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Abstract
In this paper, we introduce a new semi-supervised learning
model for word sense disambiguation based onKernel Prin-
cipal Component Analysis(KPCA), with experiments showing
that it can further improve accuracy over supervised KPCA
models that have achieved WSD accuracy superior to the best
published individual models. Although empirical results with
supervised KPCA models demonstrate significantly better ac-
curacy compared to the state-of-the-art achieved by either naı̈ve
Bayes or maximum entropy models on Senseval-2 data, we
identify specific sparse data conditions under which supervised
KPCA models deteriorate to essentially a most-frequent-sense
predictor. We discuss the potential of KPCA for leveraging
unannotated data for partially-unsupervised training to address
these issues, leading to a composite model that combines both
the supervised and semi-supervised models.

1 Introduction
Wu et al. (2004) propose an efficient and accurate new
supervised learning model for word sense disambigua-
tion (WSD), that exploits a nonlinear Kernel Principal
Component Analysis (KPCA) technique to make pre-
dictions implicitly based on generalizations over feature
combinations. Experiments performed on the Senseval-
2 English lexical sample data show that KPCA-based
word sense disambiguation method is capable of outper-
forming other widely used WSD models including naı̈ve
Bayes, maximum entropy, and SVM models.

Despite the excellent performance of the supervised
KPCA-based WSD model on average, though, our fur-
ther error analysis investigations have suggested certain
limitations. In particular, the supervised KPCA-based
model often appears to perform poorly when it encoun-
ters target words whose contexts are highly dissimilar
to those of any previously seen instances in the train-
ing set. Empirically, the supervised KPCA-based model
nearly always disambiguates target words of this kind
to the most frequent sense. As a result, for this partic-
ular subset of test instances, the precision achieved by
the KPCA-based model is essentially no higher than the
precision achieved by the most-frequent-sense baseline
model (which simply always selects the most frequent
sense for the target word). The work reported in this pa-
per stems from a hypothesis that the most-frequent-sense
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strategy can be bettered for this category of errors.
This is a case of data sparseness, so the observation

should not be very surprising. Such behavior is to be ex-
pected from classifiers in general, and not just the KPCA-
based model. Put another way, even though KPCA is
able to generalize over combinations of dependent fea-
tures, there must be a sufficient number of training in-
stances from which to generalize.

The nature of KPCA, however, suggests a strategy that
is not applicable to many of the other conventional WSD
models. We propose a model in this paper that takes ad-
vantage of unsupervised training using large quantities of
unannotated corpora, to help compensate for sparse data.

Note that although we are using the WSD task to ex-
plain the model, in fact the proposed model is not lim-
ited to WSD applications. We have hypothesized that
the KPCA-based method is likely to be widely applica-
ble to other NLP tasks; since data sparseness is a com-
mon problem in many NLP tasks, a weakly-supervised
approach allowing the KPCA-based method to compen-
sate for data sparseness is highly desirable. The general
technique we describe here is applicable to any similar
classification task where insufficient labeled training data
is available.

The paper is organized as follows. After a brief look
at related work, we review the baseline supervised WSD
model, which is based on Kernel PCA. We then discuss
how data sparseness affects the model, and propose a
new semi-supervised model that takes advantage of un-
labeled data, along with a composite model that com-
bines both the supervised and semi-supervised models.
Finally, details of the experimental setup and compara-
tive results are given.

2 Related work
The long history of WSD research includes numerous
statistically trained methods; space only permits us to
summarize a few key points here. Naı̈ve Bayes models
(e.g., Mooney (1996), Chodorowet al. (1999), Pedersen
(2001), Yarowsky and Florian (2002)) as well as max-
imum entropy models (e.g., Dang and Palmer (2002),
Klein and Manning (2002)) in particular have shown a
large degree of success for WSD, and have established
challenging state-of-the-art benchmarks. The Senseval
series of evaluations facilitates comparing the strengths
and weaknesses of various WSD models on common
data sets, with Senseval-1 (Kilgarriff and Rosenzweig,



1999), Senseval-2 (Kilgarriff, 2001), and Senseval-3 held
in 1998, 2001, and 2004 respectively.

