
Semantic Role Labeling via Integer Linear Programming Inference

Vasin Punyakanok Dan Roth Wen-tau Yih Dav Zimak
Department of Computer Science

University of Illinois at Urbana-Champaign
{punyakan,danr,yih,davzimak }@uiuc.edu

Abstract
We present a system for the semantic role la-
beling task. The system combines a machine
learning technique with an inference procedure
based on integer linear programming that sup-
ports the incorporation of linguistic and struc-
tural constraints into the decision process. The
system is tested on the data provided in CoNLL-
2004 shared task on semantic role labeling and
achieves very competitive results.

1 Introduction

Semantic parsing of sentences is believed to be an
important task toward natural language understand-
ing, and has immediate applications in tasks such
information extraction and question answering. We
studysemantic role labeling(SRL). For each verb in
a sentence, the goal is to identify all constituents
that fill a semantic role, and to determine their roles,
such as Agent, Patient or Instrument, and their ad-
juncts, such as Locative, Temporal or Manner.

The PropBank project (Kingsbury and Palmer,
2002) provides a large human-annotated corpus
of semantic verb-argument relations. Specifically,
we use the data provided in the CoNLL-2004
shared task of semantic-role labeling (Carreras and
Màrquez, 2003) which consists of a portion of the
PropBank corpus, allowing us to compare the per-
formance of our approach with other systems.

Previous approaches to the SRL task have made
use of a full syntactic parse of the sentence in or-
der to define argument boundaries and to determine
the role labels (Gildea and Palmer, 2002; Chen and
Rambow, 2003; Gildea and Hockenmaier, 2003;
Pradhan et al., 2003; Pradhan et al., 2004; Sur-
deanu et al., 2003). In this work, following the
CoNLL-2004 shared task definition, we assume that
the SRL system takes as input only partial syn-
tactic information, and no external lexico-semantic
knowledge bases. Specifically, we assume as input
resources a part-of-speech tagger, a shallow parser
that can process the input to the level of based
chunks and clauses (Tjong Kim Sang and Buch-

holz, 2000; Tjong Kim Sang and D́ejean, 2001),
and a named-entity recognizer (Tjong Kim Sang
and De Meulder, 2003). We donot assume a full
parse as input.

SRL is a difficult task, and one cannot expect
high levels of performance from either purely man-
ual classifiers or purely learned classifiers. Rather,
supplemental linguistic information must be used
to support and correct a learning system. So far,
machine learning approaches to SRL have incorpo-
rated linguistic information only implicitly, via the
classifiers’ features. The key innovation in our ap-
proach is the development of a principled method to
combine machine learning techniques with linguis-
tic and structural constraints by explicitly incorpo-
rating inference into the decision process.

In the machine learning part, the system we
present here is composed of two phases. First, a
set of argument candidates is produced using two
learned classifiers—one to discover beginning po-
sitions and one to discover end positions of each
argument type. Hopefully, this phase discovers a
small superset of all arguments in the sentence (for
each verb). In a second learning phase, the candi-
date arguments from the first phase are re-scored
using a classifier designed to determine argument
type, given a candidate argument.

Unfortunately, it is difficult to utilize global prop-
erties of the sentence into the learning phases.
However, the inference level it is possible to in-
corporate the fact that the set of possible role-
labelings is restricted by both structural and lin-
guistic constraints—for example, arguments cannot
structurally overlap, or, given a predicate, some ar-
gument structures are illegal. The overall decision
problem must produce an outcome that consistent
with these constraints. We encode the constraints as
linear inequalities, and use integer linear program-
ming(ILP) as an inference procedure to make a fi-
nal decision that is both consistent with the con-
straints and most likely according to the learning
system. Although ILP is generally a computation-
ally hard problem, there are efficient implementa-

tions that can run on thousands of variables and con-
straints. In our experiments, we used the commer-
cial ILP package (Xpress-MP, 2003), and were able
to process roughly twenty sentences per second.

2 Task Description
The goal of the semantic-role labeling task is to dis-
cover the verb-argument structure for a given input
sentence. For example, given a sentence “ Ileft my
pearls to my daughter-in-law in my will”, the goal is
to identify different arguments of the verbleft which
yields the output:

[A0 I] [V left] [A1 my pearls] [A2 to my daughter-
in-law] [AM-LOC in my will].

