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Abstract

Word segmentation is an important part of
many applications, including information
retrieval, information filtering, document
analysis, and text summarization. In Thai
language, the process is complicated since
words are written continuously, and their
structures are not well-defined. A recognized
effective approach to word segmentation is
Longest Matching, a method based on
dictionary. Nevertheless, this method suffers
from character-level and syllable-level
ambiguities in determining word boundaries.
This paper proposes a technique to Thai word
segmentation using a two-step approach. First,
text is segmented, using an application of
Prediction by Partial Matching, into syllables
whose structures are more well-defined. This
reduces the earlier type of ambiguity. Then,
the syllables are combined into words by an
application of a syllable-level longest
matching method together with a logistic
regression model which takes into account
contextual information. The experimental
results show the syllable segmentation
accuracy of more than 96.65% and the overall
word segmentation accuracy of 97%.

1 Introduction

In Thai language, characters are written without
explicit word boundaries. Depending on the
contexts, there can be many ways to break a string
into words, for instance, "ewe:" can be segmented
as "owed" or "ewsas", and "Wwnaw" can be
segmented as "iearnan" or "iwain+an". This
complicates the task of identifying word
boundaries.

Longest matching is the most popular approach
to Thai word segmentation (Pooworawan, 1986).
The algorithm scans text from left to right and
selects the longest match with a dictionary entry at
each point, in a greedy fashion. However, longest
possible words may not comply with the actual
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meanings. For example, "synihusenswmsz" s
segmented by the longest matching as "ymnihu-sen-
sm-wse" instead of the correct segmentation "atu-
se-nmu-nsz". This type of ambiguity is referred to as
character-level ambiguity. In addition, "awi$usewih
nnidieu” is segmented as "n-Susos-r-nn-ien" instead
of the correct segmentation "mn-su-seah-nin-iten".

This is referred to as syllable-level ambiguity.

The technique we propose is a two-step process
to word segmentation. In the first step, text is
segmented into a sequence of syllables, whose
structures are more well-defined. This reduces the
character-level ambiguity. The remaining syllable-
level ambiguity is the task of combining those
syllables into words.

2 Related Work

In addition to the longest matching algorithm,
discussed earlier, the maximum matching
algorithm (Sornlertlamvanich, 1993) was proposed
to get around the greedy characteristic of the
longest matching algorithm by generating all
possible segmentations for a sentence and then
selecting the one which contains the fewest
number of entries in the dictionary.

An application of statistical techniques was
proposed by (Pornprasertkul, 1994), using a
Viterbi-based approach to exploit statistical
information derived from grammatical tags. Later,
(Kawtrakul and Chalathip, 1995) and (Meknawin
et al., 1997) used variants of the trigram model to
compute the most likely segmentation.
(Theeramunkong and Sornlertlamvanich, 2000)
observed that, in Thai language, some contiguous
characters tend to be inseparable units, called Thai
character cluster (TCC), and proposed a set of
rules to group characters into TCCs for the purpose
of text retrieval.

3  Syllable Segmentation

Prediction by Partial Matching (PPM) (Bell et
al., 1990; Cleary and Witten, 1984), a symbolwise
compression scheme, is used to build the model for
Thai text. PPM generates a prediction for each



input symbol based on its previous context (i.e., a
few, say k, forecoming symbols in the text). The
prediction is encoded in form of conditional
probability, conditioned on the preceding context.
PPM maintains predictions, computed from the
training data, for the largest context (k) as well as
all shorter contexts in tables, as shown in Table 2.

Syllable segmentation can be viewed as the
problem of inserting spaces between pairs of
characters in the text. Thai language consists of 66
distinct characters. Treating each character
individually as in (Teahan et al., 2000) requires a
large amount of training data in order to calculate
all the probabilities in the tables, as well as a large
amount of table space and time to lookup data
from the tables. We reduce the amount of training
data required by partitioning the characters into 16
types, as shown in Table 1. As a side effect of the
character classification, the algorithm can handle
syllables not present in the training data. Each
character is represented by its respective type
symbol. For instance "qitosasduarnnmaonson1d" is
represented as: "de*zdps*mu*hit*asthg*ahsutss*
aor*fst". We then compute the predictions for each
symbol as described in the previous section, and
the results are shown in Table 2.

Type Svmbol | Character

1 Tiddle m naaagul
consonant

2 ligh consonant WRGTHAT T

3 Single lowear 2 AYMULOTATH
consonant
Double lower d AU N NT NN
consonant
Front vowel1 f P11

G Front vowel 2 a !

