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Abstract

This paper addresses the mitigation of medi-
cal errors due to the confusion of sound-alike
and look-alike drug names. Our approach
involves application of two new methods—
one based on orthographic similarity (“look-
alike™) and the other based on phonetic sim-
ilarity (“sound-alike”). We present a new
recall-based evaluation methodology for deter-
mining the effectiveness of different similar-
ity measures on drug names. We show that
the new orthographic measure (BI-SIM) outper-
forms other commonly used measures of sim-
ilarity on a set containing both look-alike and
sound-alike pairs, and that the feature-based
phonetic approach (ALINE) outperforms or-
thographic approaches on a test set contain-
ing solely sound-alike confusion pairs. How-
ever, an approach that combines several differ-
ent measures achieves the best results on both
test sets.

1 Introduction

Many hundreds of drugs have names that either
look or sound so much alike that doctors, nurses
and pharmacists can get them confused, dispens-
ing the wrong one in errors that can injure or even
kill patients. In the United States alone, an esti-
mated 1.3 million people are injured each year from
medication errors, such as administering the wrong
dose or the wrong drug (Lazarou et al., 1998).1
The U.S. Food and Drug Administration has sought
to mitigate this threat by ensuring that proposed
drug names that are too similar to pre-existing drug
names are not approved (Meadows, 2003).

A number of different lexical similarity measures
have been applied to the problem of identifying con-
fusable drug names. Lambert et al. (1999) tested
twenty two distinct methods on a set of drug names
extracted from published reports of medication er-
rors. The methods included well-known universal
measures, such as edit distance and longest common

IFor example, a patient needed an injection of Narcan but
instead got the drug Norcuron and went into cardiac arrest.
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subsequence, several variations of measures based
on counting common letter n-grams, and measures
designed specifically for associating phonetically
similar names, such as Soundex and Editex. They
identified the normalized edit distance, Editex, and
a trigram-based measure as the most accurate.

The evaluation methodology of Lambert et al.
(1999) involves repeated selection of cut-off thresh-
olds in order to compute precision and recall on a
test set that contains equal number of positive and
negative examples of confusable drug name pairs.
However, our own experience with systems for au-
tomatic detection of potential drug-name confusions
suggests that the usual approach is to examine a
fixed number of most similar candidates rather than
all candidates with similarity above certain thresh-
old. Moreover, the number of non-confusable pairs
can be expected to greatly exceed the number of
confusable pairs.

We present a different method of evaluating the
accuracy of a measure. Starting from a set of con-
fusable drug name pairs, we combinatorially induce
a much larger set of negative examples. The re-
call is calculated against an on-line gold standard
for each potentially confusable drug name consid-
ering only the top & candidate names returned by
a similarity measure. The recall values are then
aggregated using the technique of macro-averaging
(Salton, 1971).

We formulate a general framework for represent-
ing word similarity measures based on n-grams, and
propose a new measure of orthographic similarity
called BI-SIM that combines the advantages of sev-
eral known measures. Using our recall-based evalu-
ation methodology, we show that this new measure
performs better on a U.S. pharmacopeial gold stan-
dard than the measures identified as the most accu-
rate by Lambert et al. (1999).

Some potential drug-name confusions can be at-
tributed solely to high phonetic similarity. Con-
sider the example of Xanax vs. Zantac—two brand
names that the Physicians’ Desk Reference (PDR)
warns may be “mistaken for each other ... lead[ing]



Distance Similarity
Orthographic | EDIT N-GRAM
NED LCSR
Phonetic SOUNDEX | ALINE
EDITEX

Table 1: Classification of word distance and simi-
larity measures.

to serious medication errors” (24th Ed., 2003). The
phonetic transcription of the two names, [za&enaks]
and [zeenteek], reveals their sound-alike similarity
that is not apparent in their orthographic form.
For the detection of sound-alike confusion pairs,
we apply the ALINE phonetic aligner (Kondrak,
2000), which estimates the similarity between two
phonetically-transcribed words. We demonstrate
that ALINE outperforms orthographic approaches
on a test set containing sound-alike confusion pairs.

The next section describes several commonly-
used measures of word similarity. After this, we
present two new methods for identifying look-alike
and sound-alike drug names. We then compare the
effectiveness of various measures using our recall-
based evaluation methodology on a U.S. pharma-
copeial gold standard and on another test set con-
taining sound-alike confusion pairs. We conclude
with a discussion of our experimental results.