Here A0 represents theleaver, A1 represents the
thing left, A2 represents thebenefactor, AM-LOC
is an adjunct indicating the location of the action,
and V determines the verb.

Following the definition of the PropBank, and
CoNLL-2004 shared task, there are six different
types of arguments labelled as A0-A5 and AA.
These labels have different semantics for each verb
as specified in the PropBank Frame files. In addi-
tion, there are also 13 types of adjuncts labelled as
AM-XXX where XXX specifies the adjunct type.
In some cases, an argument may span over differ-
ent parts of a sentence, the label C-XXX is used to
specify the continuity of the arguments, as shown in
the example below.

[A1 The pearls] , [A0 I] [V said] , [C-A1 were left
to my daughter-in-law].

Moreover in some cases, an argument might be a
relative pronoun that in fact refers to the actual agent
outside the clause. In this case, the actual agent is la-
beled as the appropriate argument type, XXX, while
the relative pronoun is instead labeled as R-XXX.
For example,

[A1 The pearls] [R-A1 which] [A0 I] [V left] , [A2
to my daughter-in-law] are fake.

See the details of the definition in Kingsbury and
Palmer (2002) and Carreras and Màrquez (2003).

3 System Architecture
Our semantic role labeling system consists of two
phases. The first phase finds a subset of arguments
from all possible candidates. The goal here is to
filter out as many as possible false argument candi-
dates, while still maintaining high recall. The sec-
ond phase focuses on identifying the types of those
argument candidates. Since the number of candi-
dates is much fewer, the second phase is able to use

slightly complicated features to facilitate learning
a better classifier. This section first introduces the
learning system we use and then describes how we
learn the classifiers in these two phases.

3.1 SNoW Learning Architecture

The learning algorithm used is a variation of the
Winnow update rule incorporated in SNoW (Roth,
1998; Roth and Yih, 2002), a multi-class classifier
that is specifically tailored for large scale learning
tasks. SNoW learns a sparse network of linear func-
tions, in which the targets (argument border predic-
tions or argument type predictions, in this case) are
represented as linear functions over a common fea-
ture space. It incorporates several improvements
over the basic Winnow multiplicative update rule.
In particular, a regularization term is added, which
has the effect of trying to separate the data with a
thick separator (Grove and Roth, 2001; Hang et al.,
2002). In the work presented here we use this regu-
larization with a fixed parameter.

Experimental evidence has shown that SNoW
activations are monotonic with the confidence in
the prediction. Therefore, it can provide a good
source of probability estimation. We use soft-
max (Bishop, 1995) over the raw activation values
as conditional probabilities, and also the score of the
target. Specifically, suppose the number of classes
is n, and the raw activation values of classi is acti.
The posterior estimation for classi is derived by the
following equation.

score(i) = pi =
eacti

∑
1≤j≤n eactj

The score plays an important role in different
places. For example, the first phase uses the scores
to decide which argument candidates should be fil-
tered out. Also, the scores output by the second-
phase classifier are used in the inference procedure
to reason for the best global labeling.

3.2 First Phase: Find Argument Candidates

The first phase is to predict the argument candidates
of a given sentence that correspond to the active
verb. Unfortunately, it turns out that it is difficult to
predict the exact arguments accurately. Therefore,
the goal here is to output a superset of the correct
arguments by filtering out unlikely candidates.

Specifically, we learn two classifiers, one to de-
tect beginning argument locations and the other
to detect end argument locations. Each multi-
class classifier makes predictions over forty-three
classes—thirty-two argument types, ten continuous

argument types, and one class to detectnot begin-
ning/not end. Features used for these classifiers are:

• Word feature includes the current word, two
words before and two words after.

• Part-of-speech tag(POS) feature includes the
POS tags of all words in a window of size two.

• Chunk feature includes the BIO tags for
chunks of all words in a window of size two.

• Predicate lemma & POS tagshow the lemma
form and POS tag of the active predicate.