Upper vowe! 1 u

B Upper vowe2 o
Rear vowel1 r 1
10 | Rearvowel2 & R i
11 Loweer wowel o
12 Canun q i
12 | Tonal woaw
14 Rue z U]
15 -Ang Q 2
18 Separator white space

Table 1: Types of Thai Characters

We illustrate the insertion of spaces between
characters using text "$1luiy". In Thai, tonals are

not useful for the segmentation purpose, thus are
first filtered out, and the text is converted to
"de*fs*mu*hl".

Given an order of £, the algorithm computes the
likelihood of each possible next symbol (i.e., the
next character in the text or a space) by
considering a context of size k£ at a time and then
proceed to the next symbol in the text. The process
is repeated until the text is exhausted. From the
text "de*fs*mu*hl", the model for space insertion
becomes a tree-like structure, as shown in Figure 1.

In order to predict the next symbol, the
algorithm follows the concept of PPM by
attempting to find first the context of length & (k =
2 in this example) for this symbol in the context
table (i.e., e*>f). If the context is not found, it
passes the probability of the escape character at
this level and goes down one level to the (k-1)
context table to find the current context of length
k-1 (i.e., *>f). The process is repeated until a
context is found. If it continues to fail to find a
context, it may go down ultimately to order (-1)
corresponding to equiprobable level for which the
probability of any next character is 1/|4|, where 4
is the number of distinct characters.

If, on the other hand, a context of length ¢, 0<=¢
<=k, is found, then the probability of this next
character is estimated to be the product of
probabilities of escape characters at levels &, k-1,
..., gq+1 multiplied by the probability for the
context found at the g-th level.

To handle zero frequency, we use method D
(PPMD) (Witten and Bell, 1991) where the escape
character gets a probability of (d/2n), and the
symbol gets a probability of (2c-1)/2n where n is
the total number of symbols seen previously, d is
the total number of distinct contexts, and c is the
total number of contexts that appear in the string.

After the tree-like structure is created, the
algorithm selects as the final result the path with
the highest probability at the lowest node. This
corresponds to the path that gives the best
compression according to the PPM text
compression method.



order 2 order 1
¢ n p ¢ n P
de -—=> = 1 1 0.5 d-—>e 1 2 8.25
-—>»>esc 1 1 B.5 -—>p 1 2 8.25
zd —>p 1 1 0.5 —>esw 2 2 0.5
Toese 1 105 z->d 1 1 8.5
dp ——> s 1 1 85 —>esc 1 1 0.5
-—>esc 1 1 B.5 p->s 1 1 8.5
hl “; * 1 1 g; -->ese 11 0.5
——2 ESC -
N RRE BLE R
-—>esc 1 1 8.5 -
sh-->g 1 1 8.5 u-->= 1 2 08.25%
——>esc 1 1 B.5 -—=>»s5 1 2 8.25
hs =—=>u 1 1 @5 -—>esc 22 8.5
-—>»esc 1 1 8.5 1 -->= 1 1 0.5
su -—->s 1 1 8.5 —3ese 1 1 8.5
“rese 11 8.5 a-->s 1 3 0.166667
us s 11 8S ->h 1 3 0.166667
s 5% 1 1 gr >0 1 3 0.166667
->ese 1 1 0.5 Ttyese 303 8.5
a0 > r 1 1 B.E h-->g 1 3 0.166667
——> ex¢ 1 1 8.5 -—» s 1 3 B.166667
or -->» = 1 1 0.5 -=>»1 1 3 B.1666467
--»¢¢ 1 1 8.5 -—>esc 3 3 0.5
fs -—> = 1 1 0.5 s -—->s 1 6 0.0833333
—>esc 1 1 0.5 -——>h 1 6 0.08833333
ps ——> % 1 1 8.5 -=>u 1 6 0.08833333
——>esc 1 1 0.5 -=> = 3 6 0.416667
m--> = 1 1 8.5 -—>esc 4 6 0.333333
-—>¢ec 1 1 0.5 e —->»=% 1 1 8.5
ah -->s 1 1 8.5 --»esc 1 1 8.5
-—>ese 1 1 8.5 g-->* 1 1 8.5
hg —> * 1 1 8.5 ->ese 1 1 0.5
- 11 0.5 o->r 1 1 8.5
sx*->a 1.2 0.2% ->est 1 1 0.5
——>m 12 0.25 F->% 1 1 0.5
-—>esc 2 2 8.5 ——yesc 1 1 B.5
pe -2 F 1105 fF->s 1 1 8.5
-—>ese 1105 -—>ex 1 1 0.5
ux ——>h 1 1 8.5
——> esc 1 1 8.5 * ——» £ 1 7 8.0714286
1#* -=>a 1 1 8.5 -=>h 1 7 B_871428%
~—esc 1 1 8.5 -——>m 1 7 08.8714286
g* -—>a 1 1 0.5 -——>a 3 7 0.357143
——>esc 1 1 8.5 -—»z 1 7 0.8714286
ex ——>z 1 1 0.5 ——»esc 5 7 B.357143
—»esc 1 1 8.5 order 0
*a -=>0 1 3 0.166667
-=>s 1 3 B.166667 ¢ n D
> h 13 0166667 | __5 g 2 33 @_pusasus
~~resc 3 3 0.5 ——>e 1 33 0.8151515
*m-->u 1 1 0.5 ——> = 8 33 ©.227273
-—>ese 11 0.5 >z 1 23 8.8151515
*h -—>1 1 1 8.5 —>p 1 33 6.8151515
" :; ";” 1 1 g-g -—>s 6 33 0.166667
- —>m 1 33 8.8151515
- :i ‘::‘ : : g'g —=>u 2 33 0.0454545
- -——>h 3 33 0.0757576
—~>ese 1105 -——>1 1 33 8.8151515
-—->a 3 33 B.0757576
-—>g 1 33 8.8151515
>0 1 33 8.8151515
-—>r 1 33 8.8151515
> f 1 33 8.8151515
——>esc15 33 ©.227273
order -1
1718