2 Background

Drug-name matching refers to the process of string
matching to rank similarity between drug names.
There are two classes of string matching: ortho-
graphic and phonetic. For each of these, there are
two methods of matching: distance and similarity.
If two drug names are confusable, their distance
should be small and their similarity should be large.
Some examples of orthographic and phonetic algo-
rithms for both distance- and similarity-based ap-
proaches are shown in Table 1.

In the remainder of this section, we describe a
number of measures that have been applied to the
problem of identifying confusable drug names. Spe-
cific examples of values obtained by the measures
are provided in Table 2.

String-edit distance (Wagner and Fischer, 1974)
(EDIT) (also known as Levenshtein distance)
counts up the number of steps it takes to transform
one string into another, where the cost of substi-
tution is the same as the cost of insertion or dele-
tion. A normalized edit distance (NED) is calcu-
lated by dividing the total edit cost by the length of
the longer string.

The longest common subsequence ratio
(Melamed, 1999) (LCSR) is computed by dividing

Measure Zantac/ Zantac/ Xanax/
Xanax Contac Contac
EDIT 3 2 4
NED 0.500 0.333 0.667
LCSR 0.500 0.667 0.333
BIGRAM 0.222 0.600 0.000
TRIGRAM-2B 0.000 0.333 0.000
SOUNDEX 3 1 3
EDITEX 5 2 7
ALINE 9.542 9.333 8.958
BI-SIM 0.417 0.583 0.250
TRI-SIM 0.333 0.500 0.167
PREFIX 0.000 0.000 0.000

Table 2: Examples of values returned by various
measures.

the length of the longest common subsequence by
the length of the longer string. LCSR is closely
related to normalized edit distance. If the cost
of substitution is at least twice the cost of inser-
tion/deletion and the strings are of equal length,
LCSR is equivalent to the normalized edit distance.

In n-gram measures, the number of n-grams that
are shared by two strings is doubled and then di-
vided by the total number of n-grams in each string:

2 X |n-grams(z) N n-grams(y)|
|n-grams(z)| + |n-grams(y)|

where n-grams(x) is a multi-set of letter n-grams
in z. This formula is often referred to as the Dice
coefficient. A slight variation of this measure is ob-
tained by adding extra symbols, such as spaces, be-
fore and/or after each string (Lambert et al., 1999).
The modification is designed to increase sensitivity
to the beginnings and endings of words. For ex-
ample, TRIGRAM-2B is calculated by applying the
Dice formula with n = 3 after adding two spaces
before each string. In this paper, we consider two
specific variants: BIGRAM, which is the most ba-
sic formulation, and TRIGRAM-2B.2

SOUNDEX (Hall and Dowling, 1980) is
an approximation to phonetic name matching.
SOUNDEX transforms all but the first letter to nu-
meric codes (see Table 3) and after removing ze-
roes truncates the resulting string to 4 characters.
For the purposes of comparison, we implemented
a SOUNDEX-based similarity measure that returns
the edit distance between the corresponding codes.

EDITEX (Zobel and Dart, 1996) is another quasi-
phonetic measure that combines edit distance with a
letter-grouping scheme similar to SOUNDEX (Ta-
ble 3). As in SOUNDEX, the codes are designed

2TRIGRAM-2B was identified by Lambert et al. (1999)
as particularly effective for identifying confusable drug name
pairs.



Code | SOUNDEX EDITEX
0 aehiouwy | aeiouy
1 bfpv bp
2 cgjkgsxz | ckq
3 dt dt
4 | Ir
5 mn mn
6 |r 9]

7 fpv
8 SXz
9 csz

Table 3: Character conversion codes in SOUNDEX
and EDITEX.

to identify letters that have similar pronunciations,
but the corresponding sets of letters are not disjoint.
The edit distance between letters that belong to the
same group is smaller than the edit distance between
other letters. Additional rules are aimed at eliminat-
ing silent and reduplicated letters.

3 Phonetic Similarity: ALINE

The ALINE cognate matching algorithm (Kon-
drak, 2000) assigns a similarity score to pairs of
phonetically-transcribed words on the basis of the
decomposition of phonemes into elementary pho-
netic features. The algorithm was initially designed
to identify and align cognates in vocabularies of re-
lated languages (e.g. colour and couleur). Never-
theless, thanks to its grounding in universal phonetic
principles, the algorithm can be used for estimating
the similarity of any pair of words, including drug
names. Furthermore, unlike SOUNDEX and EDI-
TEX, ALINE is completely language-independent.

