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Abstract

Information extraction from tables in web pages
is a challenging problem due to the diverse
nature of table formats and the vocabulary
variants in attribute names. This paper presents
a new approach to automated table extraction
that exploits formatting cues in semi-structured
HTML tables, learns lexical variants from
training examples and uses a vector space model
to deal with non-exact matches among labels.
We conducted experiments with this method on
a set of tables collected from 157 university web
sites, and obtained the information extraction
performance of 91.4% in the Fl-measure,
showing the effectiveness of the combined use
of structural table parsing and example-based
label learning.

1. Introduction

Tables are an important means of presenting
information and are widely used on the web for the
reason that they show relational data in a form
concise and easy to read by human eyes. Automatic
extraction of tables has applications in information
retrieval, knowledge acquisition, summarization and
web mining. A table is made of cells. Each cell is
cither a label cell (attribute name) or a data cell
(attribute value). The task of table extraction involves
differentiating between the two types of cells and
identifying the associations between labels and data.

Automatic information extraction from tables is a
challenging problem since tables are designed for
viewing by humans and not for understanding by
computers. A table which is unambiguous for humans
may still be difficult to parse by a computer. Figure 1
shows such an example: a table of student enrollment
statistics (in a particular year) provided by a
university. The layout of the table, the positions of
the labels and the data, the meaning of the words, the
shaded areas, and the contrasts between empty and

non-empty cells together make the table readable and
unambiguous for human understanding. However, it
is not so obvious how a system can identify which
cells are the attribute labels and which cells are the
attribute values. The nested structure of labels makes
the problem further complicated. For example,
“Undergraduates” and “Degree-seeking, first-time
freshmen” together define the row coordinate of a
data cell, while “Full-Time” and “Men” together
define the column coordinate of the data cell.
Clearly, for tables as in the given example, relying on
HTML tags along will not be sufficient to parse a
table and to interpret the meanings of its cells. A
better approach is to jointly use layout information
(including HTML tags) and lexical constraints in the
parsing of a table, and to learn those constraints
automatically from training examples.
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Figure 1. A table of student enrollment statistics in
a university



Another challenging issue in table extraction is
dealing with the formatting differences and lexical
variants in the tables that have the same semantic
structures. The Common Data Set (CDS) tables
available on different university web sites are a good
example. The Common Data Set (CDS) initiative is a
collaborative effort among data providers in the
higher education community and publishers to define
a standard format for university data. However, the
tables that appear on the university web sites differ
greatly in terms of HTML formatting, lexical variants
of labels, extra or missing portions in those tables,
etc. Mapping the various forms of those tables in
distributed web sites to the unified underlying
structures (predefined) is indeed a non-trivial
problem. We propose a simple and yet effective
learning algorithm that learns lexical variants of
attribute names from training examples, and that
employs a vector space model to support “fuzzy”
match between lexical variants and canonical forms
of attribute names.

In our view this is the first work which provides a
complete solution for extraction from HTML tables.
We have not encountered any experimental
evaluation of table extraction in the literature that can
be used as a reference of comparison with our work.
Therefore we have defined our own evaluation
methodology. The research questions we address here
for table extraction are: 1) how to use the layout
information provided by the HTML tags, 2) how to
learn from existing tables and predefined structures,
3) how to deal with lexical constraints of labels to
improve the efficiency, and 4) how to evaluate the
effectiveness of table extraction.

The rest of the paper has been organized as follows:
In section 2 we discuss the related work done in this
area. Section 3 describes our algorithm and Section 4
describes our experimental setup and evaluation
results. In Section 5 we present the conclusions.

2. Related Work

Previous work in table extraction has addressed open
domain tasks such as table extraction from ASCII,
OCR and HTML documents plus closed domain tasks
such as table detection, table merging and classifying
rows in tables. Approaches such as deep
understanding of the table structure and shallow
parsing of the content have been used. Knowledge
engineering techniques like heuristics based on the

formatting cues and machine learning techniques like
decision trees, SVM and conditional random fields
have been explored previously. Most work was
concentrated on extraction from ASCII tables with
some work on extraction from images like OCR texts
and from semi-structured formats like HTML.

