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Abstract strategy can be bettered for this category of errors.
In this paper, we introduce a new semi-supervised learning 1hiS iS @ case of data sparseness, so the observation
model for word sense disambiguation basedkemnel Prin-  Should not be very surprising. Such behavior is to be ex-
cipal Component Analysi&PCA), with experiments showing pected from classifiers in general, and not just the KPCA-
that it can further improve accuracy over supervised KPcAP@sed model.  Put another way, even though KPCA is
models that have achieved WSD accuracy superior to the be&t0!€ t0 generalize over combinations of dependent fea-
published individual models. Although empirical results with {Ures, there must be a sufficient number of training in-
supervised KPCA models demonstrate significantly better acStances from which to generalize.
curacy compared to the state-of-the-art achieved by eitfigena T he nature of KPCA, however, suggests a strategy that
Bayes or maximum entropy models on Senseval-2 data, wéS Not applicable to many of the other conventional WSD
identify specific sparse data conditions under which supervisednodels. We propose a model in this paper that takes ad-
KPCA models deteriorate to essentially a most-frequent-senséantage of unsupervised training using large quantities of
predictor. We discuss the potential of KPCA for leveraging Unannotated corpora, to help compensate for sparse data.
unannotated data for partially-unsupervised training to address Note that although we are using the WSD task to ex-
these issues, leading to a composite model that combines bofplain the model, in fact the proposed model is not lim-

the supervised and semi-supervised models. ited to WSD applications. We have hypothesized that
the KPCA-based method is likely to be widely applica-
1 Introduction ble to other NLP tasks; since data sparseness is a com-

wmen problem in many NLP tasks, a weakly-supervised

Wu et al] (2004) propose an efficient and accurate ne . i i
supervised learning model for word sense disambigua:—ipproaCh allowing the KPCA-based method to compen

tion (WSD), that exploits a nonlinear Kernel Principal sate for data sparseness is highly desirable. The general

Component Analysis (KPCA) technique to make pre- S20Ge e, i Sat T o o e dota
dictions implicitly based on generalizations over feature.s available 9

combinations. Experiments performed on the SensevalI . . .
P P The paper is organized as follows. After a brief look

2 English lexical sample data show that KPCA-based lated K . he baseli ised WSD
word sense disambiguation method is capable of outpet rélated work, we review the baseline supervise

forming other widely used WSD models includingve model, which is based on Kernel PCA. We then discuss
Bayes, maximum entropy, and SVM models how data sparseness affects the model, and propose a
Despite the excellent performance of the supervised' €W semi-supervised model that takes advantage of un-

KPCA-based WSD model on average, though, our fur-a.be'ed data, along W.ith a composi_te mode_l that com-
ther error analysis investigations have suggested certaiﬁ'.nes both the supervised gnd semi-supervised models.
limitations. In particular, the supervised KPCA-based .|naIIy, details O.f the experimental setup and compara-
model often appears to perform poorly when it encoun-iVe esults are given.

ters target words whose contexts are highly dissimilar

to those of any previously seen instances in the train2 Related work

ing set. Empirically, the supervised KPCA-based modelrhg |ong history of WSD research includes numerous
nearly always disambiguates target words of this kindgiaiistically trained methods; space only permits us to
to the most frequent sense. As a result, for this particy,mmarize a few key points here. iMa Bayes models
ular subset of test instances, the precision achieved bé(e.g. Mooney| (1996), Chodoroet all (1999), Pedersen
the KPCA-based model is essentially no higher than the607T), Varowsky and Florian (2002)) as well as max-
precision qchleyed by the most-frequent-sense baseling,;m entropy models (e.g., Dang and Palnier (2002),
model (which simply always selects the most frequenigigin and Manning[(2002)) in particular have shown a
sense for the target Word)..The work reported in this Pa7arge degree of success for WSD, and have established
per stems from a hypothesis that the most-frequent-sensg,g|ienging state-of-the-art benchmarks. The Senseval
1The author would like to thank the Hong Kong Research Grants>C €S of evaluations faqllltates comparing the strengths
Council (RGC) for supporting this research in part through grants@nd Weakne_sses of various V_VSD »mOde|S on common
RGC6083/99E, RGC6256/00E, and DAG03/04.EG09. data sets, with Senseval{1l (Kilgarriff and Rosenz\weig,