The principal component of ALINE is a func-
tion that calculates the similarity of two phonemes
that are expressed in terms of about a dozen binary
or multi-valued phonetic features (Place, Manner,
\oice, etc.). Feature values are encoded as floating-
point numbers in the range [0, 1]. For example, the
feature Manner can take any of the following seven
values: stop = 1.0, affricate = 0.9, fricative = 0.8,
approximant = 0.6, high vowel = 0.4, mid vowel
= 0.2, and low vowel = 0.0. The numerical values
reflect the distances between vocal organs during
speech production. The phonetic features are as-
signed salience weights that express their relative
importance.

The overall similarity score and optimal align-
ment of two words—computed by a dynamic pro-
gramming algorithm (Wagner and Fischer, 1974)—
is the sum of individual similarity scores between
pairs of phonemes. A constant insertion/deletion
penalty is applied for each unaligned phoneme. An-
other constant penalty is set to reduce relative im-
portance of the vowel—as opposed to consonant—

phoneme matches. The similarity value is normal-
ized by the length of the longer word.

ALINE’s behavior is controlled by a number of
parameters: the maximum phonemic score, the in-
sertion/deletion penalty, the vowel penalty, and the
feature salience weights. The parameters have de-
fault settings for the cognate matching task, but
these settings may not be appropriate for drug-name
matching. The settings can be optimized (tuned) on
a training set that includes positive and negative ex-
amples of confusable name pairs.

4 Orthographic Similarity: BI-SIM

An analysis of the reasons behind the unsatisfactory
performance of commonly used measures led us to
propose a new measure of orthographic similarity:
BI-SIM.3 Below, we describe the inherent strengths
and weaknesses of n-gram and subsequence-based
approaches. Next, we present a new, generalized
framework that characterizes a number of com-
monly used similarity measures. Following this, we
describe the parametric settings for BI-SIM—a spe-
cific instantiation of this generalized framework.

4.1 Problemswith Commonly Used M easures

The Dice coefficient computed for bigrams (BI-
GRAM) is an example of a measure that is demon-
strably inappropriate for estimating word similar-
ity. Because it is based exclusively on com-
plete bigrams, it often fails to discover any sim-
ilarity between words that look very much alike.
For example, it returns zero on the pair Vere-
lan/Virilon. In addition, it violates a desirable re-
quirement of any similarity measure that the maxi-
mum similarity of 1 should only result when com-
paring identical words. In particular, non-identical
pairs* like Xanex/Nexan—where all bigrams are
shared—are assigned a similarity value of 1. More-
over, it sometimes associates bigrams that occur
in radically different word positions, as in the pair
Voltaren/Tramadol. Finally, the initial segment,
which is arguably the most important in determining
drug-name confusability,® is actually given a lower
weight than other segments because it participates
in only one bigram. It is therefore surprising that
BIGRAM has been such a popular choice of mea-
sure for computing word similarity.

LCSR is more appropriate for identifying poten-
tial drug-name confusability because it does not rely

3BI-SIM was developed before we conducted the experi-
ments described in Section 6.

“This observation is due to Ukkonen (1992).

574.2% of the confusable pairs in the pharmacopeial gold
standard (Section 6) have identical initial segments.



on (frequently imprecise) bigram matching. How-
ever, LCSR is weak in its tendency to posit non-
intuitive links, such as the ones between segments in
Benadryl/Cardura. The fact that it returns the same
value for both Amaryl/Amikin and Amaryl/Altoce
can be attributed to lack of context sensitivity.

4.2 A Generalized N-gram Measure

Although it may not be immediately apparent,
LCSR can be viewed as a variant of the n-gram ap-
proach. If n is set to 1, the Dice coefficient for-
mula returns the number of shared letters divided
by the average length of two strings. Let us call this
measure UNIGRAM. The main difference between
LCSR and UNIGRAM is that the former obeys the
no-crossing-links constraint, which stipulates that
the matched unigrams must form a subsequence of
both of the compared strings, whereas the latter dis-
regards the order of unigrams. E.g., for pat/tap,
LCSR returns 0.33 because the length of the longest
common subsequence is 1, while UNIGRAM re-
turns 1.0 because all letters are shared. The other,
minor difference is that the denominator of LCSR is
the length of the longer string, as opposed to the av-
erage length of two strings in UNIGRAM. (In fact,
LCSR is sometimes defined with the average length
in the denominator.)