The challenge in plain text ASCII tables is in
interpreting structural information from spaces, tabs
and ASCII character sequences like the ‘- or ‘#’ used
for creating lines. While in the HTML tables the cells
are already demarcated by the <td> tags. (Hurst and
Nasukawa, 2000; Hurst and Douglas, 1997; Hurst,
2000; Pyreddy and Croft, 1997) describe methods for
table extraction from plain and OCR scanned texts.
The features used for extracting from tables in HTML
are different and features such as spaces or tabs need
not be used to identify structure.

There has been work done in the past on the task of
table detection (Chen et al., 2000; Wang and Hu,
2002; Hu et al.,, 2000). The table detection task
involves separating tables that contain logical and
relational information from those that are used for
formatting the layout. The input to a table detection
system is documents containing both real tables and
tables used for layout formatting. The output is a
classification of the data into real tables and non-real
tables. The task of table detection is sometimes the
first step for performing table extraction because it
needs real tables. However it not a necessary step as
detection could be combined in the extraction
algorithm. Heuristics and machine learning based
approaches have been generally used to perform table
detection.

(Chen et al., 2000) presents work on table detection
and extraction on HTML tables. The table detection
algorithm wuses string, named entity and number
category similarity to decide if it is a real or non-real
table. Based on cell similarity the table extraction
algorithm identifies whether the table is to be read
row wise or column wise. They split the cells which
span over multiple cells into individual cells. The
table extraction algorithm presented in this work is
simple and works only if spanning cells are used for
nested labels. The paper did not provide evaluation
results for their table extraction algorithm.



The problem of merging different tables which are
about the same type of information has been
addressed in (Yoshida et al., 2001). The merging task
as defined in the paper considers combining different
tables into one large table. They define different
structures for tables based on the arrangement of the
labels and use Expectation Maximization to classify
the tables to one of the defined structures. The
structure  recognition task is similar to the
classification task. However structure recognition or
merging does not solve the table extraction problem.

Table extraction by wrapper learning has been
explored in (Cohen et al., 2002). Wrappers learn rules
based on examples. The rules are composed of tokens
made of HTML tags or the content itself. The rules
tend to be specific and can be applied only to those
documents whose structure is similar to the training
documents. The use of tokens to compose rules makes
it difficult to generalize across distributed websites.
Hence wrappers learned for one website cannot be
used on another website. No clear evaluation for table
extraction has been described this work.

Conditional random fields for table extraction from
ASCII tables have been described in (Pinto et al.,
2003). However the system described does not
perform a complete table extraction task — it only
classifies the rows of the table into a type such as
“datarow”, “sectionheader” or “superheader”. They
used a set of 12 types (classes) and achieve a
precision of 93.5% for the classification task. Work
presented in (Pyreddy and Croft, 1997; Pinto et al.,
2002) also focused on the task of classifying table
rOws.

3. Methodology

The HTML format is a hierarchical markup language
where the markup tags define the layout of the
information. The <TABLE> tag is used in HTML
documents to construct tables. The following tags are
used in HTML to define tables:

e <table>....</table> - the tag enclosing the
whole table.

e <tr>...</tr> - the tag that defines a row in the
table.

e <td>...</td> - the tag that defines a column
in each row. It identifies a cell in the table.

e <th>...</th> - the tag used instead of <td> to
define that the information in the cell is a
header information.

e <caption>...<caption> - the tag used to put
caption for the table.

Often the <TABLE> tag is used for formatting the
content in the web pages too. Therefore we use a
table detection system to filter out the real tables from
those used for formatting the layout. The program is
developed by our group and uses decision trees to
learn rules using features like cell similarity, number
of cells and type of cells. It is a simplified version of
the table detection algorithm using decision trees
described in (Wang and Hu, 2002).

