
A System for Generating Descriptions of Sets of Objects in a Rich Variety

Helmut Horacek
Universität des Saarlandes

F.R. 6.2 Informatik
Postfach 151150

 D-66041 Saarbrücken, Germany
 email: horacek@cs.uni-sb.de

Abstract
Even ambitious algorithms for the gener-
ation of referring expressions that iden-
tify sets of objects are restricted in terms
of efficiency or in their expressive reper-
toire. In this paper, we report on a system
that applies a best-first searching proce-
dure, enhancing both its effectiveness and
the variety of expressions it can generate.

1 Introduction
Generating referring expressions has recently
been extended from the identification of single
to sets of objects. However, existing algorithms
suffer in terms of efficiency and expressiveness.
In this paper, we report on a system that applies a
best-first searching procedure, with an enhanced
effectiveness and a larger variety of expressions
it can generate. The system's repertoire includes
compositions of partially identifying expressions
and descriptions of objects to be excluded, there-
by taking into account impacts on surface forms.

Throughout this paper, we refer to a scenario
with a set of 12 vehicles as defined in Figure 1.
All vehicles are identifiable individually, to make
the identification task meaningful. Only minor
differences hold between some of these vehicles,
which makes the identification task challenging.

This paper is organized as follows. First, we
motivate our goals. Then we describe techniques
for enhancing efficiency. We follow by illus-
trating improvements of expressiveness. Finally,
we evaluate several efficiency-related techniques.

2 Motivation
Identifying sets of objects originally followed the
incremental algorithm (Dale and Reiter 1995), as
in (Bateman 1999), (Stone 2000) and (Krahmer
et al. 2003), with limited coverage, since only few
attributes typically apply to all intended referents
and to none of the potential distractors. There-
fore, van Deemter (2002) has extended the set of
descriptors to boolean combinations of attributes,
including negations. Unfortunately, when apply-
ing the incremental strategy, this may lead to the
inclusion of too many redundant descriptors in
the final specification. This deficit disappeared
using an exhaustive search (Gardent 2002), but

run-time then increases considerably. Mediating
between these two extreme search paradigms, we
have developed a best-first searching algorithm
that avoids the major deficit of the incremental
approach (Horacek 2003). Since its intermediate
results can also be used as partial descriptions, we
build on the flexibility of this new algorithm to
extend its expressive capabilities. In addition, we
further enhance its efficiency-seeking measures.

These extensions attack the deficits previous
algorithms share, according to (Horacek 2004):
• Expressions produced may become lengthy:

for identifying sets of vehicles in the scenario
in Figure 1, we have obtained non-redundant
specifications with up to 8 descriptors.

• Specifications may contain some disjunctions,
frequently causing the production of structur-
ally ambiguous expressions (Gardent 2002) –
“trucks and sportscars which are white or in
the center” referring to x1, x5, x11 (Figure 1).

We avoid these deficits by not restricting boolean
expressions to a form with conjunctions as top
level operators, as others always do. This allows
us to incorporate descriptions of objects to be
excluded, to produce enumerations and compo-
sitions of descriptions of subsets of the intended
referents, and to build compositions of increa-
singly restricting descriptions of these referents.

Objects
Descriptors x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

vehicle • • • • • • • • • • • •
car • • • • • • • •
sportscar • • • •
truck • • • •
blue • • •
red • • • • • •
white • • •
center • • • •
left • • • •
right • • • •
big • • • • • •
small • • • • • •
new • • • • • •
old • • • • • •

Figure 1. Example scenario with 12 vehicles

3 The Best-First Procedure
The basic mechanism of the best-first search
algorithm is a generalization of the incremental
version: instead of successively adding attributes
to the full expression generated so far, all inter-
mediate results are accessible for this operation,
producing an optimal solution, if completed –
see (Horacek 2003) for details. This algorithm
uses two cut-off techniques, assuming conflation
(e.g., the descriptors man and unmarried can be
verbalized as “bachelor”) is not possible:
• A dominance cut-off is carried out locally for

sibling nodes, when two partial descriptions
exclude the same set of potential distractors,
the same set of descriptors still being available.
The variant evaluated worse is discarded.

• A value cut-off is carried out globally after a
solution has been found. It is done for nodes
whose most optimistic evaluation (including
the minimal value of the description required
for excluding the remaining potential distrac-
tors), surpasses the evaluation of that solution.