3 Supervised KPCA baseline model
Our baseline WSD model is a supervised learning model
that also makes use ofKernel Principal Component
Analysis(KPCA), proposed by (Scḧolkopf et al., 1998)
as a generalization of PCA. KPCA has been successfully
applied in many areas such as de-noising of images of
hand-written digits (Mikaet al., 1999) and modeling the
distribution of non-linear data sets in the context of shape
modelling for real objects (Active Shape Models) (Twin-
ing and Taylor, 2001). In this section, we first review the
theory of KPCA and explanation of why it is suited for
WSD applications.

3.1 Kernel Principal Component Analysis
TheKernel Principal Component Analysistechnique, or
KPCA, is a method of nonlinear principal component ex-
traction. A nonlinear function maps then-dimensional
input vectors from their original spaceRn to a high-
dimensional feature spaceF where linear PCA is per-
formed. In real applications, the nonlinear function is
usually not explicitly provided. Instead we use a kernel
function to implicitly define the nonlinear mapping; in
this respect KPCA is similar to Support Vector Machines
(Scḧolkopf et al., 1998).

Compared with other common analysis techniques,
KPCA has several advantages:

• As with other kernel methods it inherently takes
combinationsof predictive features into account
when optimizing dimensionality reduction. For nat-
ural language problems in general, of course, it is
widely recognized that significant accuracy gains
can often be achieved by generalizing over relevant
feature combinations (e.g., Kudo and Matsumoto
(2003)).

• We can select suitable kernel function according to
the task we are dealing with and the knowledge we
have about the task.

• Another advantage of KPCA is that it is good at
dealing with input data with very high dimension-
ality, a condition where kernel methods excel.

Nonlinear principal components(Diamantaras and
Kung, 1996) may be defined as follows. Suppose we
are given a training set ofM pairs (xt, ct) where the
observed vectorsxt ∈ Rn in an n-dimensional input
spaceX represent the context of the target word being
disambiguated, and the correct classct represents the
sense of the word, fort = 1, ..,M . SupposeΦ is a
nonlinear mapping from the input spaceRn to the fea-
ture spaceF . Without loss of generality we assume the
M vectors are centered vectors in the feature space, i.e.,∑M

t=1 Φ (xt) = 0; uncentered vectors can easily be con-
verted to centered vectors (Schölkopf et al., 1998). We
wish to diagonalize the covariance matrix inF :

C =
1
M

M∑
j=1

Φ (xj) ΦT (xj) (1)

To do this requires solving the equationλv = Cv for
eigenvaluesλ ≥ 0 and eigenvectorsv ∈ F . Because

Cv =
1
M

M∑
j=1

(Φ( xj) · v)Φ (xj) (2)

we can derive the following two useful results. First,

λ (Φ( xt) · v) = Φ (xt) · Cv (3)

for t = 1, ..,M . Second, there existαi for i = 1, ...,M
such that

v =
M∑
i=1

αiΦ (xi) (4)

Combining (1), (3), and (4), we obtain

Mλ
M∑
i=1

αi (Φ( xt) · Φ(xi ))

=
M∑
i=1

αi(Φ (xt) ·
M∑

j=1

Φ (xj)) (Φ( xj) · Φ(xi ))

for t = 1, ..,M . Let K̂ be theM ×M matrix such that

K̂ij = Φ(xi) · Φ (xj) (5)

and letλ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂M denote the eigenvalues
of K̂ andα̂1 ,..., α̂M denote the corresponding complete
set of normalized eigenvectors, such thatλ̂t(α̂t · α̂t) = 1
when λ̂t > 0. Then thelth nonlinear principal compo-
nent of any test vectorxt is defined as

yl
t =

M∑
i=1

α̂l
i (Φ( xi) · Φ(xt )) (6)

whereα̂l
i is thelth element of̂αl .

3.2 Why is KPCA suited to WSD?
The potential of nonlinear principal components for
WSD can be illustrated by a simplified disambiguation
example for the ambiguous target word “art”, with the
two senses shown in Table 1. Assume a training cor-
pus of the eight sentences as shown in Table 2, adapted
from Senseval-2 English lexical sample corpus. For each
sentence, we show the feature set associated with that
occurrence of “art” and the correct sense class. These
eight occurrences of “art” can be transformed to a binary
vector representation containing one dimension for each
feature, as shown in Table 3.