• Voice feature is the voice (active/passive) of
the current predicate. This is extracted with a
simple rule: a verb is identified as passive if it
follows a to-be verb in the same phrase chunk
and its POS tag is VBN(past participle) or it
immediately follows a noun phrase.

• Position feature describes if the current word
is before or after the predicate.

• Chunk pattern encodes the sequence of
chunks from the current words to the predicate.

• Clause tagindicates the boundary of clauses.
• Clause path feature is a path formed from a

semi-parsed tree containing only clauses and
chunks. Each clause is named with the chunk
preceding it. The clause path is the path from
predicate to target word in the semi-parse tree.

• Clause positionfeature is the position of the
target word relative to the predicate in the
semi-parse tree containing only clauses. There
are four configurations – target word and pred-
icate share the same parent, target word parent
is an ancestor of predicate, predicate parent is
an ancestor of target word, or otherwise.

Because each argument consists of a single be-
ginning and a single ending, these classifiers can be
used to construct a set of potential arguments (by
combining each predictedbeginwith each predicted
endafter it of the same type).

Although this phase identifies typed arguments
(i.e. labeled with argument types), the second phase
will re-score each phrase using phrase-based classi-
fiers – therefore, the goal of the first phase is sim-
ply to identify non-typed phrase candidates. In this
task, we achieves98.96% and88.65% recall (over-
all, without verb) on the training and the develop-
ment set, respectively. Because these are the only
candidates passed to the second phase, the final sys-
tem performance is upper-bounded by88.65%.

3.3 Second Phase: Argument Classification
The second phase of our system assigns the final ar-
gument classes to (a subset) of the argument can-

didates supplied from the first phase. Again, the
SNoW learning architecture is used to train a multi-
class classifier to label each argument to one of the
argument types, plus a special class—no argument
(null). Training examples are created from the argu-
ment candidates supplied from the first phase using
the following features:

• Predicate lemma & POS tag, voice, position,
clause Path, clause position, chunk pattern
Same features as those in the first phase.

• Word & POS tag from the argument, includ-
ing the first,last,and head1 word and tag.

• Named entity feature tells if the target argu-
ment is, embeds, overlaps, or is embedded in a
named entity with its type.

• Chunk tells if the target argument is, embeds,
overlaps, or is embedded in a chunk with its
type.

• Lengthsof the target argument, in the numbers
of words and chunks separately.

• Verb class feature is the class of the active
predicate described in PropBank Frames.

• Phrase typeuses simple heuristics to identify
the target argument as VP, PP, or NP.

• Sub-categorization describes the phrase
structure around the predicate. We separate
the clause where the predicate is in into three
parts—the predicate chunk, segments before
and after the predicate, and use the sequence
of phrase types of these three segments.

• Baseline features identifiednot in the main
verb chunk as AM-NEG and modal verb in the
main verb chunk as AM-MOD.

• Clause coveragedescribes how much of the
local clause (from the predicate) is covered by
the target argument.

• Chunk pattern length feature counts the num-
ber of patterns in the argument.

• Conjunctions join every pair of the above fea-
tures as new features.

• Boundary words & POS tag include two
words/tags before and after the target argu-
ment.

• Bigrams are pairs of words/tags in the window
from two words before the target to the first
word of the target, and also from the last word
to two words after the argument.

1We use simple rules to first decide if a candidate phrase
type is VP, NP, or PP. The headword of an NP phrase is the
right-most noun. Similarly, the left-most verb/proposition of a
VP/PP phrase is extracted as the headword

• Sparse collocationpicks one word/tag from
the two words before the argument, the first
word/tag, the last word/tag of the argument,
and one word/tag from the two words after the
argument to join as features.

Although the predictions of the second-phase
classifier can be used directly, the labels of argu-
ments in a sentence often violate some constraints.
Therefore, we rely on the inference procedure to
make the final predictions.

4 Inference via ILP
Ideally, if the learned classifiers are perfect, argu-
ments can be labeled correctly according to the clas-
sifiers’ predictions. In reality, labels assigned to ar-
guments in a sentence often contradict each other,
and violate the constraints arising from the struc-
tural and linguistic information. In order to resolve
the conflicts, we design an inference procedure that
takes the confidence scores of each individual ar-
gument given by the second-phase classifier as in-
put, and outputs thebest global assignment that
also satisfies the constraints. In this section we first
introduce the constraints and the inference prob-
lem in the semantic role labeling task. Then, we
demonstrate how we apply integer linear program-
ming(ILP) to reason for the global label assignment.

