicate and their semantic roles
are manually annotated. Since the PropBank has
been developed independently of any grammar for-
malisms, the results are comparable with other pub-
lished results using the same test data.

Interestingly, several studies suggested that the
identification of PropBank annotations would re-
quire linguistically-motivated features that can be

obtained by deep linguistic analysis (Gildea and
Hockenmaier, 2003; Chen and Rambow, 2003).
They employed a CCG (Steedman, 2000) or LTAG
(Schabes et al., 1988) parser to acquire syntac-
tic/semantic structures, which would be passed to
statistical classifier as features. That is, they used
deep analysis as a preprocessor to obtain useful fea-
tures for training a probabilistic model or statistical
classifier of a semantic argument identifier. These
results imply the superiority of deep linguistic anal-
ysis for this task.

Although the statistical approach seems a reason-
able way for developing an accurate identifier of
PropBank annotations, this study aims at establish-
ing a method of directly comparing the outputs of
HPSG parsing with the PropBank annotation in or-
der to explicitly demonstrate the availability of deep
parsers. That is, we do not apply statistical model
nor machine learning to the post-processing of the
output of HPSG parsing. By eliminating the effect
of post-processing, we can directly evaluate the ac-
curacy of deep linguistic analysis.

Section 2 introduces recent advances in deep lin-
guistic analysis and the development of semanti-
cally annotated corpora. Section 3 describes the de-
tails of the implementation of an HPSG parser eval-
uated in this study. Section 4 discusses a problem in
adopting PropBank for the performance evaluation
of deep linguistic parsers and proposes its solution.
Section 5 reports empirical evaluation of the accu-
racy of the HPSG parser.

2 Deep linguistic analysis and
semantically annotated corpora

Riezler et al. (2002) reported the successful applica-
tion of a hand-crafted LFG (Bresnan, 1982) gram-
mar to the parsing of the Penn Treebank (Marcus
et al., 1994) by exploiting various techniques for
robust parsing. The study was impressive because
most researchers had believed that deep linguistic
analysis of real-world text was impossible. Their
success owed much to a consistent effort to main-
tain a wide-coverage LFG grammar, as well as var-

S

VP

have

to

choose

this particular moment

S

NP VP

VP

NP

they

NP-1

did n’t

*-1

VP

VP
ARG0-choose

ARG1-chooseARG0-choose

REL-choose

Figure 1: Annotation of the PropBank

ious techniques for robust parsing.
However, the manual development of wide-

coverage linguistic grammars is still a difficult task.
Recent progress in deep linguistic analysis has
mainly depended on the acquisition of lexicalized
grammars from annotated corpora (Xia, 1999; Chen
and Vijay-Shanker, 2000; Chiang, 2000; Hocken-
maier and Steedman, 2002a; Cahill et al., 2002;
Frank et al., 2003; Miyao et al., 2004). This ap-
proach not only allows for the low-cost develop-
ment of wide-coverage grammars, but also provides
the training data for statistical modeling as a by-
product. Thus, we now have a basis for integrating
statistical language modeling with deep linguistic
analysis. To date, accurate parsers have been devel-
oped for LTAG (Chiang, 2000), CCG (Hockenmaier
and Steedman, 2002b; Clark et al., 2002; Hocken-
maier, 2003), and LFG (Cahill et al., 2002; Burke et
al., 2004). Those studies have opened up the appli-
cation of deep linguistic analysis to practical use.

However, the accuracy of those parsers was still
below PCFG parsers (Collins, 1999; Charniak,
2000) in terms of the PARSEVAL score, i.e., labeled
bracketing accuracy of CFG-style parse trees. Since
one advantage of deep parsers is that they can out-
put a sort of semantic representation, e.g. predicate-
argument structures, several studies have reported
the accuracy of predicate-argument relations (Hock-
enmaier and Steedman, 2002b; Clark et al., 2002;
Hockenmaier, 2003; Miyao et al., 2003). However,
their evaluation employed a treebank developed for
a specific grammar formalism. Hence, those results
cannot be compared fairly with parsers based on
other formalisms including PCFG parsers.

