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Abstract

This paper describes a Verb Phrase Ellipsis
(VPE) detection system, built for robust-
ness, accuracy and domain independence.
The system is corpus-based, and uses a va-
riety of machine learning techniques on free
text that has been automatically parsed us-
ing two different parsers. Tested on a mixed
corpus comprising a range of genres, the sys-
tem achieves a 72% F1-score. It is designed
as the first stage of a complete VPE resolu-
tion system that is input free text, detects
VPEs, and proceeds to find the antecedents
and resolve them.

1 Introduction

Ellipsis is a linguistic phenomenon that has re-
ceived considerable attention, mostly focusing
on its interpretation. Most work on ellipsis
(Fiengo and May, 1994; Lappin, 1993; Dalrym-
ple et al., 1991; Kehler, 1993; Shieber et al.,
1996) is aimed at discerning the procedures and
the level of language processing at which ellipsis
resolution takes place, or focuses on ambiguous
and difficult cases. The detection of elliptical
sentences or the identification of the antecedent
and elided clauses within them are usually not
dealt with, but taken as given. Noisy or miss-
ing input, which is unavoidable in NLP applica-
tions, is not dealt with, and neither is focusing
on specific domains or applications. It therefore
becomes clear that a robust, trainable approach
is needed.

An example of Verb Phrase Ellipsis (VPE),
which is detected by the presence of an auxiliary
verb without a verb phrase, is seen in example
1. VPE can also occur with semi-auxiliaries, as
in example 2.

(1) John3 {loves his3 wife}2. Bill3 does1 too.

(2) But although he was terse, he didn’t {rage
at me}2 the way I expected him to1.

Several steps of work need to be done for el-
lipsis resolution :

1. Detecting ellipsis occurrences. First, elided
verbs need to be found.

2. Identifying antecedents. For most cases of
ellipsis, copying of the antecedent clause is
enough for resolution (Hardt, 1997).

3. Resolving ambiguities. For cases where
ambiguity exists, a method for generating
the full list of possible solutions, and sug-
gesting the most likely one is needed.

This paper describes the work done on the
first stage, the detection of elliptical verbs.
First, previous work done on tagged corpora
will be summarised. Then, new work on parsed
corpora will be presented, showing the gains
possible through sentence-level features. Fi-
nally, experiments using unannotated data that
is parsed using an automatic parser are pre-
sented, as our aim is to produce a stand-alone
system.

We have chosen to concentrate on VP ellipsis
due to the fact that it is far more common than
other forms of ellipsis, but pseudo-gapping, an
example of which is seen in example 3, has also
been included due to the similarity of its res-
olution to VPE (Lappin, 1996). Do so/it/that
and so doing anaphora are not handled, as their
resolution is different from that of VPE (Kehler
and Ward, 1999).

(3) John writes plays, and Bill does novels.

2 Previous work

Hardt’s (1997) algorithm for detecting VPE in
the Penn Treebank (see Section 3) achieves re-
call levels of 53% and precision of 44%, giv-
ing an F11 of 48%, using a simple search tech-

1Precision, recall and F1 are defined as :

Recall =
No(correct ellipses found)

No(all ellipses in test)
(1)



nique, which relies on the parse annotation hav-
ing identified empty expressions correctly.

In previous work (Nielsen, 2003a; Nielsen,
2003b) we performed experiments on the British
National Corpus using a variety of machine
learning techniques. These earlier results are
not directly comparable to Hardt’s, due to
the different corpora used. The expanded
set of results are summarised in Table 1, for
Transformation Based Learning (TBL) (Brill,
1995), GIS based Maximum Entropy Modelling
(GIS-MaxEnt)2 (Ratnaparkhi, 1998), L-BFGS
based Maximum Entropy Modelling (L-BFGS-
MaxEnt)3 (Malouf, 2002), Decision Tree Learn-
ing (Quinlan, 1993) and Memory Based Learn-
ing (MBL) (Daelemans et al., 2002).