Applying any of these cut-offs only serves to
gain speed and does not change the final result.

3.1 Efficiency-Enhancing Measures
We have enhanced this repertoire by a complexity
cut-off, carried out prior to further expanding a
node if the boolean combination of descriptors
build leads to a description that is more complex
than a given threshold. For this threshold, we use
the complexity of descriptions identifying each
referent individually, which is an enumeration.

The generation of boolean combinations is a
critical part of the algorithm, since it is its most
time-consuming component. Redundancies must
be avoided, which requires more effort than pre-
vious approaches due to our hierarchical organi-
zation of property values. This burden is split
between a static representation of implications,
compiled from the underlying knowledge base
about specializations, and the function Generate-
Next, which accesses these data. Four implications
hold between properties and their negations:

implies (p,q) if specializes(p,q) holds
implies (p,¬q) if incompatible(p,q) holds
implies (¬p,q) if opposite(p,q) holds
implies (¬p,¬q) if generalizes(p,q) holds

Then the predicates subsumes and redundant can
be defined for properties (or their negations):

subsumes(p,q) ≡ implies (q,p)
redundant(p,q) ≡ ¬(subsumes(p,q) ∨

subsumes(q,p))
The function Generate-Next (Figure 1) success-
ively builds increasingly complex disjunctions of
descriptors and their negation. To start with, the
procedure Increment produces the next property

combination with given complexity, if existing
(1). Otherwise (2), that complexity is augmented
(9) before generating the next combination,
unless the complexity limit is reached (8),
causing a complexity cut-off. For a property
combination, it is tested whether all its properties
are pairwise redundant (3), then the next combi-
nation is built. If a non-redundant combination
is found, it must pass the following tests:
1. It subsumes the target set (4).
2. It further reduces the set of distractors (5).
3. The reduced set of distractors is not equal to

or a superset of the distractor associated with
a sibling node already created; otherwise, a
dominance cut-off applies (6).

If successful, that combination is returned,
otherwise building combinations is resumed (7).

3.2 Enhancing the Best-First Procedure
We have incorporated a number of improve-
ments over the original version of the procedure:
• Treating linguistically motivated preferences

as options rather than restrictions
• Putting limitations on the complexity of

specifications, to control comprehensibility
• Enhancing the expressive repertoire by

descriptions of subsets of referents and by
descriptions of referents to be excluded

• Producing a sequence of increasingly res-
tricting descriptions rather than a single one.

Procedure Generate-Next(Current-Prop-Comb)

1 Nextprop ← Increment(Current-Prop-Comb) (1)
if Nextprop = nil then goto Step 2 endif (2)
if redundant(p,q) for any p,q ∈ Nextprop (3)

then goto Step 1 endif
if subsumes(Nextprop,Properties-of(T))

for all T ∈ Target and (4)
¬subsumes(Nextprop,Props(D))

for some D ∈ Distractors(Best-Node) (5)
 and ¬ Q ⊇ R, where

R = {subsumes(Properties-of(P),Nextprop)},
Q ={subsumes(Properties-of(P),

Description(N))}
for all P ∈ Distractors, (6)
some N ∈ successor(Best-Node)

then return Nextprop (7)
else goto Step 1 endif (Dominance cut-off)

2 if (Score(Description(Best-Node)) +
Score(Nextprop)) ≥ Complexity-limit (8)

then return nil (Complexity cut-off)
else Nextprop ← Increment-size(Nextprop)

goto Step 1 endif (9)

Figure 2. Pseudo-code of descriptor generation

In the following, we summarize each of these
(see (Horacek 2004) for details).

The following linguistically motivated prefer-
ences are treated as options: a boolean combina-
tion of descriptors that express the category of
the object (by a head noun) is chosen first, other
(attribute) descriptors later, since a category must
be chosen anyway. Moreover, we reduce the set
of potential solutions by excluding “mixed”
boolean combinations, that is disjunctions of a
category and attributes, such as car ∨ red, which
are unnatural and awkward to express verbally.