At the same time, following the great success
of machine learning approaches in NLP, many re-
search efforts are being devoted to developing vari-
ous annotated corpora. Notably, several projects are
underway to annotate large corpora with semantic
information such as semantic relations of words and
coreferences.

PropBank (Kingsbury and Palmer, 2002) and

FrameNet (Baker et al., 1998) are large English cor-
pora annotated with the semantic relations of words
in a sentence. Figure 1 shows an example of the
annotation of the PropBank. As the target text of
the PropBank is the same as the Penn Treebank, a
syntactic structure is given by the Penn Treebank.
The PropBank includes additional annotations rep-
resenting a predicate and its semantic arguments in
a syntactic tree. For example, in Figure 1, REL de-
notes a predicate, “choose”, and ARG

�
represents

its semantic arguments: “they” for the 0th argument
(i.e., subject) and “this particular moment” for the
1st argument (i.e., object).

Existing studies applied statistical classifiers to
the identification of the PropBank or FrameNet an-
notations. Similar to many methods of applying ma-
chine learning to NLP tasks, they first formulated
the task as identifying in a sentence each argument
of a given predicate. Then, parameters of the iden-
tifier were learned from the annotated corpus. Fea-
tures of a statistical model were defined as a pat-
tern on a partial structure of the syntactic tree output
by an automatic parser (Gildea and Palmer, 2002;
Gildea and Jurafsky, 2002).

Several studies proposed the use of deep linguis-
tic features, such as predicate-argument relations
output by a CCG parser (Gildea and Hockenmaier,
2003) and derivation trees output by an LTAG parser
(Chen and Rambow, 2003). Both studies reported
that the identification accuracy improved by in-
troducing such deep linguistic features. Although
deep analysis has not outperformed PCFG parsers in
terms of the accuracy of surface structure, these re-
sults are implicitly supporting the necessity of deep
linguistic analysis for the recognition of semantic
relations.

However, these results do not directly reflect the
performance of deep parsers. Since these corpora
provide deeper structure of a sentence than surface
parse trees, they would be suitable for the evalua-
tion of deep parsers. In Section 4, we explore the
possibility of using the PropBank for the evaluation
of an HPSG parser.

3 Implementation of an HPSG parser

This study evaluates the accuracy of a general-
purpose HPSG parser that outputs predicate argu-
ment structures. While details have been explained
in other papers (Miyao et al., 2003; Miyao et al.,
2004), in the remainder of this section, we briefly
review the grammar and the disambiguation model
of our HPSG parser.

S

VP

have

to

choose

this particular moment

S

NP VP

VP

NP

they

NP-1

did n’t

*-1

VP

VP
arg head

head

head head

head

head

head

arg

arg

arg

arg

mod

�

have

to

choose

this particular moment

they

did n’t

HEAD verb
SUBJ < >
COMPS < >

HEAD noun
SUBJ < >
COMPS < >

HEAD verb
SUBJ < >2

HEAD verb
SUBJ < _ >

HEAD verb
SUBJ < >2

HEAD verb
SUBJ < >1

HEAD verb
SUBJ < >1

HEAD noun
SUBJ < >
COMPS < >

head-comp

head-comp

head-comp

head-comp

subject-head

1

�

have to

they

did n’t

HEAD verb
SUBJ < >
COMPS < >

HEAD noun
SUBJ < >
COMPS < >

HEAD verb
SUBJ < >
COMPS < >

1

HEAD verb
SUBJ < >
COMPS < >

HEAD verb
SUBJ < >
COMPS < >

1

HEAD verb
SUBJ < >
COMPS < >

1

1
2

2

HEAD verb
SUBJ < >
COMPS < >

1
3

HEAD verb
SUBJ < >
COMPS < >

13

1

choose this particular moment

HEAD noun
SUBJ < >
COMPS < >

4
HEAD verb
SUBJ < >
COMPS < >

1
4

Figure 2: Extracting HPSG lexical entries from the
Penn Treebank-style parse tree

3.1 Grammar

The grammar used in this paper follows the theory
of HPSG (Pollard and Sag, 1994), and is extracted
from the Penn Treebank (Miyao et al., 2004). In
this approach, a treebank is annotated with partially
specified HPSG derivations using heuristic rules.
By inversely applying schemata to the derivations,
partially specified constraints are percolated and in-
tegrated into lexical entries, and a large HPSG-style
lexicon is extracted from the treebank.