Algorithm Recall Precision F1
TBL 69.63 85.14 76.61
Decision Tree 60.93 79.39 68.94
MBL 72.58 71.50 72.04
GIS-MaxEnt 71.72 63.89 67.58
L-BFGS-MaxEnt 71.93 80.58 76.01

Table 1: Comparison of algorithms

For all of these experiments, the training fea-
tures consisted of lexical forms and Part of
Speech (POS) tags of the words in a three word
forward/backward window of the auxiliary be-
ing tested. This context size was determined
empirically to give optimum results, and will be
used throughout this paper. L-BFGS-MaxEnt
uses Gaussian Prior smoothing optimized for
the BNC data, while GIS-MaxEnt has a sim-
ple smoothing option available, but this dete-
riorates results and is not used. Both maxi-
mum entropy models were experimented with
to determine thresholds for accepting results as
VPE; GIS-MaxEnt was set to a 20% confidence
threshold and L-BFGS-MaxEnt to 35%. MBL
was used with its default settings.

While TBL gave the best results, the soft-
ware we used (Lager, 1999) ran into memory
problems and proved problematic with larger
datasets. Decision trees, on the other hand,

Precision =
No(correct ellipses found)

No(all ellipses found)
(2)

F1 =
2× Precision×Recall

Precision + Recall
(3)

2Downloadable from
https://sourceforge.net/projects/maxent/

3Downloadable from
http://www.nlplab.cn/zhangle/maxent toolkit.html

tend to oversimplify due to the very sparse na-
ture of ellipsis, and produce a single rule that
classifies everything as non-VPE. This leaves
Maximum Entropy and MBL for further exper-
iments.

3 Corpus description

The British National Corpus (BNC) (Leech,
1992) is annotated with POS tags, using the
CLAWS-4 tagset. A range of sections of the
BNC, containing around 370k words4 with 645
samples of VPE was used as training data. The
separate development data consists of around
74k words5 with 200 samples of VPE.

The Penn Treebank (Marcus et al., 1994)
has more than a hundred phrase labels, and a
number of empty categories, but uses a coarser
tagset. A mixture of sections from the Wall
Street Journal and Brown corpus were used.
The training section6 consists of around 540k
words and contains 522 samples of VPE. The
development section7 consists of around 140k
words and contains 150 samples of VPE.

4 Experiments using the Penn
Treebank

To experiment with what gains are possible
through the use of more complex data such as
parse trees, the Penn Treebank is used for the
second round of experiments. The results are
presented as new features are added in a cumu-
lative fashion, so each experiment also contains
the data contained in those before it; the close
to punctuation experiment contains the words
and POS tags from the experiment before it,
the next experiment contains all of these plus
the heuristic baseline and so on.

Words and POS tags
The Treebank, besides POS tags and category
headers associated with the nodes of the parse
tree, includes empty category information. For
the initial experiments, the empty category in-
formation is ignored, and the words and POS
tags are extracted from the trees. The results
in Table 2 are seen to be considerably poorer
than those for BNC, despite the comparable
data sizes. This can be accounted for by the
coarser tagset employed.

4Sections CS6, A2U, J25, FU6, H7F, HA3, A19, A0P,
G1A, EWC, FNS, C8T

5Sections EDJ, FR3
6Sections WSJ 00, 01, 03, 04, 15, Brown CF, CG, CL,

CM, CN, CP
7Sections WSJ 02, 10, Brown CK, CR



Algorithm Recall Precision F1
MBL 50.98 61.90 55.91
GIS-MaxEnt 34.64 79.10 48.18
L-BFGS-MaxEnt 60.13 76.66 67.39

Table 2: Initial results with the Treebank

Close to punctuation

A very simple feature, that checks for auxiliaries
close to punctuation marks was tested. Table
3 shows the performance of the feature itself,
characterised by very low precision, and results
obtained by using it. It gives a 3% increase in
F1 for GIS-MaxEnt, but a 1.5% decrease for L-
BFGS-MaxEnt and 0.5% decrease for MBL.