1999), Senseval-2 (Kilgarrjff, 2001), and Senseval-3 heldTo do this requires solving the equatiom = Cwv for

in 1998, 2001, and 2004 respectively. eigenvalues\ > 0 and eigenvectors € F'. Because
3 Supervised KPCA baseline model 1M
Our baseline WSD model is a supervised learning model Cv = M Z (@) - 0)® () (2)

that also makes use dfernel Principal Component =1

Analysis(KPCA), proposed by (Sditkopf et al},[1998) e can derive the following two useful results. First,
as a generalization of PCA. KPCA has been successfully

applied in many areas such as de-noising of images of AMP(zy) -v) =D (a¢) - Cov 3
hand-written digits|(Mikeet al},[1999) and modeling the ]

distribution of non-linear data sets in the context of shapdor ¢ = 1,.., M. Second, there exist; for i = 1,..., M
modelling for real objects (Active Shape Mode|s) (Twin- such that
ing and Taylor, 2001). In this section, we first review the _

theory of KPCA and explanation of why it is suited for v= Z ;i ® (x:) )
WSD applications.

3.1 Kernel Principal Component Analysis

TheKernel Principal Component Analysiechnique, or

KPCA, is a method of nonlinear principal component ex- MA Z o (B(xe) - 8(25))

traction. A nonlinear function maps thedimensional M’=1 o

input vectors from their original spacB™ to a high-

dimensional feature spadé where linear PCA is per- = Zo‘i(q) (¢) Zq’ () (2(z)) - ()
formed. In real applications, the nonlinear function is =1 j=1

usually not explicitly provided. Instead we use a kernel - .
function to implicitly define the nonlinear mapping; in fort=1,.., M. LetK be theM x M matrix such that

this respect KPCA is similar to Support Vector Machines e 3. ,
(Scrslkopf et al|, [1998). Kij = @ (i) - @ () ©®)
Compared with other common analysis technlquesand leth; > \» > ... > Ay denote the eigenvalues
KPCA has several advantages: 3 A1 M .
of K anda* ,...,a" denote the corresponding complete
e As with other kernel methods it inherently takes set of normalized eigenvectors, such tha@! - at) = 1

combinat'iorjs.of p(edictiye fgatures into account when ), > 0. Then thelth nonlinear principal compo-
when optimizing dimensionality reduction. For nat- nent of any test vectar; is defined as

ural language problems in general, of course, it is

widely recognized that significant accuracy gains M

can often be achieved by generalizing over relevant yb = Z Gl (D(zy) - P(xy)) (6)
feature combinations (e.d., Kudo and Matsumoto i=1

(2003)).

Al ~ 1
e We can select suitable kernel function according toWhereai is theith element 0" .

the task we are dealing with and the knowledge we3.2 Why is KPCA suited to WSD?

have about the task. The potential of nonlinear principal components for
e Another advantage of KPCA is that it is good at WSD can be illustrated by a simplified disambiguation

dealing with input data with very high dimension- example for the ambiguous target word “art”, with the

ality, a condition where kernel methods excel. two senses shown in Table 1. Assume a training cor-
Nonlinear principal component¢§Diamantaras and pus of the eight sentences as shown in Table 2, adapted
Kung,[1996) may be defined as follows. Suppose Wefrom Senseval-2 English lexical sample corpus. For each
are g}ven a training set af/ pairs (z,, ¢ )' where the sentence, we show the feature set associated with that

it Jo) . occurrence of “art” and the correct sense class. These

observed vectors;, € R"™ in an n-dimensional input

spaceX represent the context of the taraet word bein eight occurrences of “art” can be transformed to a binary
P Tep 9 Yvector representation containing one dimension for each
disambiguated, and the correct classrepresents the

sense of the word, fot = 1,.., M. Supposed is a feature, as shown in Table 3.
nonlinear mapping from the input spa@ to the fea- Extracting nonlinear principal components for the vec-

ture space®. Without loss of generality we assume the tors in this ;imple_corp_u_s resul_ts in nonlinear ge_ner:_:lliza—
M vectors ére centered vectors in the feature space, i et|on, reflecting an implicit conS|dgrat|on of cqmb|na_1t|ons
M , ' "of features. TablE]2 shows the first three dimensions of