Extracting nonlinear principal components for the vec-
tors in this simple corpus results in nonlinear generaliza-
tion, reflecting an implicit consideration of combinations
of features. Table 2 shows the first three dimensions of
the principal component vectors obtained by transform-
ing each of the eight training vectorsxt into (a) principal
component vectorszt using the linear transform obtained
via PCA, and (b) nonlinear principal component vectors
yt using the nonlinear transform obtained via KPCA as
described below.



Table 1: A tiny corpus for the target word “art”, adapted from the Senseval-2 English lexical sample corpus (Kilgarriff
2001), together with a tiny example set of features. The training and testing examples can be represented as a set of
binary vectors: each row shows the correct class c for an observed vector x of five dimensions.

TRAINING design/N media/N the/DT entertainment/N world/N Class
x1 He studies art in London. 1
x2 Punch’s weekly guide to the

world of the arts , entertain-
ment, media and more.

1 1 1 1

x3 All such studies have influ-
enced every form of art , de-
sign, and entertainment in
some way.

1 1 1

x4 Among the technical arts cul-
tivated in some continental
schools that began to affect
England soon after the Nor-
man Conquest were those
of measurement and calcula-
tion.

1 2

x5 The Art of Love. 1 2
x6 Indeed, the art of doctor-

ing does contribute to bet-
ter health results and discour-
ages unwarranted malprac-
tice litigation.

1 2

x7 Countless books and classes
teach the art of asserting
oneself.

1 2

x8 Pop art is an example. 1
TESTING

x9 In the world of de-
sign arts particularly, this led
to appointments made for
political rather than academic
reasons.

1 1 1 1

Table 2: The original observed training vectors (showing only the first three dimensions) and their first three principal
components as transformed via PCA and KPCA.

Observed vectors PCA-transformed vectors KPCA-transformed vectors Class
t (x1

t , x
2
t , x

3
t ) (z1

t , z2
t , z3

t ) (y1
t , y2

t , y3
t ) ct

1 (0, 0, 0) (-1.961, 0.2829, 0.2014) (0.2801, -1.005, -0.06861) 1
2 (0, 1, 1) (1.675, -1.132, 0.1049) (1.149, 0.02934, 0.322) 1
3 (1, 0, 0) (-0.367, 1.697, -0.2391) (0.8209, 0.7722, -0.2015) 1
4 (0, 0, 1) (-1.675, -1.132, -0.1049) (-1.774, -0.1216, 0.03258) 2
5 (0, 0, 1) (-1.675, -1.132, -0.1049) (-1.774, -0.1216, 0.03258) 2
6 (0, 0, 1) (-1.675, -1.132, -0.1049) (-1.774, -0.1216, 0.03258) 2
7 (0, 0, 1) (-1.675, -1.132, -0.1049) (-1.774, -0.1216, 0.03258) 2
8 (0, 0, 0) (-1.961, 0.2829, 0.2014) (0.2801, -1.005, -0.06861) 1

Similarly, for the test vectorx9, Table 3 shows the
first three dimensions of the principal component vec-
tors obtained by transforming it into (a) a principal com-
ponent vectorz9 using the linear PCA transform ob-
tained from training, and (b) a nonlinear principal com-

ponent vectory9 using the nonlinear KPCA transform
obtained obtained from training. The vector similarities
in the KPCA-transformed space can be quite different
from those in the PCA-transformed space. This causes
the KPCA-based model to be able to make the correct



Table 3: Testing vector (showing only the first three dimensions) and its first three principal components as transformed
via the trained PCA and KPCA parameters. The PCA-based and KPCA-based sense class predictions disagree.