4.1 Constraints over Argument Labeling
Formally, the argument classifier attempts to assign
labels to a set of arguments,S1:M , indexed from 1
to M . Each argumentSi can take any label from a
set of argument labels,P, and the indexed set of
arguments can take a set of labels,c1:M ∈ PM .
If we assume that the classifier returns a score,
score(Si = ci), corresponding to the likelihood of
seeing labelci for argumentSi, then, given a sen-
tence, the unaltered inference task is solved by max-
imizing the overall score of the arguments,

ĉ1:M = argmax
c1:M∈PM

score(S1:M = c1:M)

= argmax
c1:M∈PM

M∑

i=1

score(Si = ci).
(1)

In the presence of global constraints derived from
linguistic information and structural considerations,
our system seeks for alegitimatelabeling that max-
imizes the score. Specifically, it can be viewed as
the solution space is limited through the use of a fil-
ter function,F , that eliminates many argument la-
belings from consideration. It is interesting to con-
trast this with previous work that filters individual
phrases (see (Carreras and Màrquez, 2003)). Here,

we are concerned with global constraints as well as
constraints on the arguments. Therefore, the final
labeling becomes

ĉ1:M = argmax
c1:M∈F(PM)

M∑

i=1

score(Si = ci) (2)

The filter function used considers the following con-
straints:

1. Arguments cannot cover the predicate except
those that contain only the verb or the verb and
the following word.

2. Arguments cannot overlap with the clauses
(they can be embedded in one another).

3. If a predicate is outside a clause, its arguments
cannot be embedded in that clause.

4. No overlapping or embedding arguments.

5. No duplicate argument classes for A0–A5,V.

6. Exactly one V argument per verb.

7. If there is C-V, then there should be a sequence
of consecutive V, A1, and C-V pattern. For ex-
ample, whensplit is the verb in “split it up”,
the A1 argument is “it” and C-V argument is
“up”.

8. If there is an R-XXX argument, then there has
to be an XXX argument. That is, if an ar-
gument is a reference to some other argument
XXX, then this referenced argument must exist
in the sentence.

9. If there is a C-XXX argument, then there has
to be an XXX argument; in addition, the C-
XXX argument must occur after XXX. This is
stricter than the previous rule because the order
of appearance also needs to be considered.

10. Given the predicate, some argument classes
are illegal (e.g. predicate ’stalk’ can take only
A0 or A1). This linguistic information can be
found inPropBank Frames.

We reformulate the constraints as linear
(in)equalities by introducing indicator variables.
The optimization problem (Eq. 2) is solved using
ILP.

4.2 Using Integer Linear Programming
As discussed previously, a collection of potential ar-
guments is not necessarily a valid semantic label-
ing since it must satisfy all of the constraints. In
this context, inference is the process of finding the
best(according to Equation 1) valid semantic labels
that satisfy all of the specified constraints. We take
a similar approach that has been previously used

for entity/relation recognition (Roth and Yih, 2004),
and model this inference procedure as solving an
ILP.

An integer linear program(ILP) is basically the
same as alinear program. The cost function and the
(in)equality constraints are all linear in terms of the
variables. The only difference in an ILP is the vari-
ables can only take integers as their values. In our
inference problem, the variables are in fact binary.
A general binary integer programming problem can
be stated as follows.

Given a cost vectorp ∈ <d, a set of variables,
z = (z1, . . . , zd) and cost matricesC1 ∈ <t1 ×
<d,C2 ∈ <t2×<d , wheret1 andt2 are the numbers
of inequality and equality constraints andd is the
number of binary variables. The ILP solutionz∗ is
the vector that maximizes the cost function,

z∗ = argmax
z∈{0,1}d

p · z,

subject to C1z ≥ b1, andC2z = b2,

whereb1,b2 ∈ <d, and for allz ∈ z, z ∈ {0, 1}.
To solve the problem of Equation 2 in this set-

ting, we first reformulate the original cost function∑M
i=1 score(Si = ci) as a linear function over sev-

eral binary variables, and then represent the filter
functionF using linear inequalities and equalities.