Figure 2 shows an example of extracting HPSG
lexical entries from a Penn Treebank-style parse
tree. Firstly, given a parse tree (the top of the fig-
ure), we annotate partial specifications on an HPSG
derivation (the middle). Then, HPSG schemata are
applied to each branching in the derivation. Finally,

COMPS < >

SUBJ < >

PHON “choose”
HEAD verb

REL choose
ARG0
ARG1

HEAD noun
SEM 1

HEAD noun
SEM 2

SEM 1
2

Figure 3: Mapping from syntactic arguments to se-
mantic arguments

we get lexical entries for all of the words in the tree
(the bottom).

As shown in the figure, we can also obtain com-
plete HPSG derivation trees, i.e., an HPSG tree-
bank. It is available for the machine learning of dis-
ambiguation models, and can also be used for the
evaluation of HPSG parsing.

In an HPSG grammar, syntax-to-semantics map-
pings are implemented in lexical entries. For exam-
ple, when we have a lexical entries for “choose”
as shown in Figure 3, the lexical entry includes
mappings from syntactic arguments (SUBJ and
COMPS features) into a predicate-argument struc-
ture (ARG0 and ARG1 features). Argument labels
in a predicate-argument structure are basically de-
fined in a left-to-right order of syntactic realizations,
while if we had a cue for a movement in the Penn
Treebank, arguments are put in its canonical posi-
tion in a predicate-argument structure.

3.2 Disambiguation model

By grammar extraction, we are able to obtain a large
lexicon together with complete derivation trees of
HPSG, i.e, an HPSG treebank. The HPSG treebank
can then be used as training data for the machine
learning of the disambiguation model.

Following recent research about disambiguation
models on linguistic grammars (Abney, 1997; John-
son et al., 1999; Riezler et al., 2002; Clark and Cur-
ran, 2003; Miyao et al., 2003; Malouf and van No-
ord, 2004), we apply a log-linear model or maxi-
mum entropy model (Berger et al., 1996) on HPSG
derivations. We represent an HPSG sign as a tu-
ple �������	��
��
��� , where � is a lexical sign of the
head word,
 is a part-of-speech, and � is a sym-
bol representing the structure of the sign (mostly
corresponding to nonterminal symbols of the Penn
Treebank). Given an HPSG schema � and the dis-
tance � between the head words of the head/non-
head daughter constituents, each (binary) branch-
ing of an HPSG derivation is represented as a tuple� � �����
����������
����
������������
����
����� , where � ��!

� � ��� ��� ��� ��	 ��	 �
	� � � � � � � ��
–

� � � � � �� �
–

� �
–

� ��
– –

� �
–

� �� � � �
–

� �
–�

–
� �

–
� �

–� �
–

�
– –

�
–�

– –
�

– –
�

–

� � � � � � �� � � ��
–

� �� � �
–�

–
�

–

Table 1: Feature function templates used in the dis-
ambiguation model of HPSG parsing: for binary
schema applications (top) and for unary ones (bot-
tom)

denote head/non-head daughters.1 Since an HPSG
derivation � is represented by a set of B, a prob-
ability of � assigned to sentence
 is defined as
follows:

�������
�� �
�������
��
������ � �

��
�
�������
�� ���� �"!#�"$%�&(' $*),+).-/) � � �0�
1

����2��
�� is a probability of a sequence of lexical en-
tries, and is defined as the product of unigram prob-
abilities
����) � 3) � , where �

)
is a lexical entry assigned

to word 3)
. We divided the probability into
�������
��

and 45����� � �

�� in order to accelerate the estimation
of the probability model by using
����2��
�� as a ref-
erence distribution (Miyao et al., 2003), because the
direct estimation of 45������
�� was computationally
expensive.