Observed
vectors

PCA-transformed vectors KPCA-transformed vectors Predicted
Class

Correct
Class

t (x1
t , x

2
t , x

3
t ) (z1

t , z2
t , z3

t ) (y1
t , y2

t , y3
t ) ĉt ct

9 (1, 0, 1) (-0.3671, -0.5658, -0.2392) 2 1
9 (1, 0, 1) (4e-06, 8e-07, 1.111e-18) 1 1

class prediction, whereas the PCA-based model makes
the wrong class prediction.

What permits KPCA to apply stronger generalization
biases is its implicit consideration ofcombinationsof
feature information in the data distribution from the high-
dimensional training vectors. In this simplified illustra-
tive example, there are just five input dimensions; the
effect is stronger in more realistic high dimensional vec-
tor spaces. Since the KPCA transform is computed from
unsupervised training vector data, and extracts general-
izations that are subsequently utilized during supervised
classification, it is possible to combine large amounts of
unsupervised data with reasonable smaller amounts of
supervised data.

Interpreting this example graphically can be illuminat-
ing even though the interpretation in three dimensions is
severely limiting. Figure 1(a) depicts the eight original
observed training vectorsxt in the first three of the five
dimensions; note that among these eight vectors, there
happen to be only four unique points when restricting
our view to these three dimensions. Ordinary linear PCA
can be straightforwardly seen as projecting the original
points onto the principal axis, as can be seen for the case
of the first principal axis in Figure 1(b). Note that in this
space, the sense 2 instances are surrounded by sense 1
instances. We can traverse each of the projections onto
the principal axis in linear order, simply by visiting each
of the first principal componentsz1

t along the principle
axis in order of their values, i.e., such that

z1
1 ≤ z1

8 ≤ z1
4 ≤ z1

5 ≤ z1
6 ≤ z1

7 ≤ z1
2 ≤ z1

3 ≤ z1
9

It is significantly more difficult to visualize the non-
linear principal components case, however. Note that
in general, there may not existany principal axis inX,
since an inverse mapping fromF may not exist. If we
attempt to follow the same procedure to traverse each of
the projections onto the first principal axis as in the case
of linear PCA, by considering each of the first principal
componentsy1

t in order of their value, i.e., such that

y1
4 ≤ y1

5 ≤ y1
6 ≤ y1

7 ≤ y1
9 ≤ y1

1 ≤ y1
8 ≤ y1

3 ≤ y1
2

then we must arbitrarily select a “quasi-projection” di-
rection for eachy1

t since there is no actual principal axis
toward which to project. This results in a “quasi-axis”
roughly as shown in Figure 1(c) which, though not pre-
cisely accurate, provides some idea as to how the non-
linear generalization capability allows the data points to
be grouped by principal components reflecting nonlin-
ear patterns in the data distribution, in ways that linear

Figure 1: Original vectors, PCA projections, and KPCA
“quasi-projections” (see text).

PCA cannot do. Note that in this space, the sense 1 in-
stances are already better separated from sense 2 data
points. Moreover, unlike linear PCA, there may be up
to M of the “quasi-axes”, which may number far more
than five. Such effects can become pronounced in the
high dimensional spaces are actually used for real word
sense disambiguation tasks.



3.3 Algorithm

To extract nonlinear principal components efficiently,
note that in both Equations (5) and (6) the explicit form
of Φ (xi) is required only in the form of (Φ (xi) ·Φ (xj)),
i.e., the dot product of vectors inF . This means that we
can calculate the nonlinear principal components by sub-
stituting a kernel functionk(xi, xj) for (Φ( xi) ·Φ(xj ))
in Equations (5) and (6) without knowing the mappingΦ
explicitly; instead, the mappingΦ is implicitly defined
by the kernel function. It is always possible to construct
a mapping into a space wherek acts as a dot product
so long ask is a continuous kernel of a positive integral
operator (Scḧolkopf et al., 1998).

Thus we train the KPCA model using the following
algorithm:

1. Compute anM ×M matrix K̂ such that

K̂ij = k(xi, xj) (7)

2. Compute the eigenvalues and eigenvectors of matrix
K̂ and normalize the eigenvectors. Letλ̂1 ≥ λ̂2 ≥
. . . ≥ λ̂M denote the eigenvalues andα̂1,...,α̂M de-
note the corresponding complete set of normalized
eigenvectors.