We set up a bijection from the semantic labeling
to the variable setz. This is done by settingz to a set
of indicator variables. Specifically, letzic = [Si =
c] be the indicator variable that represents whether
or not the argument typec is assigned toSi, and
let pic = score(Si = c). Equation 1 can then be
written as an ILP cost function as

argmax
z∈{0,1}d

M∑

i=1

|P|∑

c=1

piczic,

subject to

|P|∑

c=1

zic = 1 ∀zic ∈ z,

which means that each argument can take only one
type. Note that this new constraint comes from the
variable transformation, and is not one of the con-
straints used in the filter functionF .

Constraints 1 through 3 can be evaluated on a per-
argument basis – the sake of efficiency, arguments
that violate these constraints are eliminated even
before given the second-phase classifier. Next, we
show how to transform the constraints in the filter
function into the form of linear (in)equalities over
z, and use them in this ILP setting.

Constraint 4: No overlapping or embedding If
argumentsSj1 , . . . , Sjk occupy the same word in a
sentence, then this constraint restricts only one ar-
guments to be assigned to an argument type. In
other words,k − 1 arguments will be the special
classnull, which means the argument candidate is
not a legitimate argument. If the special classnull
is represented by the symbolφ, then for every set of
such arguments, the following linear equality repre-
sents this constraint.

k∑

i=1

zjiφ = k − 1

Constraint 5: No duplicate argument classes
Within the same sentence, several types of argu-
ments cannot appear more than once. For example,
a predicate can only take one A0. This constraint
can be represented using the following inequality.

M∑

i=1

ziA0 ≤ 1

Constraint 6: Exactly one V argument For each
verb, there is one and has to be one V argument,
which represents the active verb. Similarly, this con-
straint can be represented by the following equality.

M∑

i=1

ziV = 1

Constraint 7: V–A1–C-V pattern This con-
straint is only useful when there are three consec-
utive candidate arguments in a sentence. Suppose
argumentsSj1 , Sj2 , Sj3 are consecutive. IfSj3 is
C-V, thenSj1 andSj2 have to be V and A1, respec-
tively. This if-then constraint can be represented by
the following two linear inequalities.

zj3C-V ≥ zj1V , andzj3C-V ≥ zj2A1

Constraint 8: R-XXX arguments Suppose the
referenced argument type is A0 and the reference
type is R-A0. The linear inequalities that represent
this constraint are:

∀m ∈ {1, . . . , M} :
M∑

i=1

ziA0 ≥ zmR-A0

If there areγ reference argument pairs, then the
total number of inequalities needed isγM .

Constraint 9: C-XXX arguments This con-
straint is similar to the reference argument con-
straints. The difference is that the continued argu-
ment XXX has to occur before C-XXX. Assume
that the argument pair is A0 and C-A0, and argu-
mentSji appears beforeSjk

if i ≤ k. The linear
inequalities that represent this constraint are:

∀m ∈ {2, . . . , M} :
j−1∑

i=1

zjiA0 ≥ zmR-A0

Constraint 10: Illegal argument types Given a
specific verb, some argument types should never oc-
cur. For example, most verbs don’t have arguments
A5. This constraint is represented by summing all
the corresponding indicator variables to be 0.

M∑

i=1

ziA5 = 0

Using ILP to solve this inference problem en-
joys several advantages. Linear constraints are
very general, and are able to represent many types
of constraints. Previous approaches usually rely
on dynamic programming to resolve non over-
lapping/embedding constraints (i.e., Constraint 4)
when the data is sequential, but are unable to han-
dle other constraints. The ILP approach is flexible
enough to handle constraints regardless of the struc-
ture of the data. Although solving an ILP prob-
lem is NP-hard, with the help of todays commer-
cial numerical packages, this problem can usually
be solved very fast in practice. For instance, it only
takes about 10 minutes to solve the inference prob-
lem for 4305 sentences on a Pentium-III 800 MHz
machine in our experiments. Note that ordinary
search methods (e.g., beam search) are not neces-
sarily faster than solving an ILP problem and do not
guarantee the optimal solution.