2_1—1 @ (2¢) = 0; uncentered vectors can easH)y be con-ihe principal component vectors obtained by transform-

verted to centered vector's (Sskopf et al} [1998). We  ng each of the eight training vectars into (a) principal

wish to diagonalize the covariance matrixfh component vectors, using the linear transform obtained
LM via PCA, and (b) nonlinear principal component vectors

C=— & () ®T (2 1 y: using the nonlinear transform obtained via KPCA as

M J; (e) @7 (25) @ described below.



Table 1: A tiny corpus for the target word “art”, adapted from the Senseval-2 English lexical sample corpus (Kilgarriff
2001), together with a tiny example set of features. The training and testing examples can be represented as a set of
binary vectors: each row shows the correct class ¢ for an observed vector x of five dimensions.

TRAINING design/N | media/N| the/DT | entertainment/N | world/N | Class
x1 | He studies art in London. 1
o | Punch’'s weekly guide to the 1 1 1 1

world of the arts, entertain-
ment, media and more.

x3 | All such studies have influ- | 1 1 1
enced every form of art, de-
sign, and entertainment in
some way.

x4 | Among the technical arts cul- 1 2
tivated in some continental
schools that began to affect
England soon after the Nor-
man Conquest were those
of measurement and calcula-

tion.
x5 | The Art of Love. 1 2
re | Indeed, the art of doctor- 1 2
ing does contribute to bet-
ter health results and discour-
ages unwarranted malprac-
tice litigation.
x7 | Countless books and classes 1 2
teach the art of asserting
oneself.
xg | Pop art is an example. 1
TESTING
Tg | In the world of de-|1 1 1 1

sign arts particularly, this led
to appointments made for
political rather than academic
reasons.

Table 2: The original observed training vectors (showing only the first three dimensions) and their first three principal
components as transformed via PCA and KPCA.

Observed vectors| PCA-transformed vectors | KPCA-transformed vectors | Class
13 (x%,xf,xf) (Ztl,ZtQ,Z?) (ytlvyt27y5)) Ct
11](0,0,0) (-1.961, 0.2829, 0.2014) | (0.2801, -1.005, -0.06861) | 1
21(0,1,1) (1.675, -1.132, 0.1049) (1.149, 0.02934, 0.322) 1
3]1(,0,0) (-0.367, 1.697, -0.2391) (0.8209, 0.7722,-0.2015) | 1
41(0,0,1) (-1.675,-1.132,-0.1049) | (-1.774,-0.1216,0.03258) | 2
51(0,0,1) (-1.675,-1.132,-0.1049) | (-1.774,-0.1216, 0.03258) | 2
61 (0,0,1) (-1.675,-1.132,-0.1049) | (-1.774,-0.1216, 0.03258) | 2
71(0,0,1) (-1.675,-1.132,-0.1049) | (-1.774,-0.1216, 0.03258) | 2
81 (0,0,0) (-1.961, 0.2829, 0.2014) | (0.2801, -1.005, -0.06861) | 1

Similarly, for the test vector,, Table[3 shows the ponent vectoryy using the nonlinear KPCA transform
first three dimensions of the principal component vec-obtained obtained from training. The vector similarities
tors obtained by transforming it into (a) a principal com- in the KPCA-transformed space can be quite different
ponent vectorzg using the linear PCA transform ob- from those in the PCA-transformed space. This causes
tained from training, and (b) a nonlinear principal com- the KPCA-based model to be able to make the correct



Table 3: Testing vector (showing only the first three dimensions) and its first three principal components as transformed
via the trained PCA and KPCA parameters. The PCA-based and KPCA-based sense class predictions disagree.