To obtain the sense predictions for test instances, we
need only transform the corresponding vectors using the
trained KPCA model and classify the resultant vectors
using nearest neighbors. For a given test instance vector
x, its lth nonlinear principal component is

yl
t =

M∑
i=1

α̂l
ik(xi, xt) (8)

whereα̂l
i is theith element of̂αl.

For our disambiguation experiments we employ a
polynomial kernel function of the formk(xi, xj) =
(xi · xj)

d, although other kernel functions such as gaus-
sians could be used as well. Note that the degenerate
case ofd = 1 yields the dot product kernelk(xi, xj) =
(xi·xj) which covers linear PCA as a special case, which
may explain why KPCA always outperforms PCA.

4 Semi-supervised KPCA model
4.1 Utilizing unlabeled data

In WSD, as with many NLP tasks, features are often in-
terdependent. For example, the features that represent
words that frequently co-occur are typically highly in-
terdependent. Similarly, the features that represent syn-
onyms tend to be highly interdependent.

It is a strength of the KPCA-based model that it gen-
eralizes over combinations of interdependent features.
This enables the model to predict the correct sense even
when the context surrounding a target word has not been
previously seen, by exploiting the similarity to feature
combinations thathavebeen seen.

However, in practice the labeled training corpus for
WSD is typically relatively small, and does not yield

enough training instances to reliably extract dependen-
cies between features. For example, in the Senseval-
2 English lexical sample data, for each target word
there are only about 120 training instances on average,
whereas on the other hand we typically have thousands
of features for each target word.

The KPCA model can fail when it encounters a target
word whose context contains a combination of features
that may in fact be interdependent, but are not similar to
any combinations that occurred in the limited amounts
of labeled training data. Because of the sparse data, the
KPCA model wrongly considers the context of the tar-
get word to bedissimilar to those previously seen—even
though the contexts may in truth be similar. In the ab-
sence of any contexts it believes to be similar, the model
therefore tends simply to predict the most frequent sense.

The potential solution we propose to this problem is
to add much larger quantities of unannotated data, with
which the KPCA model can first be trained in unsu-
pervised fashion. This provides a significantly broader
dataset from which to generalize over combinations of
dependent features. One of the advantages of our WSD
model is that during KPCA training, the sense class is not
taken into consideration. Thus we can take advantage of
the vast amounts of cheap unannotated corpora, in addi-
tion to the relatively small amounts of labeled training
data. Adding a large quantity of unlabeled data makes
it much likelier that dependent features can be identified
during KPCA training.

4.2 Algorithm
The primary difference of the semi-supervised KPCA
model from the supervised KPCA baseline model de-
scribed above lies in the eigenvector calculation step. As
we mentioned earlier, in KPCA-based model, we need
to calculate the eigenvectors of matrixK, whereKij =
(Φ( xi) · Φ(xj )). In the supervised KPCA model, train-
ing vectors such asxi andxj are only drawn from the
labeled training corpus. In the semi-supervised KPCA
model, training vectors are drawn from both the labeled
training corpus and a much larger unlabeled training cor-
pus. As a consequence, the maximum number of eigen-
vectors in the supervised KPCA model is the minimum
of the number of features and the number of vectors from
the labeled training corpus, while the maximum number
of eigenvectors for the semi-supervised KPCA model is
the minimum of the number of features and total num-
ber of vectors from the combined labeled and unlabeled
training corpora.

However, one would not want to apply the semi-
supervised KPCA model indiscriminately. While it can
be expected to be valuable in cases where the data was
too sparse for reliable training of the supervised KPCA
model, at the same time it is important to note that the un-
labeled data is typically drawn from quite different dis-
tributions than the labeled data, and may therefore be ex-
pected to introduce a new source of noise.

We therefore define acomposite semi-supervised
KPCA model based on the following assumption. If we
are sufficiently confident about the prediction made by
the supervised KPCA model as to the predicted sense



for the target word, we need not resort to the semi-
supervised KPCA method. On the other hand, if we
are not confident about the supervised KPCA model’s
prediction, we then turn to the semi-supervised KPCA
model and take its classification as the predicted sense.