In spite of tags demarcating a cell boundary in HTML
tables, it is still difficult to automatically identify the
labels for each data cell, as the tables are designed for
visual interpretation and not for automatic extraction.
Figure 1 shows example of a table with hierarchical
labels for the rows and spanning cells for column
labels. Such tables though easy to read, are difficult
to automatically assign correct labels for each data
cell. Our algorithm processes the tables and brings it
to a form where it is in a uniform two dimensional
structure. There is no nesting of labels in the
processed structure. In this form the data cells are
separated from the label cells and are associated only
with labels in the same row or columns. One of the
important contributions of our work is learning labels
and using them for structure recognition. In Section
3.1 we describe the method for learning the labels and
in the next section we present our algorithm.

3.1 Learning Labels

Tables have two types of information: the label
information and the data. The labels are the attributes
of the data. If the some of the labels of these tables
are known, then this information can be used to
identify the structure of the tables, which in turn will
help assign the right labels to the data cells. Since
tables are a semi-structured form of representing data,
the labels are present in a regular format where
consecutive label cells appear either in a row or a
column. Locating the known labels in a table will
help differentiating the label rows and columns from
the data rows and columns.



Our system is provided with tables as examples with
labels in them marked. The label learning algorithm
proceeds as follows:

1. The labels from the example tables are
extracted and indexed.

2. Labels whose relative string edit distance is
less than 0.09 are merged together. Relative
edit distance is the ratio of number of edit
operations (Levenstein, 1966) and the length
of the string. Relative edit distance measure
is not symmetric; therefore we consider the
larger of the two relative edit distances.

3. A ranked list of these labels, obtained by
thresholding on term frequency, is used by
the extraction algorithm.

Use of relative edit distance limits the merging of
lexical variants in labels to those whose edit distance
to string length ratio is less than the threshold. The
threshold for the relative edit distance is empirically
set to a value that maximizes the performance.
Identifying labels in a table will help separating the
data cells from the label cells. For example, if 50% of
the cells in a column are identified as labels then the
rest of the cells in the column are also labels. This
heuristic is used because there is a regularity in
appearance of labels in tables, which implies that if
most of the cells in a column are labels, then rest of
the cells are labels too.

3.2 Algorithm for Table Extraction

The algorithm starts by parsing the content in the
<TABLE> tag. It uses a set of heuristics in
conjunction with the labels learnt from the examples,
to recognize the structure. The examples of some of
these heuristics are shown in the Figure 1. The
heuristics used to recognize the structure are given
below:

e Span tag: The <td> tags in HTML can
contain the attribute ‘span’ which specifies
the number of row cells or column cells that
the current cell spans. We recognize the span
attribute in the tags and use this information
to assign the spanning cell to multiple rows
and columns.

e Rows with empty data cells: After separating
the label cells from the data cells, we identify
rows with empty data cells. If the previous

data row is not empty and the next data row is
also not empty, then the label of the current
row is a super row label. A super-row label is
one which spans over the row labels below it.
Examples of super-row labels are shown in
Figure 1.

e Single row cell in a row: If there is only one
row cell in a row and that cell contains a
label, then naturally the label is a super row
label.

e Single empty data cell: If there is only one
data cell in a row and the cell is empty then
the label for that row is a super row label.

The algorithm proceeds as below:

1. Parse the table and read the contents into a
array. Also store the attributes of the cell like
‘span’ etc into another array. The cell i,j of
the array corresponds to the cell i,j in the
table. Use HTML Tidy or any other similar
tool to handle errors in HTML. We use
modules built in the Perl HTML parser to
handle this.

2. For each cell process the HTML attributes
like the ‘span’ attribute. Split the spanning
cell into as many cells as it spans.