Feature function
-)

returns 1 when a cer-
tain part of tuple

�
is observed. Table 1

lists templates of feature functions used in the
disambiguation model, where a check means
that the corresponding element in the tuple is
seen. For example, when we have a branching
� head comp �76 � trans � VB � VP � noun � NNS � NP � , 2

the following feature functions return 1, while all

1A unary branching is represented by 8�9*:<;�=�:�>*=?:<@A=#B .
2In this example, head comp and trans stand for the Head

Complement Schema and a transitive verb. In our probabilistic
model, lexical entry templates are more fine-grained (as shown
in Section 5, a grammar has more than 1,000 templates), while
we used a simple example here.

S

the window

He

NP

NP

VP

ARG0-broke

ARG1-broke
broke

REL-broke

S

the window

NP VP

ARG1-broke

broke

REL-broke

Figure 4: Annotation of an ergative verb in the Prop-
Bank

S

the window

NP VP

ARG1-broke

broke

into

PP

NP

a million pieces

ARG3-broke

REL-broke

Figure 5: Annotation of another usage of “broke”

the other features are 0:C
head comp DFEGD trans D VB D VP D noun D NNS D NP HC
head comp D D trans D VB D VP D noun D NNS D NP HC

head comp DIE*D D VB D VP D D NNS D NP HC
head comp D D D VB D VP D D NNS D NP HC

head comp DIE*D trans D VB D D noun D NNS D HC
head comp D D trans D VB D D noun D NNS D HC

head comp DFEGD D VB D D D NNS D HC
head comp D D D VB D D D NNS D H

Given the HPSG treebank as training data, the
model parameters +) are efficiently estimated using
a dynamic programming algorithm for maximum
entropy estimation (Miyao and Tsujii, 2002; Geman
and Johnson, 2002).

4 Evaluating HPSG parsing with
semantically annotated corpora

Our study aims toward the fair evaluation of deep
linguistic parsers, thus we want to directly compare
the output of HPSG parsing with hand-annotated
test data. However, disagreements between the out-
put of HPSG parser and the PropBank prevents us
from a direct comparison.

In the PropBank annotation, semantic arguments
can occur in multiple syntactic realizations, as in the
following example (Figure 4).

1. He broke the window.

2. The window broke.

In the first example, a semantic object appears in a
syntactic object position, while in the second sen-
tence it becomes the syntactic subject. This alterna-
tion is caused by two reasons: syntactic alternations
such as passive constructions and long-distance de-
pendencies, and lexical alternations such as erga-
tive verbs. It should also be noted that the assign-
ment of argument labels have some arbitrariness.

For example, Figure 5 shows the PropBank annota-
tion for “The window broke into a million pieces.”,
where a phrase “a million pieces” is annotated with
ARG3, not with ARG2. This is because ARG2 is
reserved for an instrument argument (e.g. “with a
rock”). However, the choice of selecting ARG2 or
ARG3 for “a million pieces” is arbitrary. Existing
studies exploited statistical methods to mend these
alternations and arbitrariness.

Basically, deep linguistic parsers derived from
the Penn Treebank can handle syntactic alternations
owing to trace annotation in the treebank. However,
lexical alternations and arbitrariness of assignments
of argument labels will be a problem when we di-
rectly compare the output of an HPSG parser with
the PropBank.

However, we can see that the remaining disagree-
ments are about the labels of argument labels. In
general, we can assume that argument labels can
be uniquely determined if a syntactic class of the
predicate is given.3 In the example given in Sec-
tion 2, “the window” always occurs in the object
position when “broke” is transitive, while it appears
in the subject position when it is intransitive. Since
syntactic classes are expressed by lexical entries in
HPSG, this indicates that we can establish a unique
mapping from an HPSG lexical entry into PropBank
semantic roles.