Specifically, the composite model uses the following
algorithm to combine the sense predictions of the super-
vised and semi-supervised KPCA models in order to dis-
ambiguate the target word in a given test instancex:

1. let s1 be the predicted sense ofx using the super-
vised KPCA baseline model

2. let c be the similarity betweenx and its most similar
training instance

3. if c ≥ t or s1 6= smf (wheret is a preset thresh-
old, andsmf is the most frequent sense of the target
word):

• then predict the sense of the target word ofx
to bes1

• else predict the sense of the target word of
x to be s2, the sense predicted by the semi-
supervised KPCA model

The two conditions checked in step 3 serve to fil-
ter those instances where the supervised KPCA baseline
model is confident enough to skip the semi-supervised
KPCA model. In particular:

• The thresholdt specifies a minimum level of the
supervised KPCA baseline model’s confidence, in
terms of similarity. Ifc ≥ t, then there were training
instances that were of sufficient similarity to the test
instance so that the model can be confident that a
correct disambiguation can be predicted based only
on those similar training instances. In this case the
semi-supervised KPCA model is not needed.

• If s1 is not the most frequent sensesmf of the
target word, then there is strong evidence that the
test instance should be disambiguated ass1 because
this is overriding an otherwise strong tendency to
disambiguate the target word to the most frequent
sense. Again, in this case the semi-supervised
KPCA model should be avoided.

The thresholdt is defined to rise as the relative fre-
quency of the most frequent sense falls. Specifically,
t = 1− P (smf) + c whereP (smf) is the probability of
most frequent sense in the training corpus andc is a small
constant. This reflects the assumption that the higher the
probability of the most frequent sense, the less likely that
a test instance disambiguated as the most frequent sense
is wrong.

5 Experimental setup
We evaluated the composite semi-supervised KPCA
model using data from the Senseval-2 English lexical
sample task (Kilgarriff, 2001)(Palmeret al., 2001). We
chose to focus on verbs, which have proven particularly
difficult to disambiguate. Our task consists in disam-
biguating several instances of 16 different target verbs.

Table 4: The semi-supervised KPCA model outperforms
supervised näıve Bayes and maximum entropy models,
as well as the most-frequent-sense and supervised KPCA
baseline models.

Fine-grained
accuracy

Coarse-
grained
accuracy

Most frequent
sense

41.4% 51.7%

Näıve Bayes 55.4% 64.2%
Maximum entropy 54.9% 64.1%
Supervised KPCA 57.0% 66.6%
Composite semi-
supervised KPCA

57.4% 67.2%

For each target word, training and test instances manu-
ally tagged with WordNet senses are available. There are
an average of about 10.5 senses per target word, rang-
ing from 4 to 19. All our models are evaluated on the
Senseval-2 test data, but trained on different training sets.
We report accuracy, the number of correct predictions
over the total number of test instances, at two different
levels of sense granularity.

The supervised models are trained on the Senseval-
2 training data. On average, 137 annotated training in-
stances per target word are available.

In addition to the small annotated Senseval-2 data
set, the semi-supervised KPCA model can make use of
large amounts of unannotated data. Since most of the
Senseval-2 verb data comes from the Wall Street Journal,
we choose to augment the Senseval-2 data by collecting
additional training instances from the Wall Street Jour-
nal Tipster corpus. In order to minimize the noise during
KPCA learning, we only extract the sentences in which
the target word occurs. For each target word, up to 1500
additional training instances were extracted. The result-
ing training corpus for the semi-supervised KPCA model
is more than 10 times larger than the Senseval-2 training
set, with an average of 1637 training instances per target
word.

The set of features used is as described by Yarowsky
and Florian (2002) in their “feature-enhanced naı̈ve
Bayes model”, with position-sensitive, syntactic, and lo-
cal collocational features.

6 Results
Table 4 shows that the composite semi-supervised KPCA
model improves on the high-performance supervised
KPCA model, for both coarse-grained and fined-grained
sense distinctions. The supervised KPCA model signif-
icantly outperforms a naı̈ve Bayes model, and a max-
imum entropy model, which are among the top per-
forming models for WSD. Note that these results are
consistent with the larger study of supervised models
conducted by Wuet al. (2004). The composite semi-
supervised KPCA model outperforms all of the three su-
pervised models, and in particular, it further improves the



Table 5: Semi-supervised KPCA is not necessary when
supervised KPCA is very confident.