This brings up the point that the individual
success rate of the features will not be in direct
correlation with gains in overall results. Their
contribution will be high if they have high pre-
cision for the cases they are meant to address,
and if they produce a different set of results from
those already handled well, complementing the
existing features. Overlap between features can
be useful to have greater confidence when they
agree, but low precision in the feature can in-
crease false positives as well, decreasing perfor-
mance. Also, the small size of the development
set can contribute to fluctuations in results.

Algorithm Recall Precision F1
close-to-punctuation 30.06 2.31 4.30
MBL 50.32 61.60 55.39
GIS-MaxEnt 37.90 79.45 51.32
L-BFGS-MaxEnt 57.51 76.52 65.67

Table 3: Effects of using the close-to-
punctuation feature

Heuristic Baseline

A simple heuristic approach was developed to
form a baseline using only POS data. The
method takes all auxiliaries as possible candi-
dates and then eliminates them using local syn-
tactic information in a very simple way. It
searches forwards within a short range of words,
and if it encounters any other verbs, adjectives,
nouns, prepositions, pronouns or numbers, clas-
sifies the auxiliary as not elliptical. It also does
a short backwards search for verbs. The forward
search looks 7 words ahead and the backwards
search 3. Both skip ‘asides’, which are taken to
be snippets between commas without verbs in
them, such as : “... papers do, however, show
...”. This feature gives a 3.5 - 4.5% improvement
(Table 4).

Algorithm Recall Precision F1
heuristic 48.36 27.61 35.15
MBL 55.55 65.38 60.07
GIS-MaxEnt 43.13 78.57 55.69
L-BFGS-MaxEnt 62.09 77.86 69.09

Table 4: Effects of using the heuristic feature

(SINV
(ADVP-PRD-TPC-2 (RB so) )
(VP (VBZ is)

(ADVP-PRD (-NONE- *T*-2) ))
(NP-SBJ (PRP$ its)

(NN balance) (NN sheet) ))

Figure 1: Fragment of sentence from Treebank

Surrounding categories
The next feature added is the categories of
the previous branch of the tree, and the next
branch. So in the example in Figure 1, the pre-
vious category of the elliptical verb is ADVP-
PRD-TPC-2, and the next category NP-SBJ.
The results of using this feature are seen in Ta-
ble 5, giving a 1.6 - 3.5% boost.

Algorithm Recall Precision F1
MBL 58.82 69.23 63.60
GIS-MaxEnt 45.09 81.17 57.98
L-BFGS-MaxEnt 64.70 77.95 70.71

Table 5: Effects of using the surrounding cate-
gories

Auxiliary-final VP
For auxiliary verbs parsed as verb phrases (VP),
this feature checks if the final element in the VP
is an auxiliary or negation. If so, no main verb
can be present, as a main verb cannot be fol-
lowed by an auxiliary or negation. This feature
was used by Hardt (1993) and gives a 3.4 - 6%
boost to performance (Table 6).

Algorithm Recall Precision F1
Auxiliary-final VP 72.54 35.23 47.43
MBL 63.39 71.32 67.12
GIS-MaxEnt 54.90 77.06 64.12
L-BFGS-MaxEnt 71.89 76.38 74.07

Table 6: Effects of using the Auxiliary-final VP
feature

Empty VP
Hardt (1997) uses a simple pattern check to
search for empty VP’s identified by the Tree-
bank, (VP (-NONE- *?*)), which is to say a



...
(VP (VBZ resembles)
(NP (NNS politics) )
(ADVP
(ADVP (RBR more) )
(SBAR (IN than)
(S
(NP-SBJ (PRP it) )
(VP (VBZ does)
(VP (-NONE- *?*)
(NP (NN comedy) )))))))

Figure 2: Missed pseudo-gapping parse

...
(CC or)
(VP (VB put)
(NP (-NONE- *-4) )
(PP-PUT (IN into)
(NP (NN syndication) )))

(, ,)
(SBAR-ADV (IN as)
(S
(NP-SBJ-1 (JJS most)
(JJ American) (NNS programs) )

(VP (VBP are)
(VP (-NONE- *?*)
(NP (-NONE- *-1) )))))))))

Figure 3: Missed VPE parse

VP which consists only of an empty element.
This achieves 60% F1 on our development set.
Our findings are in line with Hardt’s, who re-
ports 48% F1, with the difference being due to
the different sections of the Treebank used.