Following this idea, we developed a mapping
from HPSG argument labels into PropBank argu-
ment labels. This mapping was developed with a
very simple algorithm as follows. We first com-
puted predicate-argument structures from an HPSG
treebank. We then compared the obtained predicate-
argument structures with the PropBank annotations,
and for each pair of a surface form of a word and its
syntactic class, the mapping from argument labels
of a predicate-argument structure into those of Prop-
Bank was registered. When we found a conflict, that
is, multiple mappings were found for a pair, a map-
ping found later was simply discarded.

Our method is much simpler than existing stud-
ies, and it should be noted that PropBank was not
used for training the probabilistic model or statis-
tical identifier. This might be a handicap for our
evaluation, but this method can clearly show the
lower bound of the accuracy that has been attained
by HPSG parsing.

3There exist some exceptions as follows:
� “He opened the bottles.”
� “The can opener opens the bottles.”

In the PropBank, “he” is assigned ARG0, while “the can
opener” is assigned ARG2 (instrument).

�
penn

�
prop

words 8,539 8,496
lexical entry template 1,106 1,178
template per word 3.00 3.16
features 50,158 52,151
Size of the training data 124 MB 131 MB
Estimation time 68 min 51 min

Table 2: Specifications of the HPSG grammar and
the disambiguation model

5 Experimental results

In this section, we evaluate the accuracy of HPSG
parsing using the November 2002 release of Prop-
Bank (Kingsbury and Palmer, 2002). An HPSG
grammar was extracted from Section 02-21 and a
disambiguation model was trained using the same
data. Table 2 shows specifications of the grammar
and the disambiguation model, where the size of the
training data shows the file size of a compressed
training data and the estimation time represents a
user time required for estimating 4 ����� � �

�� . We
prepared two grammars for the evaluation:

�
penn

was extracted from the Penn Treebank with the orig-
inal algorithm (Miyao et al., 2004), and

�
prop was

extracted using the PropBank annotations for ar-
gument/modifier distinction by a method similar to
Chen and Rambow (2003). That is, constituents an-
notated with ARG

�
were treated as an argument

in the grammar extraction. In
�

penn, prepositional
phrases are basically treated as modifiers since we
have no cue to detect argument/modifier distinc-
tion in the original Penn Treebank. Section 02-21
was also used for developing HPSG-to-PropBank
mapping. Note that the PropBank annotation was
used only for this purpose, and was not used for
training a statistical disambiguation model. This is
very different from existing methods of identifying
PropBank-style annotations where they trained the
identification model using the PropBank. In the fol-
lowing, Section 22 of the PropBank was used for
the development of the parser, while Section 23 was
used for the final evaluation.

The accuracy of HPSG parsing was measured
against the core-argument annotations (i.e., ARG0,
..., ARG5) of the PropBank. Each predicate-
argument relation output by the parser was rep-
resented as a tuple �
������ �	�
��� �
����� �	�	�
��� � , where

������ was a predicate, ����� ��������� was the label of an
argument position (i.e., one of ARG0, ..., ARG5),
and �
��� was the head word of the argument of
������ .
Each tuple was compared to the annotations in the
PropBank. We used a mapping table described in

LP LR UP UR�
penn 70.3 56.0 86.7 69.2�
prop 68.3 59.0 85.6 73.9

Gold parses 79.5 67.1 97.2 82.0

Table 3: Accuracy of PropBank annotations
(head words of core arguments, without HPSG-to-
PropBank mapping)

LP LR UP UR�
penn 80.3 64.1 86.7 69.2�
prop 79.6 68.7 85.6 73.9

Gold parses 91.2 76.9 97.2 82.0

Table 4: Accuracy of PropBank annotations (head
words of core arguments, with HPSG-to-PropBank
mapping)

Section 4 for mapping the argument labels of HPSG
into the PropBank-style.