We define a generalized measure based on n-
grams with the following parameters:

1. The value of n.

2. The presence or absence of the no-crossing-
links constraint.

3. The number of segments appended to the be-
ginning and the end of the strings.

4. The length normalization factor: either the
maximum or the average length of the strings.

A number of commonly used similarity measures
can be expressed in the above framework. The com-
bination of n = 1 with the no-crossing-links con-
straint produces LCSR. By selecting n = 2 and
the average normalization factor, we obtain the Bl-
GRAM measure. Thirteen out of twenty two mea-
sures tested by Lambert et al. (1999) are variants
that combine either n = 2 or n. = 3 with various
lengths of appended segments.

So far, we have assumed that there are only two
possible values of n-gram similarity: identical or
non-identical. This need not be the case. Obviously,
some non-identical n-grams are more similar than
others. We can define a similarity scale for two n-
grams as the number of identical segments in the

corresponding positions divided by n:

1 n

=1

s$(T1. . Xn,Y1--Yp) =

where id(a, b) returns 1 if a and b are identical, and
0 otherwise. The scale distinguishes n levels of sim-
ilarity, including 1 for identical bigrams, and O for
completely distinct bigrams.®

The notion of similarity scale between n-grams
requires clarification in the case of n-grams partially
composed of segments appended to the beginning or
end of strings. Normally, extra affixes are composed
of one or more copies of a unique special symbol,
such as space, that does not belong to the string al-
phabet. We define an alphabet of special symbols
that contains a unique symbol for each of the sym-
bols in the original string alphabet. The extra affixes
are assumed to contain copies of special symbols
that correspond to the initial symbol of the string.
In this way, the similarity between pairs of n-grams
in which one or both of the n-grams overlap with an
extra affix is guaranteed to be either 0 or 1.

4.3 BI-SIM

We propose a new measure of orthographic simi-
larity, called BI-SIM, that aims at combining the
advantages of the context inherent in bigrams, the
precision of unigrams, and the strength of the no-
crossing-links constraint. BI-SIM belongs to the
class of n-gram measures defined above. Its param-
eters are: n = 2, the no-crossing-links constraint
enforced, a single segment appended to the begin-
ning of the string, normalization by the length of the
longer string, and multi-valued n-gram similarity.

The rationale behind the specific settings is as fol-
lows. » = 2 is a minimum value that provides con-
text for matching segments within a string. The no-
crossing-links constraint guarantees the sequential-
ity of segment matches. The segment added to the
beginning increases the importance of the match of
initial segment. The normalization method favors
associations between words of similar length. Fi-
nally, the refined n-gram similarity scale increases
the resolution of the measure.

BI-SIM is defined by the following recurrence:
f(zaj) = maX(f(’L—].,j),f(’L,]—].),
f(’l - 15.7 - 1) + S(xi—lxiayj—lyj))a

5The scale could be further refined to include more levels of
similarity. For example, bigrams that are frequently confused
because of their typographic or cursive shape, such as en/im,
could be assigned a similarity value that corresponds to the fre-
quency of their confusions.



where s refers to the n-gram similarity scale defined
in Section 4.2, and x¢ and ¥, are the appended seg-
ments. Furthermore, f(7,7) is defined to be 0 if
i = 0orj = 0. The recurrence relation exhibits
strong similarity to the relation for computing the
longest common subsequence except that the sub-
sequence is composed of bigrams rather than uni-
grams, and the bigrams are weighted according to
their similarity. Assuming that the segments ap-
pended to the beginning of each string are chosen
according to the rule specified in Section 4.2, the
returned value of BI-SIM always falls in the inter-
val [0, 1]. In particular, it returns 1 if and only if the
strings are identical, and 0 if and only if the strings
have no segments in common.

BI-SIM can be seen as a generalization of LCSR:
the setting of n = 1 reduces BI-SIM to LCSR
(which could also be called UNI-SIM). On the other
hand, the setting of n = 3 yields TRI-SIM. TRI-
SIM requires two extra symbols at the beginning of
the string.

5 Evaluation Methodology

We designed a new method for evaluating the ac-
curacy of a measure. For each drug name, we sort
all the other drug names in the test set in order of
decreasing value of similarity. We calculate the re-
call by dividing the number of true positives among
the top k£ names by the total number of true pos-
itives for this particular drug name, i.e., the frac-
tion of the confusable names that are discovered
by taking the top k similar names. At the end
we apply an information-retrieval technique called
macro-averaging (Salton, 1971) which averages the
recall values across all drug names in the test set.’