It was observed that this search may be too
restrictive to catch pseudo-gapping (Figure 2)
and some examples of VPE in the corpus (Fig-
ure 3). We modify the search pattern to be ‘(VP
(-NONE- *?*) ... )’, which is a VP that contains
an empty element, but can contain other cate-
gories after it as well. This improves the feature
itself by 10% in F1 and gives 10 - 14% improve-
ment to the algorithms (Table 7).

Algorithm Recall Precision F1
Empty VP 54.90 97.67 70.29
MBL 77.12 77.63 77.37
GIS-MaxEnt 69.93 88.42 78.10
L-BFGS-MaxEnt 83.00 88.81 85.81

Table 7: Effects of using the improved Empty
VP feature

Empty categories

Finally, empty category information is included
completely, such that empty categories are
treated as words, or leaves of the parse tree,
and included in the context. Table 8 shows that
adding this information results in 2.5 - 4.9% in-
crease in F1.

Algorithm Recall Precision F1
MBL 83.00 79.87 81.41
GIS-MaxEnt 76.47 90.69 82.97
L-BFGS-MaxEnt 86.27 90.41 88.29

Table 8: Effects of using the empty categories

Cross-validation

We perform cross-validation with and without
the features developed to measure the improve-
ment obtained through their use. The cross-
validation results show a different ranking of
the algorithms by performance than on the de-
velopment set (Table 9), but consistent with
the results for the BNC corpus. MBL shows
consistent performance, L-BFGS-MaxEnt gets
somewhat lower results and GIS-MaxEnt much
lower. These results indicate that the confi-
dence threshold settings of the maximum en-
tropy models were over-optimized for the devel-
opment data, and perhaps the smoothing for L-
BFGS-MaxEnt was as well. MBL which was
used as-is does not suffer these performance
drops. The increase in F1 achieved by adding
the features is similar for all algorithms, ranging
from 17.9 to 19.8%.

5 Experiments with Automatically
Parsed data

The next set of experiments use the BNC and
Treebank, but strip POS and parse information,
and parse them automatically using two differ-
ent parsers. This enables us to test what kind
of performance is possible for real-world appli-
cations.

5.1 Parsers used

Charniak’s parser (2000) is a combination prob-
abilistic context free grammar and maximum
entropy parser. It is trained on the Penn Tree-
bank, and achieves a 90.1% recall and precision
average for sentences of 40 words or less. While
Charniak’s parser does not generate empty cat-
egory information, Johnson (2002) has devel-
oped an algorithm that extracts patterns from
the Treebank which can be used to insert empty



Words + POS + features
Algorithm Recall Precision F1 Recall Precision F1
MBL 56.05 63.02 59.33 78.32 79.39 78.85
GIS-MaxEnt 40.00 57.03 47.02 65.06 68.64 66.80
L-BFGS-MaxEnt 60.08 70.77 64.99 78.92 87.27 82.88

Table 9: Cross-validation on the Treebank

categories into the parser’s output. This pro-
gram will be used in conjunction with Char-
niak’s parser.

Robust Accurate Statistical Parsing (RASP)
(Briscoe and Carroll, 2002) uses a combina-
tion of statistical techniques and a hand-crafted
grammar. RASP is trained on a range of cor-
pora, and uses a more complex tagging system
(CLAWS-2), like that of the BNC. This parser,
on our data, generated full parses for 70% of the
sentences, partial parses for 28%, while 2% were
not parsed, returning POS tags only.

