
Emdros – a text database engine for analyzed or annotated text

Ulrik Petersen
Department of Communication

University of Aalborg
Kroghstræde 3

DK – 9220 Aalborg East
Denmark

ulrikp@hum.aau.dk

Abstract
Emdros is a text database engine for linguistic
analysis or annotation of text. It is applicca-
ble especially in corpus linguistics for storing
and retrieving linguistic analyses of text, at any
linguistic level. Emdros implements the EMdF
text database model and the MQL query lan-
guage. In this paper, I present both, and give an
example of how Emdros can be useful in com-
putational linguistics.

1 Introduction
As (Abeillé, 2003) points out, “corpus-based lin-
guistics has been largely limited to phenomena that
can be accessed via searches on particular words.
Inquiries about subject inversion or agentless pas-
sives are impossible to perform on commonly avail-
able corpora” (p. xiii).

Emdros is a text database engine which attempts
to remedy this situation in some measure. Emdros’
query language is very powerful, allowing the kind
of searches which Abeillé mentions to be formu-
lated quickly and intuitively. Of course, this pre-
supposes a database which is tagged with the data
necessary for answering the query.

Work has been done on supporting complex
queries, e.g., (Bird et al., 2000; Cassidy and Bird,
2000; Mengel, 1999; Clarke et al., 1995). Em-
dros complements these pieces of work, providing
a working implementation of many of the features
which these systems support.

In this paper, I present the EMdF text database
model on which Emdros rests, and the MQL query
language which it implements. In addition, I give an
example of how Emdros can be useful in answering
questions in computational linguistics.

2 History of Emdros
Emdros springs out of a reformulation and imple-
mentation of the work done by Crist-Jan Doedens in
his 1994 PhD thesis (Doedens, 1994). Doedens de-
fined the MdF (Monads-dot-Features) text database
model, and the QL query language. Doedens gave a

denotational semantics for QL and loaded QL with
features, thus making it very difficult to implement.
The present author later took Doedens’ QL, scaled
it down, and gave it an operational semantics, hence
making it easier to implement, resulting in the MQL
query language. I also took the MdF model and
extended it slightly, resulting in the EMdF model.
Later, I implemented both, resulting in the Emdros
text database engine, which has been available as
Open Source software since October 2001. The
website1 has full sourcecode and documentation.

Emdros is a general-purpose engine, not a spe-
cific application. This means that Emdros must be
incorporated into a specific software application be-
fore it can be made useful.

3 The EMdF model
The EMdF model is an extension of the MdF model
developed in (Doedens, 1994). The EMdF (Ex-
tended MdF) model is based on four concepts:
Monad, object, object type, and feature. I describe
each of these in turn, and give a small example of
an EMdF database.

3.1 Monad
A monad is simply an integer. The sequence of the
integers (1,2,3, etc.) dictates the sequence of the
text. The monads do not impose a reading-direction
(e.g., left-to-right, right-to-left), but merely a logical
text-order.

3.2 Object
An object is simply a set of monads with an asso-
ciated object type. The set is arbitrary in the sense
that there are no restrictions on the set. E.g., {1},
{2}, {1,2}, {1,2,6,7} are all valid objects. This al-
lows for objects with gaps, or discontiguous objects
(e.g., discontiguous clauses). In addition, an object
always has a unique integer id, separate from the the
object’s monad set.

Objects are the building blocks of the text it-
self, as well as the annotations or analyses in the

1http://emdros.org/



database. To see how, we must introduce object
types.

3.3 Object type
An object type groups a set of objects into such
classes as “Word”, “Phrase”, “Clause”, “Sentence”,
“Paragraph”, “Chapter”, “Book”, “Quotation”, “Re-
port”, etc. Generally, when designing an Em-
dros database, one chooses a monad-granularity
which dictates the smallest object in the database
which corresponds to one monad. This smallest
object is often “Word”, but could be “Morpheme”,
“Phoneme” or even “Grapheme”. Thus, for exam-
ple, Word number 1 might consist of the object set
{1}, and Word number 2 might consist of the ob-
ject set {2}, whereas the first Phrase in the database
might consist of the set {1,2}.

3.4 Feature
An object type can have any number of features. A
feature is an attribute of an object, and always has a
type. The type can be a string, an integer, an enu-
meration, or an object id. The latter allows for com-
plex interrelationships among objects, with objects
pointing to each other, e.g., a dependent pointing to
a head.

An enumeration is a set of labels with values. For
example, one might define an enumeration “psp”
(part of speech) with labels such as “noun”, “verb”,
“adjective”, etc. Emdros supports arbitrary defini-
tion of enumeration label sets.

3.5 Example
Consider Figure 1. It shows an EMdF database cor-
responding to one possible analysis of the sentence
“The door was blue.” There are three object types:
Word, Phrase, and Clause. The Clause object type
has no features. The Phrase object type has the fea-
ture “phr_type” (phrase type). The Word object
type has the features “surface” and “psp”.

The monad-granularity is “Word”, i.e., each
monad corresponds to one monad. Thus the word
with id 10001 consists of the monad set {1}. The
phrase with id 10005 consists of the monad set
{1,2}. The single clause object consists of the
monad set {1,2,3,4}.