3. Use the labels learnt to identify data cells and
label cells. The vector space model is used
for matching non-exact labels by considering
each label as a vector of terms. To identify
column labels parse each row. Match the
contents of the cells in the row with the
column labels learnt. If the similarity is
greater than the threshold then set that row as
containing column labels. Perform similar
operation on the columns of the table to
identify the columns containing the row
labels. A threshold of 0.45 was used in our
experiments. Separate the data cells from the
labels cells and split the label cells into row
label cells and column label cells.

4. Identify super-rows using the heuristics
described previously. Perform  partial
matching with the super-row labels learnt. A
relative string edit distance of less than or
equal to 0.25 was considered as the threshold.
Concatenate the super label with the label



cells below it until another super label is
found or the end of the table is reached.
Delete the row which contained the super
label.

5. For each data cell extract the corresponding
column labels and row labels. Output the
results in XML format.

The extraction algorithm first separates the data cells
from the label cells. It then expands the spanning
cells. The super labels are identified and expanded
appropriately. Then the result is outputted in XML
format. Figure 2 shows extraction results from a table
similar to the one in Figure 1.

<catlist filename="bl-evalation/www niowa edus~provostuFedsFeds00.htm 3 himl">
<Table category="newlabels-corr" 1d="1" year="2000"
<level( >
<element rowlabel)="nndergradnates” towlabell="degree-seeking, first-time frestunen colnmulabel0="full-time"
columnlabel1="men" >1,584</element>
element rowlabel)="mndergraduates towlabel =
columnlabel [="women" >2,105</element
<element rowlabel0="undergraduates" rowlabel 1="degr
columnlabel1="men" >13</element
<element rowlabel)="undergraduates” rowlabel =" degree-seeking, first-time freshmen” cohunnlabel0="part-time"
columnlabel1="women" >31</element>
</level0
levell
element rowlabel="udergraduates” rowlabel 1=
columnlabell="men" >695</element>
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colnmulabell="women" ~30</element
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columnlabell="women" »32</element>
Nevell

Figure 2. Extraction results

4. Experiments

Since there has not been significant work in the area
of table extraction from HTML, there have been no
clear baselines. We define the baseline for our
experiments as an algorithm which does not learn
from examples and does not use the heuristics
defined. For our experiments we collected from 157
university web sites HTML pages that contained
tables. These tables are part of the Common Data Set
and are semantically similar across websites. The
Common Data Set organization defines specific
format for data from universities in Unites States of
America. The table detection program was used to
identify the real tables from the non-real tables in the
webpages. We used eight different types of tables and
had two evaluation sets consisting of 193 and 55

tables. In Section 4.1 we describe the evaluation
methodology. The experiments conducted and the
results achieved are described in section 4.2.

4.1 Evaluation Methodology

The evaluation set consisted of 55 tables of 7
different types and 193 tables of the type B1 from the
Common data Set. A user interface was created to
annotate the tables manually. All the data cells in the
tables were identified and each data cell was
annotated with corresponding labels. The unit for
evaluation is a data cell. The evaluation methodology
is described in Figure 3.

In Figure 3, a ‘yes’ by the system or the human
annotation means that all the labels for the data cell
were identified correctly. The cell “a” is incremented
by one if the human annotation and the system result
agree completely on all the labels for a data cell. The
cell “b” is added a score of one if the system
extracted data cell is incorrect or its labels are
incorrect. The cell “c” is incremented by one if the
system misses a data cell identified by the human
annotator. The cell “d” is ignored in the evaluation
measure. The formulas for Precision, Recall and F1-
measure are given in the Figure 3.

Human Annotated Results
Table Extraction Yes No
Resulis Yes a b
No c d

Precision P =a/ (ath)
Recall R=a/ (atc)
Fl-measure={2*P * R} /(P +R)

Figure 3. Evaluation Methodology

The baseline used in our experiments does not use the
heuristics and the labels learnt. This system identifies
the first row and the first column of a table as label
rows and columns respectively. The rest of the cells
are assigned as data cells. For each of the data cells
the cells in the beginning of the same row and column
are selected as label cells. For example if the data cell
is given by the index i,j then column label is the cell
1,j and the row label is the cell i, /. If the cells /,j or
i,1 is empty then no label is assigned to the data cell.