Observed PCA-transformed vectors KPCA-transformed vectors | Predicted | Correct
vectors Class Class

t (.%‘#.%‘%,a??) (ztl Zt>Zt) (ytlvythy?> Ct Ct

9 |(4,0,1) (-0.3671, -0.5658, -0.2392) 2 1

9 |(1,0,1) (4e-06, 8e-07,1.111e-18) | 1 1

class prediction, whereas the PCA-based model makes
the wrong class prediction.

What permits KPCA to apply stronger generalization
biases is its implicit consideration @ombinationsof
feature information in the data distribution from the high-
dimensional training vectors. In this simplified illustra-
tive example, there are just five input dimensions; the
effect is stronger in more realistic high dimensional vec-
tor spaces. Since the KPCA transform is computed from
unsupervised training vector data, and extracts general-
izations that are subsequently utilized during supervised
classification, it is possible to combine large amounts of
unsupervised data with reasonable smaller amounts of
supervised data.

Interpreting this example graphically can be illuminat-

(a)

(b)

the/DT 4

the/DT4

3 design/N

media/N

first principal

/axis

ing even though the interpretation in three dimensions is
severely limiting. Figur¢]|1(a) depicts the eight original
observed training vectors, in the first three of the five

dimensions; note that among these eight vectors, there 180 g SeaaN
happen to be only four unique points when restricting

our view to these three dimensions. Ordinary linear PCA (©

can be straightforwardly seen as projecting the original the/DTA  first principal

“quasi-axis” media/N

points onto the principal axis, as can be seen for the case
of the first principal axis in Figure| 1(b). Note that in this
space, the sense 2 instances are surrounded by sense 1
instances. We can traverse each of the projections onto
the principal axis in linear order, simply by visiting each i
of the first principal components' along the principle oy
axis in order of their values, i.e., such that

1,8

3 design/N

1< 1< 1< 1< 1< 1< 1< 1<1
B1 S 28 2% S % S 2 S 27 S 2 X235 % : training example with sense class 1

: fraining example with sense class 2

: test example with unknown sense class

: test example with predicted sense
class 2 (correct sense class=1)

: test example with predicted sense
class 1 (correct sense class=1)

It is significantly more difficult to visualize the non-
linear principal components case, however. Note that
in general, there may not exiahy principal axis inX,
since an inverse mapping frofi may not exist. If we
attempt to follow the same procedure to traverse each of
the projections onto the first principal axis as in the case
of linear PCA, by considering each of the first principal Figure 1: Original vectors, PCA projections, and KPCA
componentg; in order of their value, i.e., such that “quasi-projections” (see text).

e B[>0O O

1 1 1 1 1 1 1
yi <ur <y <uyr<wo<wyi <ys <ui<u

then we must arbitrarily select a “quasi-projection” di-

rection for eachy} since there is no actual principal axis PCA cannot do. Note that in this space, the sense 1 in-
toward which to project. This results in a “quasi-axis” stances are already better separated from sense 2 data
roughly as shown in Figuig 1(c) which, though not pre-points. Moreover, unlike linear PCA, there may be up
cisely accurate, provides some idea as to how the norto M of the “quasi-axes”, which may number far more
linear generalization capability allows the data points tothan five. Such effects can become pronounced in the
be grouped by principal components reflecting nonlin-high dimensional spaces are actually used for real word
ear patterns in the data distribution, in ways that linearsense disambiguation tasks.