The text is encoded by the “surface” feature
on Word object type. One could add features such
as “lemma”, “number”, “gender”, or any other
feature relevant to the database under construction.
The Phrase object type could be given features
such as “function”, “apposition_head”,
“relative_head”, etc. The Clause object type
could be given features distinguishing such things as
“VSO order”, “tense of verbal form”, “illocutionary

force”, “nominal clause/verbless clause”, etc. It all
depends on the theory used to describe the database,
as well as the research goals.

 1 2 3 4

word
w: 10001
surface: The
psp: article

w: 10002
surface: door
psp: noun

w: 10003
surface: was
psp: verb

w: 10004
surface: blue.
psp: adjective

phrase p: 10005
phr_type: NP

p: 10006
phr_type: VP

p: 10007
phr_type: AP

clause c: 10008

Figure 1: A small EMdF database

4 The MQL query language
MQL is based on two properties of text which are
universal: sequence and embedding. All texts have
sequence, dictated by the constraints of time and the
limitation of our human vocal tract to produce only
one sequence of words at any given time. In ad-
dition, all texts have, when analyzed linguistically,
some element of embedding, as embodied in the no-
tions of phrase, clause, sentence, paragraph, etc.

MQL directly supports searching for sequence
and embedding by means of the notion of topo-
graphicity. Originally invented in (Doedens, 1994),
a (formal) language is topographic if and only if
there is an isomorphism between the structure of an
expression in the language and the objects which the
expression denotes.

MQL’s basic building block is the object block.
An object block searches for objects in the database
of a given type, e.g., Word, Phrase or Clause. If two
object blocks are adjacent, then the objects which
they find must also be adjacent in the database. If
an object block is embedded inside another object
block, then the inner object must be embedded in
the outer object in the database.

Consider Figure 2. It shows two adjacent object
blocks, with feature constraints. This would find
two Phrase objects in the database where the first is
an NP and the second is a VP. The objects must be
adjacent in the database because the object blocks
are adjacent.

[Phrase phrase_type = NP]
[Phrase phrase_type = VP]

Figure 2: Two adjacent object blocks

Now consider Figure 3. This query would find
a clause, with the restriction that embedded inside
the clause must be two phrases, a subject NP and



a predicate VP, in that order. The “..” operator
means that space is allowed between the NP and the
VP, but the space must be inside the limits of the
surrounding clause. All of this presupposes an ap-
propriately tagged database, of course.

[Clause
[Phrase phrase_type = NP

and function = Subj]
..
[Phrase phrase_type = VP

and function = Pred]
]

Figure 3: Examples of embedding

The restrictions of type
“phrase_type = NP” refer to features (or
attributes) of the objects in the database. The re-
striction expressions can be any Boolean expression
(and/or/not/parentheses), allowing very complex
restrictions at the object-level.

Consider Figure 4. It shows how one can look
for objects inside “gaps” in other objects. In some
linguistic theories, the sentence “The door, which
opened towards the East, was blue” would consist of
one discontiguous clause (“The door . . . was blue”)
with an intervening nonrestrictive relative clause,
not part of the surrounding clause. For a sustained
argument in favor of this interpretation, see (Mc-
Cawley, 1982). The query in Figure 4 searches for
structures of this kind. The surrounding context is
a Sentence. Inside of this sentence, one must find a
Clause. The first object in this clause must be a sub-
ject NP. Directly adjacent to this subject NP must be
a gap in the surrounding context (the Clause). In-
side of this gap must be a Clause whose clause type
is “nonrestr_rel”. Directly after the close of
the gap, one must find a VP whose function is pred-
icate. Mapping this structure to the example sen-
tence is left as an exercise for the reader.

[Sentence
[Clause
[Phrase FIRST phrase_type = NP

and function = Subj]
[gap

[Clause cl_type = nonrestr_rel]
]
[Phrase phrase_type = VP

and function = Pred]
]

]

Figure 4: An example with a gap

Lastly, objects can refer to each other in the
query. This is useful for specifying such things as
agreement and heads/dependents. In Figure 5, the
“AS” keyword gives a name (“w1”) to the noun in-
side the NP, and this name can then be used inside
the adjective in the AdjP to specify agreement.

[Phrase phrase_type = NP
[Word AS w1 psp = noun]

]
[Phrase phrase_type = AdjP

[Word psp = adjective
and number = w1.number
and gender = w1.gender]

]

Figure 5: Example with agreement

MQL provides a number of features not covered
in this paper. For full documentation, see the web-
site.

The real power of MQL lies in its ability to ex-
press complex search restrictions both at the level
of structure (sequence and embedding) and at the
object-level.

5 Application
One prominent example of an Emdros database in
use is the Werkgroep Informatica (WI) database of
the Hebrew Bible developed under Prof. Dr. Eep
Talstra at the Free University of Amsterdam. The
WI database is a large text database comprising a
syntactic analysis of the Hebrew Bible (also called
the Old Testament in Hebrew and Aramaic). This is
a 420,000 word corpus with about 1.4 million syn-
tactic objects. The database has been analyzed up
to clause level all the way through, and has been
analyzed up to sentence level for large portions of
the material. A complete description of the database
and the underlying linguistic model can be found in
(Talstra and Sikkel, 2000).