Table 3 shows the accuracy of semantic argu-
ments output by the HPSG parser without map-
ping HPSG outputs to PropBank-style, while Ta-
ble 4 shows the accuracy with the HPSG-to-
PropBank mapping. LP/LR columns represent la-
beled precision/recall while UP/UR represent unla-
beled precision/recall. “Labeled” here means the
label of argument positions. That is, a predicate-
argument relation was judged to be correct if
�
������ �	�
��� �
����� �	�	�
��� � was correctly output. “Un-
labeled” means that the head word of the argument
was correctly output regardless of the argument po-
sition, i.e.,
������ and �
��� were correctly output. The
“Gold parses” row represents the accuracy attained
when correct HPSG derivations are given. That is,
it represents the accuracy when Section 23 of the
HPSG treebank was given. This represents the up-
per bound of this measure in this evaluation.

First of all, we can see that labeled preci-
sion/recall significantly increased with the HPSG-
to-PropBank mapping. This means that the low ac-
curacy of the naive evaluation (Table 3) was mainly
due to the disagreements of the representation of se-
mantic structures.

As shown in Table 4, despite not employing the
PropBank for the machine learning of a disambigua-
tion model, the labeled precision/recall attained by�

prop were superior to an existing study using
the Collins parser (75.9/69.6) (Gildea and Hock-
enmaier, 2003), and the results were approaching
existing studies on the same task using a CCG
parser (76.1/73.5) (Gildea and Hockenmaier, 2003).
Although the results cannot directly be compared

with another work using LTAG (Chen and Rambow,
2003) because their target annotations were limited
to those localized in an elementary tree, consider-
ing that their target annotations were 87% of core-
arguments, our results are competitive with their re-
sults (82.57/71.41).

6 Conclusion
In this paper, the accuracy of HPSG parsing was
evaluated in terms of the identification of predicate-
argument relations. By assuming unique mapping
from HPSG predicate argument structures into the
PropBank annotation of semantic arguments, we
could directly compare the output of an HPSG
parser with PropBank. Despite not using Prop-
Bank for the training of a disambiguation model,
the HPSG parser achieved a high accuracy compet-
itive with the previous studies on the identification
of PropBank annotations. This result reveals the ac-
curate identification of predicate-argument relations
by HPSG parsing.

Although this study directly compared the HPSG
output with PropBank, we may require an addi-
tional machine learning step as in the existing stud-
ies to obtain higher accuracy because the accu-
racy attained by gold parses showed a limitation
of our approach. Another possibility is to directly
extract PropBank-style semantic representations by
reforming the grammar extraction algorithm (Chen
and Rambow, 2003), and to estimate a disambigua-
tion model using the PropBank.

References
Steven P. Abney. 1997. Stochastic attribute-value

grammars. Computational Linguistics, 23(4).
Collin F. Baker, Charles J. Fillmore, and John B.

Lowe. 1998. The Berkeley FrameNet project. In
Proc. COLING/ACL 1998, pages 86–90.

Adam L. Berger, Stephen A. Della Pietra, and Vin-
cent. J. Della Pietra. 1996. A maximum entropy
approach to natural language processing. Com-
putational Linguistics, 22(1):39–71.

Joan Bresnan, editor. 1982. The Mental Repre-
sentation of Grammatical Relations. MIT Press,
Cambridge, MA.

Michael Burke, Aoife Cahill, Ruth O’Donovan,
Josef van Genabith, and Andy Way. 2004.
Treebank-based acquisition of wide-coverage,
probabilistic LFG resources: Project overview,
results and evaluation. In Proc. IJCNLP-04
Workshop “Beyond Shallow Analyses”.

Aoife Cahill, Mairead McCarthy, Josef van Gen-
abith, and Andy Way. 2002. Parsing with PCFGs
and automatic f-structure annotation. In Proc. 7th

International Lexical-Functional Grammar Con-
ference.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proc. NAACL-2000, pages
132–139.

John Chen and Owen Rambow. 2003. Use of deep
linguistic features for the recognition and label-
ing of semantic arguments. In Proc. EMNLP
2003.