3.3 Algorithm enough training instances to reliably extract dependen-

To extract nonlinear principal components efficiently, CieS between features. For example, in the Senseval-

note that in both Equations (5) and (6) the explicit form 2 English lexical sample data, for each target word
of & (z;) is required only in the form of& (z;) - ® (z;)), there are only about 120 training instances on average,

i.e., the dot product of vectors iAi. This means that we Whereas on the other hand we typically have thousands

can calculate the nonlinear principal components by sub9f features for each target word.
stituting a kernel functiot(z;, ;) for (®(z;) - ®(x; )) The KPCA model can fail when it encounters a target

in Equations (5) and (6) without knowing the mappig Word whose context contains a combination of features
explicitly; instead, the mapping@ is implicitly defined ~ that may in fact be interdependent, but are not similar to
by the kernel function. It is always possible to construct2ny combinations that occurred in the limited amounts
a mapping into a space whekeacts as a dot product Of labeled training data. Because of the sparse data, the
so long as is a continuous kernel of a positive integral KPCA model wrongly considers the context of the tar-
operator[(Scblkopf et al,[1998). get word to balissimilarto those previously seen—even

Thus we train the KPCA model using the following though the contexts may in truth be similar. In the ab-
sence of any contexts it believes to be similar, the model

algorithm: . !
therefore tends simply to predict the most frequent sense.
1. Compute aM/ x M matrix K such that The potential solution we propose to this problem is
to add much larger quantities of unannotated data, with
Kij = k(xi, ;) (7)  which the KPCA model can first be trained in unsu-

pervised fashion. This provides a significantly broader
2. Compute the eigenvalues and eigenvectors of matrigataset from which to generalize over combinations of
K and normalize the eigenvectors. Lgt > A, > dependent features. One of the advantages of our WSD
_..> Ay denote the eigenvalues andl,...,aM de- model_|s thatdu.rlng KPCA training, the sense class is not
note the corresponding complete set of normalize aken into consideration. Thus we can take advantage of
; he vast amounts of cheap unannotated corpora, in addi-
eigenvectors. . ; L
tion to the relatively small amounts of labeled training
To obtain the sense predictions for test instances, wéata. Adding a large quantity of unlabeled data makes
need only transform the corresponding vectors using thé much likelier that dependent features can be identified
trained KPCA model and classify the resultant vectorsduring KPCA training.
using nearest neighbors. For a given test instance vectoy , Algorithm

x, itsIth nonlinear principal component is ) ) ) )
The primary difference of the semi-supervised KPCA
M model from the supervised KPCA baseline model de-
Y = Z alk(zy, xy) (8)  scribed above lies in the eigenvector calculation step. As
i—1 we mentioned earlier, in KPCA-based model, we need
to calculate the eigenvectors of matik, wherek,; =

wheredl is theith element ofi'. (®(x;) - ®(x;)). In the supervised KPCA model, train-
For our disambiguation experiments we employ aing vectors such as; andz; are only drawn from the
polynomial kernel function of the fornk(z;,z;) = labeled training corpus. In the semi-supervised KPCA

(2; - Ij)d’ although other kernel functions such as gaus model, training vectors are drawn from both the labeled
sians could be used as well. Note that the degeneraféaining corpus and a much larger unlabeled training cor-

case ofd = 1 yields the dot product kernéi(z;,z;) =  PUS. AS a consequence, the maximum number of eigen-
(x;-;) which covers linear PCA as a special case, whichVectors in the supervised KPCA model is the minimum
may explain why KPCA always outperforms PCA. of the number of features and the number of vectors from
the labeled training corpus, while the maximum number

4 Semi-supervised KPCA model of eigenvectors for the semi-supervised KPCA model is
I the minimum of the number of features and total num-

4.1 Utilizing unlabeled data ber of vectors from the combined labeled and unlabeled

In WSD, as with many NLP tasks, features are often in-training corpora.
terdependent. For example, the features that represent However, one would not want to apply the semi-
words that frequently co-occur are typically highly in- supervised KPCA model indiscriminately. While it can
terdependent. Similarly, the features that represent syrse expected to be valuable in cases where the data was
onyms tend to be highly interdependent. too sparse for reliable training of the supervised KPCA
Itis a strength of the KPCA-based model that it gen-model, at the same time it is important to note that the un-
eralizes over combinations of interdependent featuredabeled data is typically drawn from quite different dis-
This enables the model to predict the correct sense evetnibutions than the labeled data, and may therefore be ex-
when the context surrounding a target word has not beepected to introduce a new source of noise.
previously seen, by exploiting the similarity to feature We therefore define aomposite semi-supervised
combinations thahavebeen seen. KPCA model based on the following assumption. If we
However, in practice the labeled training corpus forare sufficiently confident about the prediction made by
WSD is typically relatively small, and does not yield the supervised KPCA model as to the predicted sense