5.2 Reparsing the Treebank
The results of experiments using the two
parsers (Table 10) show generally similar perfor-
mance. Preiss (2003) shows that for the task of
anaphora resolution, these two parsers produce
very similar results, which is consistent with our
findings. Compared to results on the original
treebank with similar data (Table 6), the re-
sults are low, which is not surprising, given the
errors introduced by the parsing process. It is
noticeable that the addition of features has less
effect; 0-6%.

The auxiliary-final VP feature (Table 11),
which is determined by parse structure, is only
half as successful for RASP. Conversely, the
heuristic baseline, which relies on POS tags, is
more successful for RASP as it has a more de-
tailed tagset. The empty VP feature retains a
high precision of over 80%, but its recall drops
by 50% to 20%, suggesting that the empty-
category insertion algorithm is sensitive to pars-
ing errors.

Feature Rec Prec F1
Charniak close-to-punct 34.00 2.47 4.61

heur. baseline 45.33 25.27 32.45
aux-final VP 51.33 36.66 42.77
empty VP 20.00 83.33 32.25

RASP close-to-punct 71.05 2.67 5.16
heur. baseline 74.34 28.25 40.94
aux-final VP 22.36 25.18 23.69

Table 11: Performance of features on re-parsed
Treebank data

Cross-validation results (Table 12) are consis-

tent with experiments on the development set.
This is due to the fact that settings were not
optimized for the development set, but left as
they were from previous experiments. Results
here show better performance for RASP overall.

5.3 Parsing the BNC

Experiments using parsed versions of the BNC
corpora (Tables 13, 15) show similar results to
the original results (Table 1) but the features
generate only a 3% improvement, suggesting
that many of the cases in the test set can be
identified using similar contexts in the train-
ing data and the features do not add extra
information. The performance of the features
(Table 14) remain similar to those for the re-
parsed treebank experiments, except for empty
VP, where there is a 7% drop in F1, due to
Charniak’s parser being trained on the Tree-
bank only.

Feature Rec Prec F1
Charniak close-to-punct 48.00 5.52 9.90

heur. baseline 44.00 34.50 38.68
aux-final VP 53.00 42.91 47.42
empty VP 15.50 62.00 24.80

RASP close-to-punct 55.32 4.06 7.57
heur. baseline 84.77 35.15 49.70
aux-final VP 16.24 28.57 20.71

Table 14: Performance of features on parsed
BNC data

5.4 Combining BNC and Treebank
data

Combining the re-parsed BNC and Treebank
data gives a more robust training set of 1167
VPE’s and a development set of 350 VPE’s.
The results (Tables 16, 17) show only a 2-3% im-
provement when the features are added. Again,
simple contextual information is successful in
correctly identifying most of the VPE’s.

It is also seen that the increase in data size
is not matched by a large increase in perfor-
mance. This may be because simple cases are
already handled, and for more complex cases
the context size limits the usefulness of added
data. The differences between the two corpora



MBL GIS-MaxEnt L-BFGS-MaxEnt
Rec Prec F1 Rec Prec F1 Rec Prec F1

Charniak Words + POS 54.00 62.30 57.85 38.66 79.45 52.01 56.66 71.42 63.19
+ features 62.66 71.21 66.66 48.00 70.58 57.14 64.66 72.93 68.55

RASP Words + POS 55.92 66.92 60.93 43.42 56.89 49.25 51.63 79.00 62.45
+ features 57.23 71.31 63.50 61.84 72.30 66.66 62.74 73.84 67.84

Table 10: Results on re-parsed data from the Treebank

Charniak RASP
Algorithm Recall Precision F1 Recall Precision F1
MBL 58.76 63.35 60.97 61.97 71.50 66.39
GIS-MaxEnt 46.22 71.66 56.19 56.58 72.27 63.47
L-BFGS-MaxEnt 63.14 71.82 67.20 64.52 69.85 67.08