Table 2: PPM Tables (Order 2) After
Processing the String
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Figure 1: Space Insertion Model

To improve the efficiency of the algorithm, the
structure can be pruned by the following set of
rules, generated from the language analysis:

Rear vowel 2 must be in the last position of a syllable

i8]

Front vowel must not be in the last position of a syllable

before a front vowel

(#%]

There must U'1|'_-,." be a consonant or space

4 | Upper vowel 2 must not be in the last position of a syllable

5 | Upper vowel must not be in the first position of a syllable

6 | Rear vowel must not be in the first position of a syllable

7| Lower vowel must not be in the first position of a syllable

8 | Garunr ot be in the first

sition of a syllable

9 | There must not be a space before Garun

The nodes surrounded by a rectangle in Figure 1
are pruned according to the rules above. Thus, they
do not generate further subtrees.

4  Combining Syllables into Words

In this section, we propose a technique to form
words by combining syllables together. In order to
combine syllables into words, for each sentence we
first locate ambiguous sequences of syllables, i.e.,
syllable sequences that can be combined in many
ways. The forward and backward syllable-level
longest matching are performed. These algorithms
are modified from the original longest matching,
described in Section 1, by considering syllable as a
unit, instead of character. For instance, a syllable
sequence processed

according to the forward longest matching as "sw
auxiludusaiin", while as "swnusthusduniiu” according

3 @ .
"srgxaralusdueariy" is



to the backward longest matching. The
inconsistencies between the two algorithms
suggest ambiguous sequences of syllables in the
sentence. In this example, an ambiguous sequence
of syllables is "fu*du=aii".

After identifying ambiguous syllable sequences,
we perform the following steps:

Step 1: Between the results of the forward and
backward longest matching, the one with all words
appearing in the dictionary is selected as the result
of the ambiguous sequence. If both results satisfy
this condition, go to Step 2.

Step 2: The result with the least number of
words is taken as the answer. If the number of
words are equal, go to Step 3.

Step 3: A logistic regression model for
combining syllables is consulted. This step will be
discussed in details below.

Sylla- | Sylla- | Sylla- | Sylla- | Merge
ble 1 ble 2 ble 3 ble 4 (Y/N)

1 sy 504 i N
2 $u 304 i 10 Y
504 i 0 ew N

Table 3: Syllable Organization for the
Logistic Regression Model

4.1 Logistic Regression Model for Combining
Syllables

The model to combine syllables is built upon
Binary Logistic Regression whose answers are
either combine or not combine. The model
considers four consecutive syllables at a time when
modeling the decision of whether to combine the
middle two syllables together. The first and the
fourth syllables are considered the context of the
two middle ones. Table 3 shows the organization
of data for the model. In the first row, the training
data specifies that syllables "su" and "ses" (With the

n n

preceding contextual syllable "an" and the
following contextual syllable "#") should not be

combined. The model is trained by every row of
the training data. The result is a trained logistic
regression model that can be used for guiding
whether the middle two syllables should be
combined in the context of the surrounding
syllables (the first and the fourth syllables).