for the target word, we need not resort to the semi- ) . .
supervised KPCA method. On the other hand, if WeTable 4: The semi-supervised KPCA model outperforms

are not confident about the supervised KPCA model:<SUPervised rige Bayes and maximum entropy models,
prediction, we then turn to the semi-supervised KPCA3S well as the most-frequent-sense and supervised KPCA

model and take its classification as the predicted sense.b""se“ne models.

Specifically, the composite model uses the following Fine-grained| Coarse-
algorithm to combine the sense predictions of the super- accuracy grained
vised and semi-supervised KPCA models in order to dis- accuracy
ambiguate the target word in a given test instarice Most frequent| 41.4% 51.7%

1. let s; be the predicted sense ofusing the super- sense

vised KPCA baseline model Naive Bayes 55.4% 64.2%
T . . Maximum entropy | 54.9% 64.1%
2. {(ra;icnibnegtihnests;rr?élgnty between and its most similar Supervised KPCA | 57.0% 56.6%
Composite  semi{ 57.4% 67.2%

3.if ¢ > tors; # smr (Wheret is a preset thresh- | supervised KPCA

old, ands., is the most frequent sense of the target
word):

e then predict the sense of the target word:of  For each target word, training and test instances manu-
to bes; ally tagged with WordNet senses are available. There are
e else predict the sense of the target word of &n average of about 10.5 senses per target word, rang-
10 be s,, the sense predicted by the semi- IN9 from 4 to 19. All our m_odels are evaluateq on the
supervised KPCA model Senseval-2 test data, but trained on different training sets.
We report accuracy, the number of correct predictions
The two conditions checked in step 3 serve to fil- over the total number of test instances, at two different
ter those instances where the supervised KPCA baselinevels of sense granularity.
model is confident enough to skip the semi-supervised The supervised models are trained on the Senseval-
KPCA model. In particular: 2 training data. On average, 137 annotated training in-
stances per target word are available.
In addition to the small annotated Senseval-2 data
terms of similarity. Ifc > ¢, then there were training set, the semi-supervised KPCA model can make use of

instances that were of sufficient similarity to the te:stIarge amounts of unannotated data. Since most of the
instance so that the model can be confident that §enseval-2 verb data comes from the Wall Street Journal,

correct disambiguation can be predicted based oni)V& €hoose to augment the Senseval-2 data by collecting

on those similar training instances. In this case theadditional training instances from the Wall Street Jour-

semi-supervised KPCA model is not needed. nal Tipster corpus. In order to minimize the noise dur|.ng
KPCA learning, we only extract the sentences in which

e If s is not the most frequent sensg,s of the  the target word occurs. For each target word, up to 1500
target word, then there is strong evidence that theadditional training instances were extracted. The result-
test instance should be disambiguated;asecause  ing training corpus for the semi-supervised KPCA model
this is overriding an otherwise strong tendency tojs more than 10 times larger than the Senseval-2 training
disambiguate the target word to the most frequeniset, with an average of 1637 training instances per target
sense. Again, in this case the semi-supervisegyord.