Because there is a trade-off between recall and
the k threshold, it is important to measure the re-
call at different values of k. Table 4 shows the top 8
names that are most similar to Toradol according to
the BI-SIM similarity measure. A ‘+’/*=" mark indi-
cates whether the pair is a true confusion pair. The
pairs are listed in rank order, according to the score
assigned by the indicated algorithm. Names that re-
turn the same similarity value are listed in the re-
verse lexicographic order. Since the test set contains
four drug names that have been identified as confus-
able with Toradol (Tramadol, Torecan, Tegretol, and
Inderal), the recall values are 0.50 for £ = 5, and
for 0.75 for k = 8.

"We could have also chosen to micro-average the recall
values by dividing the total number of true positives discov-
ered among the top k candidates by the total number of true
positives in the test set. The choice of macro-averaging over
micro-averaging does not affect the relative ordering of simi-
larity measures implied by our results.

Name Score  +/- Recall
1. Tramadol 0.6875 + 0.25
2. Tobradex 0.6250 - 0.25
3. Torecan 0.5714 + 0.50
4,  Stadol 05714 - 0.50
5. Torsemide 0.5000 - 0.50
6. Theraflu 0.5000 - 0.50
7.  Tegretol 0.5000 + 0.75
8. Taxol 0.5000 - 0.75

Table 4: Top 8 names that are most similar to
Toradol according to the BI-SIM similarity mea-
sure, and the corresponding recall values.

6 Experimentsand Results

We conducted two experiments with the goal of
evaluating the relative accuracy of several mea-
sures of similarity in identifying confusable drug
names. The first experiment was performed against
an online gold standard: the United States Pharma-
copeial Convention Quality Review, 2001 (hence-
forth the USP set). The USP set contains both look-
alike and sound-alike confusion pairs. We used 582
unique drug names from this source to combinator-
ically induce 169,071 possible pairs. Out of these,
399 were true confusion pairs in the gold standard.
The maximum number of true positives was 6, but
for the majority of names (436 out of 582), only one
confusable name is identified in the gold standard.
On average, the task was to identify 1.37 true posi-
tives among 581 candidate names.

We computed the similarity of each name pair us-
ing the following similarity measures: BIGRAM,
TRIGRAM-2B, LCSR, EDIT, NED, SOUNDEX,
EDITEX, BI-SIM, TRI-SIM, ALINE and PREFIX.
PREFIX is a baseline-type similarity measure that
returns the length of the common prefix divided by
the length of the longer string. In addition, we
calculated the COMBINED measure by taking the
simple average of the values returned by PREFIX,
EDIT, BI-SIM, and ALINE.

In order to apply ALINE to the USP set, all
drug names were transcribed into phonetic symbols.
This transcription was approximated by applying a
simple set of about thirty regular expression rules.
(It is likely that a more sophisticated transcription
method would result in improvement of ALINE’s
performance.) In the first experiment, the parame-
ters of ALINE were not optimized; rather, they were
set according to the values used for a distinct task of
cross-language cognate identification.

In Figure 1, the macro-averaged recall values
achieved by several measures on the USP set are
plotted against the cut-off k. Some measures have
been left out in order to preserve the clarity of the
plot. Table 5 contains detailed results for & = 10
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Figure 1: Recall at various thresholds for the USP
test set.

USP Set Phono Set

top10 top20 topl0 top 20
PREFIX 0.5651 0.6658 0.2981 0.3478
EDIT 0.7506 0.8130 0.5139 0.6410
NED 0.7846  0.8489 0.5590 0.6639
LCSR 0.7375 0.8333 0.4663 0.5769
BIGRAM 0.6362 0.7148 0.3560 0.4400
TRIGRAM-2B  0.7335 0.8251 0.4674 0.5355
SOUNDEX 0.3965 0.4898 0.2331 0.3326
EDITEX 0.7558 0.8155 0.5864 0.6911
ALINE 0.7503 0.8303 0.5825 0.6873
BI-SIM 0.8220 0.8927 0.4838 0.6590
TRI-SIM 0.8324 0.8946 0.4782 0.6245
COMBINED 0.8560 0.9137 0.6462 0.7737

Table 5: Recall at £ = 10 and k& = 20 for both the
USP and the sound-alike test sets.

and k = 20 for all measures.

Since the USP set contains both look-alike and
sound-alike name pairs, we conducted a second ex-
periment to compare the performance of various
measures on sound-alike pairs only. We used a pro-
prietary list of 276 drug names identified by ex-
perts as “names of concern” for 83 “consult” names.
None of the “consult” names and only about 25%
of the “names of concern” are in the USP set, i.e.,
there are no true positive pairs shared between the
two sets. The maximum number of true positives
was 11, while the average for all names was 3.33.