Fine-grained
accuracy

Coarse-
grained
accuracy

Supervised KPCA 62.1% 71.3%
Semi-supervised
KPCA

57.1% 67.1%

Table 6: Semi-supervised KPCA outperforms supervised
KPCA when supervised KPCA is not confident: adding
training data helps when there are no similar instances in
the training set.

Fine-grained
accuracy

Coarse-
grained
accuracy

Supervised KPCA 30.8% 44.11%
Semi-supervised
KPCA

38.3% 51.47%

accuracy of the supervised KPCA model.
Overall, with the addition of the semi-supervised

model, the accuracy for disambiguating the verbs in-
creases from 57% to 57.4% on the fine-grained task, and
from 66.6% to 67.2% on the coarse-grained task.

In our composite model, the supervised KPCA model
predicts senses with high confidence for more than 94%
of the test instances. The predictions of the semi-
supervised model are used for the remaining 6% of the
test instances. Table 5 shows that it is not necessary to
use the semi-supervised training model for all the train-
ing instances. In fact, when the supervised model is con-
fident, its predictions are significantly more accurate than
those of the semi-supervised model alone.

When the predictions of the supervised KPCA model
are not accurate, the semi-supervised KPCA model out-
performs the supervised model. This happens when (1)
there is no training instance that is very similar to the test
instance considered and when (2) in the absence of rele-
vant features to learn from in the small annotated train-
ing set, the supervised KPCA model can only predict the
most frequent sense for the current target. In these condi-
tions, our experiment results in Table 6 confirm that the
semi-supervised KPCA model benefits from the large ad-
ditional training data, suggesting it is able to learn useful
feature conjunctions, which help to give better predic-
tions.

The composite semi-supervised KPCA model there-
fore chooses the best model depending on the degree
of confidence of the supervised model. All the KPCA
weights, for both the supervised and the semi-supervised
model, have been pre-computed during training, and it
is therefore inexpensive to switch from one model to the
other at testing time.

7 Conclusion
We have proposed a new composite semi-supervised
WSD model based on the Kernel PCA technique, that
employs both supervised and semi-supervised compo-
nents. This strategy allows us to combine large amounts
of cheap unlabeled data with smaller amounts of labeled
data. Experiments on the hard-to-disambiguate verbs
from the Senseval-2 English lexical sample task confirm
that when the supervised KPCA model is insufficiently
confident in its sense predictions, taking advantage of the
semi-supervised KPCA model trained with the unlabeled
data can help to give a better prediction. The composite
semi-supervised KPCA model exploits this to improve
upon the accuracy of the supervised KPCA model intro-
duced by Wuet al. (2004).
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S. Mika, B. Scḧolkopf, A. Smola, K.-R. M̈uller, M. Scholz, and G. R̈atsch. Ker-
nel PCA and de-noising in feature spaces.Advances in Neural Information
Processing Systems, 1999.

Raymond J. Mooney. Comparative experiments on disambiguating word senses:
An illustration of the role of bias in machine learning. InProceedings of the
Conference on Empirical Methods in Natural Language Processing, Philadel-
phia, May 1996. SIGDAT, Association for Computational Linguistics.

Martha Palmer, Christiane Fellbaum, Scott Cotton, Lauren Delfs, and Hoa Trang
Dang. English tasks: All-words and verb lexical sample. InProceedings of
Senseval-2, Second International Workshop on Evaluating Word Sense Dis-
ambiguation Systems, pages 21–24, Toulouse, France, July 2001. SIGLEX,
Association for Computational Linguistics.

Ted Pedersen. Machine learning with lexical features: The Duluth approach to
SENSEVAL-2. InProceedings of Senseval-2, Second International Work-
shop on Evaluating Word Sense Disambiguation Systems, pages 139–142,
Toulouse, France, July 2001. SIGLEX, Association for Computational Lin-
guistics.
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