KPCA model should be avoided. The set of features used is as describedl by Yarowsky
The threshold: is defined to rise as the relative fre- [@nd_Florian [(2002) in their *feature-enhancedivea

quency of the most frequent sense falls. Specifically,Bayes modgl , With position-sensitive, syntactic, and lo-
t =1 = P (smf) + c WhereP (suy) is the probability of ~ c@l collocational features.
most frequent sense in the training corpus aisda small
constant. This reflects the assumption that the higher th6 ~Results
probal_alllty of the_most f_requent sense, the less likely that'l'able[} shows that the composite semi-supervised KPCA
a test instance disambiguated as the most frequent senggygel improves on the high-performance supervised

e The threshold: specifies a minimum level of the
supervised KPCA baseline model's confidence, in

is wrong. KPCA model, for both coarse-grained and fined-grained
E . | sense distinctions. The supervised KPCA model signif-
5 xperimental setup icantly outperforms a nge Bayes model, and a max-

We evaluated the composite semi-supervised KPCAmum entropy model, which are among the top per-
model using data from the Senseval-2 English lexicalforming models for WSD. Note that these results are
sample task (Kilgarriff, 2001)(Palmet al,[2001). We  consistent with the larger study of supervised models
chose to focus on verbs, which have proven particularlyconducted by Wiet al| (2004). The composite semi-

difficult to disambiguate. Our task consists in disam-supervised KPCA model outperforms all of the three su-
biguating several instances of 16 different target verbspervised models, and in particular, it further improves the



. . . 7 Conclusion
Table 5. Semi-supervised KPCA is not necessary when

supervised KPCA is very confident. We have proposed a new composite semi-supervised
WSD model based on the Kernel PCA technique, that

Fine-grained| Coarse- employs both supervised and semi-supervised compo-

accuracy grained nents. This strategy allows us to combine large amounts

accuracy of cheap unlabeled data with smaller amounts of labeled

Supervised KPCA | 62.1% 71.3% data. Experiments on the hard-to-disambiguate verbs
Semi-supervised | 57.1% 67.1% from the Senseval-2 English lexical sample task confirm
KPCA that when the supervised KPCA model is insufficiently

confidentin its sense predictions, taking advantage of the
semi-supervised KPCA model trained with the unlabeled
data can help to give a better prediction. The composite
Table 6: Semi-supervised KPCA outperforms supervisegemi-supervised KPCA model exploits this to improve
KPCA when supervised KPCA is not confident: addingupon the accuracy of the supervised KPCA model intro-
training data helps when there are no similar instances iluced by Wiet al| (2004).

the training set. References

H . Martin Chodorow, Claudia Leacock, and George A. Miller. A topical/local clas-
Fine-grained CO?.I’SG- sifier for word sense identificationComputtgers and the Hum’;niti,e34(l-
accuracy gralned 2):115-120, 1999. Special issue on SENSEVAL.
accuracy Hoa Trang Dang and Martha Palmer. Combining contextual features for word
Supervised KPCA | 30.8% 44.11% sense disambiguation. Proceedings of the SIGLEX/SENSEVAL Workshop
. - 3 0 on Word Sense Disambiguation: Recent Successes and Future Dirgctions
Seml-superwsed 38.3% 51.47% pages 88-94, Philadelphia, July 2002. SIGLEX, Association for Computa-
KPCA tional Linguistics.

Konstantinos I. Diamantaras and Sun Yuan KuRgincipal Component Neural
Networks Wiley, New York, 1996.

Adam Kilgarriff and Joseph Rosenzweig. Framework and results for English
accuracy of the Supervised KPCA model. Senseval.Computers and the Humanitie34(1):15-48, 1999. Special issue

on SENSEVAL.

Overa”’ with the addlthn of _the _seml-superwse_d Adam Kilgarriff. English lexical sample task description. MRmoceedings of
model, the accuracy for d|samb|guat|ng the verbs in-  senseval-2, Second International Workshop on Evaluating Word Sense Dis-
creases from 57% to 57.4% on the fine-grained task, and ambiguation Systemeages 1720, Toulouse, France, July 2001. SIGLEX,

: ssociation for Computational Linguistics.
from 66.6% to 67.2% on the coarse-grained task.
. 9 . Dan Klein and Christopher D. Manning. Conditional structure versus conditional

In our composite model, the supervised KPCA model ™ estimation in NLP models. IRroceedings of EMNLP-2002, Conference on
predicts senses with high confidence for more than 94% Eiri?piric?l gﬂoeggogfeig /:l?txral Languaiele Erocessimgelsl_‘\?—lﬁv Philadel-