In the book of Judges chapter 5 verse 1, we are
told that “Deborah and Barak sang” a song. Debo-
rah and Barak are clearly a plural entity, yet in He-
brew the verb is feminine singular. Was this an in-
stance of bad grammar? Did only Deborah sing?
Why is the verb not plural?

In Hebrew, the rule seems to be that the verb
agrees in number and gender with the first item in a
compound subject, when the verb precedes the sub-
ject. This has been known at least since the 19th
century, as evidenced by the Gesenius-Kautzsch
grammar of Hebrew, paragraph 146g.

With Emdros and the WI database, we can val-
idate the rule above. The query in Figure 6 finds



234 instances, showing that the pattern was not un-
common, and inspection of the results show that the
verb most often agrees with the first member of the
compound subject. The 234 “hits” are the bare re-
sults returned from the query engine. It is up to the
researcher to actually look at the data and verify or
falsify their hypothesis. Also, one would have to
look for counterexamples with another query.

[Clause
[Phrase function = Pred
[Word AS w1 psp = verb

and number = singular]
]
..
[Phrase function = Subj
[Word (psp = noun

or psp = proper_noun
or psp = demonstrative_pronoun
or psp = interrogative_pronoun
or psp = personal_pronoun)

and number = singular
and gender = w1.gender]

..
[Word psp = conjunction]

]
]

Figure 6: Hebrew example

The query finds clauses within which there are
two phrases, the first being a predicate and the sec-
ond being a subject. The phrases need not be adja-
cent. The predicate must contain a verb in the sin-
gular. The subject must first contain a noun, proper
noun, or pronoun which agrees with the verb in
number and gender. Then a conjunction must follow
the noun, still inside the subject, but not necessarily
adjacent to the noun.

The WI database is the primary example of an
Emdros database. Other databases stored in Em-
dros include the morphologically encoded Hebrew
Bible produced at the Westminster Hebrew Institute
in Philadelphia, Pennsylvania, and a corpus of 67
million words in use at the University of Illinois at
Urbana-Champaign.

6 Conclusion
In this paper, I have presented the EMdF model
and the MQL query language as implemented in
the Emdros text database engine. I have shown how
MQL supports the formulation of complex linguis-
tic queries on tagged corpora. I have also given an
example of a specific problem in Hebrew linguis-
tics which is nicely answered by an Emdros query.
Thus Emdros provides a solid platform on which

to build applications in corpus linguistics, capable
of answering linguistic questions of a complexity
higher than what most systems can offer today.

Acknowledgements
My thanks go to Constantijn Sikkel of the Werk-
groep Informatica for coming up with the problem
for the Hebrew query example.

References
Anne Abeillé. 2003. Introduction. In Anne

Abeillé, editor, Treebanks – Building and Using
Parsed Corpora, volume 20 of Text, Speech and
Language Technology, pages xiii–xxvi. Kluwer
Academic Publishers, Dordrecht, Boston, Lon-
don.

Steven Bird, Peter Buneman, and Wang-Chiew
Tan. 2000. Towards a query language for an-
notation graphs. In Proceedings of the Sec-
ond International Conference on Language Re-
sources and Evaluation, pages 807–814. Eu-
ropean Language Resources Association, Paris.
http://arxiv.org/abs/cs/0007023.

Steve Cassidy and Steven Bird. 2000. Query-
ing databases of annotated speech. In Database
technologies: Proceedings of the Eleventh Aus-
tralasian Database Conference, pages 12–20.
IEEE Computer Society.

Charles L. A. Clarke, G. V. Cormack, and F. J.
Burkowski. 1995. An algebra for structured text
search and a framework for its implementation.
The Computer Journal, 38(1):43–56.

Christianus Franciscus Joannes Doedens. 1994.
Text Databases: One Database Model and Sev-
eral Retrieval Languages. Number 14 in Lan-
guage and Computers. Editions Rodopi Amster-
dam, Amsterdam and Atlanta, GA.

James D. McCawley. 1982. Parentheticals and dis-
continuous constituent structure. Linguistic In-
quiry, 13(1):91–106.

Andreas Mengel. 1999. MATE deliverable D3.1
– specification of coding workbench: 3.8
improved query language (Q4M). Technical
report, Institut für Maschinelle Sprachverar-
beitung, Stuttgart, 18 Nov. http://www.ims.uni-
stuttgart.de/projekte/mate/q4m/.

Eep Talstra and Constantijn Sikkel. 2000.
Genese und Kategorienentwicklung der WIVU-
Datenbank. In Christof Hardmeier, Wolf-Dieter
Syring, Jochen D. Range, and Eep Talstra,
editors, Ad Fontes! Quellen erfassen - lesen -
deuten. Was ist Computerphilologie?, volume 15
of APPLICATIO, pages 33–68, Amsterdam. VU
University Press.