John Chen and K. Vijay-Shanker. 2000. Automated
extraction of TAGs from the Penn Treebank. In
Proc. 6th IWPT.

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar.
In Proc. 38th ACL, pages 456–463.

Stephen Clark and James R. Curran. 2003. Log-
linear models for wide-coverage CCG parsing. In
Proc. EMNLP 2003, pages 97–104.

Stephen Clark, Julia Hockenmaier, and Mark Steed-
man. 2002. Building deep dependency structures
with a wide-coverage CCG parser. In Proc. 40th
ACL, pages 327–334.

Michael Collins. 1999. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.
thesis, Univ. of Pennsylvania.

Anette Frank, Louisa Sadler, Josef van Genabith,
and Andy Way. 2003. From treebank resources
to LFG f-structures: Automatic f-structure an-
notation of treebank trees and CFGs extracted
from treebanks. In Anne Abeille, editor, Build-
ing and Using Syntactically Annotated Corpora,
pages 367–389. Kluwer Academic Publishers.

Stuart Geman and Mark Johnson. 2002. Dy-
namic programming for parsing and estimation of
stochastic unification-based grammars. In Proc.
40th ACL, pages 279–286.

Daniel Gildea and Julia Hockenmaier. 2003. Iden-
tifying semantic roles using Combinatory Cate-
gorial Grammar. In Proc. EMNLP 2003.

Daniel Gildea and Daniel Jurafsky. 2002. Auto-
matic labeling of semantic roles. Computational
Linguistics, 28(3):245–288.

Daniel Gildea and Martha Palmer. 2002. The ne-
cessity of parsing for predicate argument recog-
nition. In Proc. 40th ACL.

Julia Hockenmaier and Mark Steedman. 2002a.
Acquiring compact lexicalized grammars from a
cleaner treebank. In Proc. 3rd LREC.

Julia Hockenmaier and Mark Steedman. 2002b.
Generative models for statistical parsing with
Combinatory Categorial Grammar. In Proc. 40th
ACL, pages 335–342.

Julia Hockenmaier. 2003. Parsing with generative

models of predicate-argument structure. In Proc.
41st ACL, pages 359–366.

Mark Johnson, Stuart Geman, Stephen Canon,
Zhiyi Chi, and Stefan Riezler. 1999. Estimators
for stochastic “unification-based” grammars. In
Proc. ACL ’99, pages 535–541.

Paul Kingsbury and Martha Palmer. 2002. From
Treebank to PropBank. In Proc. 3rd LREC.

Robert Malouf and Gertjan van Noord. 2004. Wide
coverage parsing with stochastic attribute value
grammars. In Proc. IJCNLP-04 Workshop “Be-
yond Shallow Analyses”.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The Penn Treebank: Annotating
predicate argument structure. In ARPA Human
Language Technology Workshop.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maxi-
mum entropy estimation for feature forests. In
Proc. HLT 2002.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi
Tsujii. 2003. Probabilistic modeling of argument
structures including non-local dependencies. In
Proc. RANLP 2003, pages 285–291.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi
Tsujii. 2004. Corpus-oriented grammar develop-
ment for acquiring a Head-driven Phrase Struc-
ture Grammar from the Penn Treebank. In Proc.
IJCNLP-04.

Carl Pollard and Ivan A. Sag. 1994. Head-
Driven Phrase Structure Grammar. University of
Chicago Press.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan,
Richard Crouch, John T. Maxwell III, and Mark
Johnson. 2002. Parsing the Wall Street Jour-
nal using a Lexical-Functional Grammar and dis-
criminative estimation techniques. In Proc. 40th
ACL.

Yves Schabes, Anne Abeillé, and Aravind K. Joshi.
1988. Parsing strategies with ‘lexicalized’ gram-
mars: Application to tree adjoining grammars. In
Proc. 12th COLING, pages 578–583.

Mark Steedman. 2000. The Syntactic Process. The
MIT Press.

Fei Xia. 1999. Extracting tree adjoining grammars
from bracketed corpora. In Proc. 5th NLPRS.