. . . , . \ tion for Computational Linguistics.

of the test instances. The predictions of the semi- P~ ssocia

: PAi 0, aku Kudo and Yuji Matsumoto. Fast methods for kernel-based text analysis.
supejrwsed model are used for the _re_malnlng 6% of thé_ In Proceedings of the 41set Annual Meeting of the Asoociation for Computa-
test instances. Tabfg 5 shows that it is not necessary to tional Linguistics pages 24-31, 2003.
use the semi-supervised training model for all the train-s_ wika, 8. Scislkopf, A. Smola, K.-R. Miller, M. Scholz, and G. Bsch. Ker-
ing instances. In fact, when the supervised model is con- nel PCA and de-noising in feature spacdsivances in Neural Information
. H P H frs rocessing Syste .
fident, its predictions are significantly more accurate than Processing Systemooo

those of the semi—supervised model alone Raymond J. Mooney. Comparative experiments on disambiguating word senses:
' An illustration of the role of bias in machine learning. Pnoceedings of the

When the predictions of the supervised KPCA model Conference on Empirical Methods in Natural Language Proces#thiadel-
are not accurate. the semi—supervised KPCA model out- phia, May 1996. SIGDAT, Association for Computational Linguistics.
performs the Supervised model. This happens when (1lylartha Palmer, Christiane Fellbaum, Scott Cotton, Lauren Delfs, and Hoa Trang
th . traini inst that i imilar to the test Dang. English tasks: All-words and verb lexical sample Pinceedings of
h ereis no ral_nlng Instance thatis \_/ery Similar to tne tes Senseval-2, Second International Workshop on Evaluating Word Sense Dis-
instance considered and when (2) in the absence of rele- ambiguation Systempages 21-24, Toulouse, France, July 2001. SIGLEX,
vant features to learn from in the small annotated train- Asseciaton for Computational Linguistics.
i i i Jed Pedersen. Machine learning with lexical features: The Duluth approach to
ing set, the superVISEd KPCA model can Only prEdICt the. SENSEVAL-2. InProceedings of Senseval-2, Second International Work-
most frequent sense for the current target. In these condi- shop on Evaluating Word Sense Disambiguation Systeages 139-142,
tions, our experiment results in Ta@'p 6 confirm that the Toyltc?use, France, July 2001. SIGLEX, Association for Computational Lin-
semi-supervised KPCA model benefits from the large ad- 9"
ditional training data Suggesting it is able to learn usefuiBernhard Scblkopf, Alexander Smola, and Klaus-RobetiNér. Nonlinear com-

. Rk > . | ponent analysis as a kernel eigenvalue probldieural Computation10(5),
feature conjunctions, which help to give better predic- 199s.

tions. C. J. Twining and C. J. Taylor. Kernel principal component analysis and the con-
The composite semi-supervised KPCA model there- struction of non-linear active shape models Pioceedings of BMVC20001

fore chooses the best model depending on the degreéak W Weifena Su. and Marine ¢ A Kernel PCA method f )

. . ekai Wu, Weifeng Su, and Marine Carpuat. A Kerne method for superior

of ponfldence of the Super\{lsed model. All _the KPCA word sense disambiguation. Rroceedings of the 42nd Annual Meeting of

weights, for both the supervised and the semi-supervised the Association for Computational Linguistj@&arcelona, July 2004.

model, have been pre-computed during training, and ibavid Yarowsky and Radu Florian. Evaluating sense disambiguation across di-

is therefore inexpensive to switch from one model to the Verse parameter spacédatural Language Engineering(4):293-310, 2002.

other at testing time.



	Introduction
	Related work
	Supervised KPCA baseline model
	Kernel Principal Component Analysis
	Why is KPCA suited to WSD?
	Algorithm

	Semi-supervised KPCA model
	Utilizing unlabeled data
	Algorithm

	Experimental setup
	Results
	Conclusion