The measures were applied to calculate the sim-
ilarity between each of the 83 “consult” names and
a list of 2596 drug names. The results are shown
in Figure 2. Since the task, which involved identi-
fying, on average, 3.33 true positives among 2596
candidates, was more challenging, the recall values
are lower than in Figure 1. All drug names were first
converted into a phonetic notation by means of a set
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Figure 2: Recall at various thresholds for the sound-
alike test set.

of regular expression rules. (We found that phonetic
transcription led to a slight improvement in the re-
call values achieved by the orthographic measures.)
The parameters of ALINE used in this experiment
were optimized beforehand on the USP set.

7 Discussion

The results described in Section 6 clearly indi-
cate that BI-SIM and TRI-SIM, the newly proposed
measures of similarity, outperform several currently
used measures on the USP test set regardless of the
choice of the cutoff parameter k. However, a sim-
ple combination of several measures achieves even
higher accuracy. On the sound-alike confusion set,
EDITEX and ALINE are the most effective. The
accuracy achieved by the best measures is impres-
sive. For the combined measure, the average recall
on the USP set exceeds 90% with only the 15 top
candidates considered.

The USP test set has its limitations. The set in-
cludes pairs that are considered confusable for other
reasons than just phonetic or orthographic simi-
larity, including illegible handwriting, incomplete
knowledge of drug names, newly available prod-
ucts, similar packaging or labeling, and incorrect
selection of a similar name from a computerized
product list. In many cases, the names do not sound
or look alike, but when handwritten or communi-
cated verbally, these names have caused or could
cause a mix-up. On the other hand, many clearly
confusable name pairs are not identified as such
(e.g. Erythromycin/Erythrocin, Neosar/Neoral, Lo-
razepam/Flurazepam, Erex/Eurax/Urex, etc.).

All similarity measures have their own



strengths and weaknesses. N-GRAM is ef-
fective at recognizing pairs such as Chlorpro-
mazine/Prochlorperazine, where a shorter name
closely matches parts of the longer name. However,
this advantage is offset by its poor performance on
similar-sounding names with few shared bigrams
(Nasarel/Nizoral). LCSR is able to identify pairs
where common subsequences are interleaved
with dissimilar segments, such as Asparagi-
nase/Pegaspargase, but fails on similar sounding
names where the overlap of identical segments is
minimal (Luride/Lortab). ALINE detects phonetic
similarity even when it is obscured by the orthogra-
phy (eg. Xanax/Zantac), but phonetic transcription
is required beforehand.

The idiosyncrasies of individual measures are at-
tenuated when they are combined together, which
may explain the excellent performance of the com-
bined measure. Each measure is focused on a par-
ticular facet of string similarity: initial segments in
PREFIX, phonetic sound-alike quality in ALINE,
common clusters in bigram-based measures, overall
transformability in EDIT, etc. For this reason, a syn-
ergistic blend of several measures achieves higher
accuracy than any of its components.

Our experiments confirm that orthographic ap-
proaches are superior to their phonetic counterparts
in tasks involving string matching (Zobel and Dart,
1995). Nevertheless, phonetic approaches identify
many sound-alike names that are beyond the reach
of orthographic approaches. In applications where
the gap between spelling and pronunciation plays
an important role, it is advisable to employ pho-
netic approaches as well. The two most effec-
tive ones are EDITEX and ALINE, but whereas
ALINE is language-independent, EDITEX incorpo-
rates English-specific letter groups and rules.

8 Conclusion

We have investigated the problem of identifying
confusable drug name pairs. The effectiveness of
several word similarity measures was evaluated us-
ing a new recall-based evaluation methodology. We
have proposed a new measure of orthographic simi-
larity that outperforms several commonly used sim-
ilarity measures when tested on a publicly available
list of confusable drug names. On a test set con-
taining solely sound-alike confusion pairs phonetic
approaches, ALINE and EDITEX achieve the best
results. Our results suggest that a linear combina-
tion of several measures benefits from the strengths
of its components, and is likely to outperform any
individual measure. Such a combined approach has
the potential to provide the basis for automatic min-

imization of medication errors.

The task of computing similarity between words
is also important in other contexts. When an entered
name does not exist in a bibliographic database, it is
desirable to retrieve names that sound similar. In-
formation retrieval systems may need to expand the
search in cases where a typed query contains errors
or variations in spelling. A related task of the iden-
tification of cognates arises in statistical machine
translation. The techniques discussed in this paper
may also be applicable in those areas.
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