5 Experimental Results

The system is evaluated on the data provided in
the CoNLL-2004 semantic-role labeling shared task
which consists of a portion of PropBank corpus.
The training set is extracted from TreeBank (Mar-
cus et al., 1993) section 15–18, the development set,
used in tuning parameters of the system, from sec-
tion 20, and the test set from section 21.

We first compare this system with the basic tagger
that we have, the CSCL shallow parser from (Pun-
yakanok and Roth, 2001), which is equivalent to us-
ing the scoring function from the first phase with
only the non-overlapping/embedding constraints. In

Prec. Rec. Fβ=1

1st-phase, non-overlap 70.54 61.50 65.71
1st-phase, All Const. 70.97 60.74 65.46
2nd-phase, non-overlap 69.69 64.75 67.13
2nd-phase, All Const. 71.96 64.93 68.26

Table 1: Summary of experiments on the development
set. All results are for overall performance.

Precision Recall Fβ=1

Without Inference 86.95 87.24 87.10
With Inference 88.03 88.23 88.13

Table 2: Results of second phase phrase prediction
and inference assumingperfect boundary detectionin
the first phase. Inference improves performance by re-
stricting label sequences rather than restricting structural
properties since the correct boundaries are given. All re-
sults are for overall performance on the development set.

addition, we evaluate the effectiveness of using only
this constraint versus all constraints, as in Sec. 4.

Table 1 shows how additional constraints over the
standard non-overlapping constraints improve per-
formance on the development set. The argument
scoring is chosen from either the first phase or the
second phase and each is evaluated by considering
simply the non-overlapping/embedding constraint
or the full set of linguistic constraints. To make
a fair comparison, parameters were set separately
to optimize performance when using the first phase
results. In general, using all constraints increases
Fβ=1 by about 1% in this system, but slightly de-
creases the performance when only the first phase
classifier is used. Also, using the two-phase archi-
tecture improves both precision and recall, and the
enhancement reflected in Fβ=1 is about 2.5%.

It is interesting to find out how well the second
phase classifier can perform given perfectly seg-
mented arguments. This evaluates the quality of the
argument classifier, and also provides a conceptual
upper bound. Table 2 first shows the results without
using inference (i.e.F(PM) = PM). The second
row shows adding inference to the phrase classifica-
tion can further improve Fβ=1 by 1%.

Finally, the overall result on the official test set
is given in Table 3. Note that the result here is not
comparable with the best in this domain (Pradhan et
al., 2004) where the full parse tree is assumed given.
For a fair comparison, our system was among the
best at CoNLL-04, where the best system (Hacioglu
et al., 2004) achieve a 69.49 F1 score.

6 Conclusion
We show that linguistic information is useful for se-
mantic role labeling, both in extracting features and

Dist. Prec. Rec. Fβ=1

Overall 100.00 70.07 63.07 66.39
A0 26.87 81.13 77.70 79.38
A1 35.73 74.21 63.02 68.16
A2 7.44 54.16 41.04 46.69
A3 1.56 47.06 26.67 34.04
A4 0.52 71.43 60.00 65.22
AM-ADV 3.20 39.36 36.16 37.69
AM-CAU 0.51 45.95 34.69 39.53
AM-DIR 0.52 42.50 34.00 37.78
AM-DIS 2.22 52.00 67.14 58.61
AM-EXT 0.15 46.67 50.00 48.28
AM-LOC 2.38 33.47 34.65 34.05
AM-MNR 2.66 45.19 36.86 40.60
AM-MOD 3.51 92.49 94.96 93.70
AM-NEG 1.32 85.92 96.06 90.71
AM-PNC 0.89 32.79 23.53 27.40
AM-TMP 7.78 59.77 56.89 58.30
R-A0 1.66 81.33 76.73 78.96
R-A1 0.73 58.82 57.14 57.97
R-A2 0.09 100.00 22.22 36.36
R-AM-TMP 0.15 54.55 42.86 48.00

Table 3:Results on the test set.

deriving hard constraints on the output. We also
demonstrate that it is possible to use integer linear
programming to perform inference that incorporates
a wide variety of hard constraints, which would be
difficult to incorporate using existing methods. In
addition, we provide further evidence supporting
the use of scoring arguments over scoring argument
boundaries for complex tasks. In the future, we plan
to use the full PropBank corpus to see the improve-
ment when more training data is provided. In addi-
tion, we would like to explore the possibility of in-
teger linear programming approach using soft con-
straints. As more constraints are considered, we ex-
pect the overall performance to improve.