To strengthen comprehensibility, we specify
limitations on the surface form of descriptions,
including places for the head noun, pre- and
postnominal modifiers, and relative clauses.
Maximum numbers for each of these positions
can be given, also specifying places as alternative
ones, thus limiting the number of components in
conjoined expressions. By associating descriptors
with surface positions they can take, these speci-
fications allow one to control the surface struc-
ture of the descriptions during searching.

For partial descriptions with multiple disjunc-
tions, recasting the expression built as a partial
description is attempted to remain within given
limits. These descriptions are always of the form
^ i=1,n (∨ j=1,mi Pij), where each Pij is a positive or
negative descriptor. Even in moderately complex
instances of this conjoined expression, several
elements may consist of disjunctions of more
than one descriptor. In such a constellation,we
pick up one disjunction, for example ∨ j=1,mk Pkj
for some k, transforming that expression by
applying distributivity. This amounts to parti-
tioning the set of intended referents into subsets,
where each of the components of the new top
level disjunction describes one of these subsets.
Consider, for example, “the sportscars that are
not red and the small trucks” identifying x5, x7,
x8, and x12 in two components rather than by the
involved one-shot “the vehicles that are a sports-
car or small, and either a truck or not red.” In
addition, descriptions may specify exceptions:
describing some of the referents to be excluded
may lead to shorter expressions than expanding
the description of the intended referents, so that
we integrate it in the expressive repertoire – for
example, “the vehicles on the right, but not the
red truck”, identifying x 1 , x 3 , and x 6 by
excluding x7 in the locally restricted context.

In accordance with these specifications, the
best-first search is invoked to produce an identi-
fying description. This may not always be
possible in complex situations. If this is the case,
the best partial solution is taken, and the search is
repeated within the restricted context defined by
the descriptions generated so far. By this proce-
dure, a sequence of descriptions is generated

rather than a single one. Consider, for example,
“one of the trucks and the sportscars, all not
white. The truck stands on the right”, identifying
x6, x7, x11 and x12 out of all 12 vehicles (in Figure
1) in two passes.
3.3 An Example
We illustrate the behavior of the system by a
small example. Let {x1, x3, x6} in Figure 1 be the
set of intended referents. Specifications for max-
imum complexity of surface forms allow head
nouns, pre- and postnominal modifiers, at most
one of them as a conjoined expression, and a
relative clause or a “but”-modifier expressing
an exception. Only two descriptors apply to all
intended referents, vehicle and right. Even if
vehicle is chosen first, subsequent searching only
expands on the partial description with right,
since it excludes a superset of the objects vehicle
does: only x7 is remaining. The next simplest
descriptor combination is car ∨ white, which
would allow complete identification of the inten-
ded referents. Since it can only be expressed by
a relative clause, for which conjoined expressions
are not allowed, recasting the description is
attempted. This yields (car ^ right) ∨ (white ^
right), which is a possible solution. Since a head
noun is required for the second part, adding a
further descriptor, an attempt is made to improve
the solution, through finding an alternative to car
∨ white. Describing the complement constitutes
such an alternative, since identification is
required for x7 only. This can be done by
selecting t ruck and, afterwards, any of the
descriptors red, small, and old (let us say, we pick
red). This yields right ^ ¬ (truck ^ red) as an
alternative solution, with vehicle being added to
obtain a head noun. Altogether, a surface gener-
ator could then generate “the vehicles on the
right, but not the red truck ”, resp. “the cars and
the white vehicle, both on the right” – the latter
with a clever aggregation module.

4 Experimental Results
We have implemented the algoritm in Common
Lisp, on an Intel Pentium processor with 2600
MHz. In the following elaborations, we use
natural language descriptions for reasons of
readability, even though our algorithm only
produces boolean combinations of descriptors.

We evaluate our algorithm from three
perspectives: 1) effects of the linguistically moti-
vated restrictions, 2) effectiveness of the cut-off
techniques, and 3) the behavior in scaling up for
larger examples. For this purpose, we have built
all subsets of two, three, and four vehicles, out of
the vehicles x1 to x6, which yields 50 cases.