In the model, each syllable (in Table 3) is
represented by a set of features. The syllables
under consideration (the second and the third
syllables) are represented by 65 features, listed in
Table 4.

The contextual syllables (the first and the fourth)
are represented by a fewer number of features to

make it less specific to the training contexts. The
variables for contextual syllables are those
statistically significant to the prediction, returned
with the regression. The final set consists of 35
variables, as shown in Table 5. The value of each
variable is either 1 or -1 which means either the
syllable contains or does not contain that particular
character, respectively.

Var# Char | Var# Char | Var# Char
1 fn 23 u 45 w
2 ! 24 U 46 1
3 f 25 1 47 =
4 o 26 W 48 =
5 q 27 o 49 =
6 2 28 W 50 4
7 2 29 W 51 .
8 ¥ 30 f 52 Y
9 o 31 u 53 L
10 m 32 ] 54 LL
11 o 33 5 55 ‘[
12 2 34 a 56 "1
13 2 35 1 57 "l
14 5 36 fl 58 '-‘L
15 M 37 " 59 a
16 al 38 o 60 =
17 o 39 W 61 d
18 a 40 o 62 1
19 A 41 W 63 o

20 0 42 g 64 o
21 N 43 9 65 +
22 5 44 1

Table 4: Syllable Representation for the Second
and Third Syllables

5 Experimental Evaluation

In the first experiment, we evaluate the proposed
syllable segmentation method. The algorithm is
trained with 2,200 syllables, manually segmented
from a dictionary. The test data used is a text
excerpt from a thesis written in Thai. The results in
Table 6 show that the algorithm at order 4 yields
the best result which is, from the 1,714 manually
segmented syllables, the algorithm correctly
identifies 1,694 (or 98.83%) of them correctly.
Figure 2 shows an example of segmentation
results.



Var# Char | Var# Char | Var# Char
1 Y 13 o 25 ‘[
2 q 14 i) 26 "
3 ? 15 w 27 1
4 a 16 1 28 1
5 2 17 = 29 -v
6 5 18 = 30 =
7 U 19 = 31 P
8 W 20 2 32 1
9 N 21 a 33 9
10 W 22 \“ 34 o
11 o 23 L 35 +
12 b 24 LL

Table 5: Syllable Representation for the
First and Fourth Syllables

Order Accuracy
1 77.36%
96.38%
98.54%
98.83%
98.19%

Table 6: Results of the PPM Model
at Different Orders

DN [W(N

Next, we evaluate the proposed algorithm at
order 4 against five 1,000-syllable test texts which
are not part of the text used in the training. The
results in Table 7 show 96.65 to 98.26%
segmentation accuracy.

Order Accuracy
1 77.36%
2 96.38%
3 98.54%
4 98.83%
5 98.19%

Table 7: Results of Five 1,000-Syllable Texts

To evaluate the syllable combination technique,
we create 50 ambiguous test cases. The results
show that 47 cases (94%) are segmented correctly
using the technique proposed, in which 13 cases
are correctly segmented in Step 1; 11 cases are
correctly segmented in Step 2, and 23 cases are
correctly segmented in Step 3.

An evaluation of the entire process of word
segmentation (i.e., from syllable segmentation to
syllable combination) shows an accuracy of
97.17% by which 76.92% of those incorrect

S¢€ gmentation roots

segmentation.

from incorrect
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Figure 2: An Example of Syllable Segmentation

Lastly, we use the same test data however with
correctly identified syllables, the performance
shows 99.35% accuracy. This emphasizes the
importance of pre-segmenting syllables and at the
same time indicates that the proposed syllable
combining method is effective.

6 Conclusion

This paper proposes a two-step approach to Thai
word segmentation. Studying the characteristics of
Thai language, we find that word segmentation
possesses ambiguities at both character and
syllable levels. The proposed technique consists of
two steps. The first step is designed to reduce the
character-level ambiguity by focusing on
extracting syllables whose structures are more
well-defined. Then the second step combines
syllables into words by using binary logistic
regression model. Experimental evaluations
emphasize the importance of pre-identifying
syllables correctly, show the accuracy of applying
PPM to syllable segmentation of 98%, and indicate
the effectiveness of the proposed approach to
combine syllables into words. The overall accuracy
of Thai word segmentation is 97.17%.
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