Table 12: Cross-validation on re-parsed Treebank

MBL GIS-MaxEnt L-BFGS-MaxEnt
Rec Prec F1 Rec Prec F1 Rec Prec F1

Charniak Words + POS 66.50 63.63 65.03 55.00 75.86 63.76 71.00 70.64 70.82
+ features 69.00 65.40 67.15 64.00 72.72 68.08 74.00 68.83 71.32

RASP Words + POS 61.92 63.21 62.56 64.46 54.04 58.79 65.34 70.96 68.04
+ features 71.06 73.29 72.16 73.09 61.01 66.51 70.29 67.29 68.76

Table 13: Results on parsed data from the BNC

Charniak RASP
Algorithm Recall Precision F1 Recall Precision F1
MBL 68.46 66.94 67.69 69.26 73.06 71.11
GIS-MaxEnt 61.75 72.63 66.75 67.49 72.37 69.84
L-BFGS-MaxEnt 71.10 71.96 71.53 70.68 72.22 71.44

Table 15: Cross-validation on parsed BNC

MBL GIS-MaxEnt L-BFGS-MaxEnt
Rec Prec F1 Rec Prec F1 Rec Prec F1

Charniak Words + POS 62.28 69.20 65.56 54.28 77.86 63.97 65.14 69.30 67.15
+ features 65.71 71.87 68.65 63.71 72.40 67.78 70.85 69.85 70.35

RASP Words + POS 63.61 67.47 65.48 59.31 55.94 57.37 57.46 71.83 63.84
+ features 68.48 69.88 69.17 67.61 71.47 69.48 70.14 72.17 71.14

Table 16: Results on parsed data using the combined dataset

Charniak RASP
Algorithm Recall Precision F1 Recall Precision F1
MBL 66.37 68.57 67.45 68.21 73.62 70.81
GIS-MaxEnt 61.43 74.53 67.35 66.22 72.46 69.20
L-BFGS-MaxEnt 69.78 71.65 70.70 71.00 73.22 72.09

Table 17: Cross-validation on combined dataset

may also limit the relevance of examples from
one to the other.

6 Summary and Future work

This paper has presented a robust system for
VPE detection. The data is automatically
tagged and parsed, syntactic features are ex-
tracted and machine learning is used to classify
instances. This work offers clear improvement

over previous work, and is the first to handle
un-annotated free text, where VPE detection
can be done with limited loss of performance
compared to annotated data.

• Three different machine learning algo-
rithms, Memory Based Learning, GIS-
based and L-BFGS-based maximum en-
tropy modeling are used. They give simi-
lar results, with L-BFGS-MaxEnt generally



giving the highest performance.

• Two different parsers were used, Char-
niak’s parser and RASP, achieving simi-
lar results in experiments, with RASP re-
sults being slightly higher. RASP gen-
erates more fine-grained POS info, while
Charniak’s parser generates more reliable
parse structures for identifying auxiliary-
final VP’s.

• Experiments on the Treebank give 82% F1,
with the most informative feature, empty
VP’s, giving 70% F1.

• Re-parsing the Treebank gives 67% F1
for both parsers. Charniak’s parser com-
bined with Johnson’s algorithm generates
the empty VP feature with 32% F1.

• Repeating the experiments by parsing
parts of the BNC gives 71% F1, with the
empty VP feature further reduced to 25%
F1. Combining the datasets, final results
of 71-2% F1 are obtained.

Further work can be done on extracting gram-
matical relation information (Lappin et al.,
1989; Cahill et al., 2002), or using those pro-
vided by RASP, to produce more complicated
features. While the experiments suggest a per-
formance barrier around 70%, it may be worth-
while to investigate the performance increases
possible through the use of larger training sets.
In the next stage of work, we will use machine
learning methods for the task of finding an-
tecedents. We will also perform a classification
of the cases to determine what percentage can
be dealt with using syntactic reconstruction,
and how often more complicated approaches are
required.
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