7 Acknowledgments

We thank Xavier Carreras and Lluı́s Màrquez for the
data and scripts, Martha Palmer and the anonymous
referees for their useful comments, AMD for their
equipment donation, and Dash Optimization for the
free academic use of their Xpress-MP software.
This research is supported by NSF grants ITR-IIS-
0085836, ITR-IIS-0085980 and IIS-9984168, EIA-
0224453 and an ONR MURI Award.

References
C. Bishop, 1995.Neural Networks for Pattern Recogni-

tion, chapter 6.4: Modelling conditional distributions,
page 215. Oxford University Press.

X. Carreras and L. M̀arquez. 2003. Phrase recognition
by filtering and ranking with perceptrons. InProc. of
RANLP-2003.

J. Chen and O. Rambow. 2003. Use of deep linguistic
features for the recognition and labeling of semantic
arguments. InProc. of EMNLP-2003, Sapporo, Japan.

D. Gildea and J. Hockenmaier. 2003. Identifying se-
mantic roles using combinatory categorial grammar.
In Proc. of the EMNLP-2003, Sapporo, Japan.

D. Gildea and M. Palmer. 2002. The necessity of parsing
for predicate argument recognition. InProc. of ACL
2002, pages 239–246, Philadelphia, PA.

A. Grove and D. Roth. 2001. Linear concepts and hid-
den variables.Machine Learning, 42(1/2):123–141.

K. Hacioglu, S. Pradhan, W. Ward, J. H. Martin, and
D. Jurafsky. 2004. Semantic role labeling by tagging
syntactic chunks. InProc. of CoNLL-04.

T. Hang, F. Damerau, and D. Johnson. 2002. Text
chunking based on a generalization of winnow.J. of
Machine Learning Research, 2:615–637.

P. Kingsbury and M. Palmer. 2002. From Treebank to
PropBank. InProc. of LREC-2002, Spain.

M. P. Marcus, B. Santorini, and M. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank.Computational Linguis-
tics, 19(2):313–330, June.

S. Pradhan, K. Hacioglu, W. ward, J. Martin, and D. Ju-
rafsky. 2003. Semantic role parsing adding semantic
structure to unstructured text. InProc. of ICDM-2003,
Melbourne, FL.

S. Pradhan, W. Ward, K. Hacioglu, J. H. Martin, and
D. Jurafsky. 2004. Shallow semantic parsing using
support vector machines. InProc. of NAACL-HLT
2004.

V. Punyakanok and D. Roth. 2001. The use of classi-
fiers in sequential inference. InNIPS-13; The 2000
Conference on Advances in Neural Information Pro-
cessing Systems, pages 995–1001. MIT Press.

D. Roth and W. Yih. 2002. Probabilistic reasoning for
entity & relation recognition. InProc. of COLING-
2002, pages 835–841.

D. Roth and W. Yih. 2004. A linear programming
formulation for global inference in natural language
tasks. InProc. of CoNLL-2004.

D. Roth. 1998. Learning to resolve natural language am-
biguities: A unified approach. InProc. of AAAI, pages
806–813.

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth.
2003. Using predicate-argument structures for infor-
mation extraction. InProc. of ACL 2003.

E. F. Tjong Kim Sang and S. Buchholz. 2000. Introduc-
tion to the CoNLL-2000 shared task: Chunking. In
Proc. of the CoNLL-2000 and LLL-2000.

E. F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. InProc. of
CoNLL-2003.

E. F. Tjong Kim Sang and H. D́ejean. 2001. Introduction
to the CoNLL-2001 shared task: Clause identification.
In Proc. of the CoNLL-2001.

Xpress-MP. 2003. Dash Optimization. Xpress-MP.
http://www.dashoptimization.com/products.html.