In order to test the effects of the linguistically
motivated reductions, we have used two versions

cut-offs (v=value, d=dominance, c=complexity)
v&d&c v&c d&c c v&d d v

time (msec)
minimum 10 10 60 90 10 90 10
maximum 690 1150 1910 192101100 4550 2320
average 121.5131.6354.81133.1140.5595.0168.1

tree size (nodes)
maximum 9 71 11 945 9 11 71
average 2.2 3.86 2.33 61.64 2.2 2.33 3.88

Table 1. Searches comparing effects of cut-offs

of the 50 cases, one with all properties, and one
without size and age. In these runs, the maximum
number of descriptors chosen was 5, and search
trees grew up to 9 with and 20 nodes without
using the linguistically motivated reductions. The
average search times were 127.7 resp. 440.5
msec, with a maximum of 950 resp. 2590 msec.

In order to compare the effectiveness of the
cut-off techniques, we have run the same sample
of 100 cases (50 with and 50 without size and
age), with all combinations of at least one cut-off
technique. Table 1 illustrates the results. Among
others, they demonstrate that search times are not
proportional to tree sizes, since a lot of effort is
devoted to justify the avoidance of expansions,
which varies among cut-off techniques. It turns
out that the value cut-off is the most effective
one, which underpins the importance of finding
a solution quickly. Looking at individual
examples reveals that the complementary effects
of dominance and complexity cut-offs are signi-
ficant only for examples with larger solutions.

Finally, we have tested the algorithm's scala-
bility, by increasing the number of distractors,
with up to 25 vehicles (similar to x1 to x12, but
distinct from one another). The same 100 cases
have been used as before, with all cut-off criteria.
The results appear in Table 2. They demonstrate
that the problem tends to get unmanagable for
more than 12 distractors in both search time and
number of descriptors needed for identification,
the latter being the reason for the former.
However, descriptions consisting of up to 10
descriptors are unlikely to be understandable for
humans, anyway – consider, for example, “the
cars which are not blue, are old or stand in the
center, are new or stand on the right side, are big
or not white, and are small or not red” (108110
msec, identifying x3, x4, and x 6 out of 25
vehicles). For such complicated cases, identifying
objects is broken down into simpler tasks (see
Section 3.2). Conversely, useful results may be
obtained for a large number of distractors – for
example, “the old cars on the right side” (120
msec, identifying x3 and x6 out of 25 vehicles).

nr. of distractors
6 7 8 9 10 12 15 20 25

time (msec)
minimum 10 10 10 10 10 30 60 100 120
maximum 490 2300 3880 41004430 65305339088120141200
average 116 282 417 484 7051120 536612325 24838

max nr. of
tree nodes 9 10 12 16 27 61 106 303 907
descriptors 5 5 5 5 5 5 6 8 10

Table 2. Searches with varying sets of distractors

5 Conclusion
We have presented a system that can produce
referring expressions for identifying sets of
objects. It has a number of exceptional features,
including several efficiency-enhancing measures,
the incorporation of exclusion descriptions, and
partitioning the identification task into subtasks.
The results show that our system has an increased
repertoire compared to its predecessors, and it
can compute these expressions reasonably fast.

References
John Bateman 1999. Using Aggregation for Selecting

Content when Generating Referring Expressions. In
Proc. of 37th Annual Meeting of the Association for
Computational Linguistics (ACL'99), pp. 127-134.

Robert Dale and Ehud Reiter 1995. Computational Inter-
pretations of the Gricean Maxims in the Generation
of Referring Expressions. Cognitive Science 18:
233-363.

Claire Gardent 2002. Generating Minimal Definite
Descriptions. In Proc. of 40th Annual Meeting of
the Association for Computational Linguistics
(ACL'2002), pp. 96-103.

Helmut Horacek 2003. A Best-First Search Algorithm
for Generating Referring Expressions. In Proc. of
10th Conference of The European Chapter of the
Assoc ia t i on for Computational Linguistics
(EACL'2003), short paper, pp. 103-106.

Helmut Horacek 2004. On Referring to Sets of Objects
Naturally. In Proc. of Third International Natural
Language Generation Conference (INLG-2004).

Emiel Krahmer, Sebastiaan van Erk, and André Verleg
2003. Graph-Based Generation of Referring Expres-
sions. Computational Linguistics, 29(1):53-72.

Matthew Stone 2000. On Identifying Sets. In Proc. of
First International Natural Language Generation
Conference (INLG-2000), pp. 116-123.

Kees van Deemter 2002. Generating Referring
Expressions: Boolean Extensions of the Incremental
Algorithm. Computational Linguistics, 28(1):37-52.