4.2 Experiments Conducted
The first experiment was conducted on seven types of
tables from the Common Data Set. The types of tables



selected were B2, C1, C5, C9-1, C9-2, C9-3 and H1.
The tables of type C and B are simple tables with just
the first row being labels or both the first row and
first column being labels. The tables of type H1 were
the most complicated type which had super labels for
rows. These tables at times had lot of empty data cells
which made recognition of super labels for the rows
difficult. There were also unwanted labels that were
not part of CDS and hence were not annotated. In our
experiments we removed such labels. For this
experiment the labels were learnt from the CDS
definition.

Table Baseline Our System
Type

Precision | Recall | F1 Precision | Recall | F1
B2 5922 6455 6177 | 7618 8359 791
C1 ] 0 ] 100 100 100
C5 3233 Teh 4537 | 8695 84 50 8570
C9-1 | 6857 100 8135 | 100 100 100
92 | 100 100 100 100 100 100
93 | 666 100 7995 | 100 100 100
Hl ] 0 ] 95774 79.88 27.09

Table 1. Precision, Recall and F1 values on 7 types
of tables
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2 d 4 5] 5] 7 8 Complete
Number of Training Bxamples Label
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Figure 4. Precision, Recall and F1 values by
selecting different number of examples

Table 1 shows the results of performance of the
baseline system and our table extraction system. It
can be seen that though the baseline system performs
well on simple tables, the performance on

complicated tables is poor. On the tables of type Cl
the performance of the baseline was poor because
there were no column labels but it assumed the first
row to contain column labels. Our system achieved a
combined recall of 87.84%, precision of 95.31% and
Fl-measure of 91.42%, based on the evaluation
measure described in the previous section. Our
system performed significantly better than the
baseline which had a combined F1 score of 48.0%.
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Figure 5. Variance of the Precision and Recall
Values with the number of examples

The second experiment was conducted on the 193 Bl
tables to evaluate the advantage of learning from
examples. The B1 tables (example shown in Figure 1)
have a complicated structure. They have nested
column labels and super-row labels. In this
experiment the precision, recall and F1 values were
measured while increasing the number of examples.
A pool of 10 examples was used for the experiments.
The results of the experiments are shown in Figure 4.
Each point on the x-axis corresponds to the number of
training examples used for learning. The y-value is
the mean of the scores of ten trails of randomly
chosen examples from the set of '°C, possible
combinations. Almost all the tables in our dataset had
the complete label information. Therefore we induced
incomplete label information into the ten examples by
randomly removing some labels. This represents a



real world example where a single example table may
not have complete label information and complete
information is available by increasing the number of
examples. Figure 4 shows the values of recall,
precision and Fl-measure for this experiment. The
variance of the precision and recall has also been
plotted separately in Figure 5. The performance of the
system improves as the number of examples are
increased. The performance saturates to the best
performance. The best performance has a precision of
94.29%., recall of 80.04% and F1 measure of 86.76%
when complete label information has been used. An
extraction performance with high precision and good
recall can be used to input the results of the extraction
into a relational database. The results also show that
the precision of our algorithm converges quickly and
has low variance. Such a system is well suited to
extract data that can be used as input to relational
databases. Our system was used to extract data from
the web pages of the 157 universities and store it into
a relational database.

5. Conclusion

The work presented in this paper provides a simple
and yet effective algorithm for performing the
complete task of automatic table extraction, including
the differentiation between labels and data, and the
association of each data cell with the correct labels.
Our approach leverages the formatting cues present in
HTML tags, the knowledge about the semantic
structures of tables, and the power of example-based
learning. Our evaluation on a set of tables from 157
university web sites shows a performance level of
91.4% in the F1 measure. To our knowledge, this is
the first evaluation on the complete task of table
extraction, and the effectiveness of this approach is
evident.
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