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Abstract
This paper presents a statistical model that in-
terprets the evaluation of ranking methods as
a random experiment. This model predicts the
variability of evaluation results, so that appro-
priate significance tests for the results can be
derived. The paper concludes with an empirical
validation of the model on a collocation extrac-
tion task.

1 Introduction
Many tools in the area of natural-language process-
ing involve the application of ranking methods to
sets of candidates, in order to select the most use-
ful items from an all too often overwhelming list.
Examples of such tools range from syntactic parsers
(where alternative analyses are ranked by their plau-
sibility) to the extraction of collocations from text
corpora (where a ranking according to the scores as-
signed by a lexical association measure is the essen-
tial component of an extraction “pipeline”).

To this end, a scoring functiong is applied to the
candidate set, which assigns a real numberg(x) ∈
R to every candidatex.1 Conventionally, higher
scores are assigned to candidates that the scoring
function considers more “useful”. Candidates can
then be selected in one of two ways: (i) by compar-
ison with a pre-defined thresholdγ ∈ R (i.e. x is
accepted iffg(x) ≥ γ), resulting in aγ-acceptance
set; (ii) by ranking the entire candidate set accord-
ing to the scoresg(x) and selecting then highest-
scoring candidates, resulting in ann-best list(where
n is either determined by practical constraints or in-
teractively by manual inspection). Note that ann-
best list can also be interpreted as aγ-acceptance set
with a suitably chosen cutoff thresholdγg(n) (deter-
mined from the scores of all candidates).

Ranking methods usually involve various heuris-
tics and statistical guesses, so that an empirical eval-

1Some systems may directly produce a sorted candidate list
without assigning explicit scores. However, unless this opera-
tion is (implicitly) based on an underlying scoring function, the
result will in most cases be a partial ordering (where some pairs
of candidates are incomparable) or lead to inconsistencies.

uation of their performance is necessary. Even when
there is a solid theoretical foundation, its predictions
may not be borne out in practice. Often, the main
goal of an evaluation experiment is the comparison
of different ranking methods (i.e. scoring functions)
in order to determine the most useful one.

A widely-used evaluation strategy classifies the
candidates accepted by a ranking method into
“good” ones (true positives, TP) and “bad” ones
(false positives, FP). This is sometimes achieved by
comparison of the relevantγ-acceptance sets orn-
best lists with a gold standard, but for certain ap-
plications (such as collocation extraction), manual
inspection of the candidates leads to more clear-cut
and meaningful results. When TPs and FPs have
been identified, the precisionΠ of a γ-acceptance
set or ann-best list can be computed as the pro-
portion of TPs among the accepted candidates. The
most useful ranking method is the one that achieves
the highest precision, usually comparingn-best lists
of a given sizen. If the full candidate set has been
annotated, it is also possible to determine the recall
R as the number of accepted TPs divided by the to-
tal number of TPs in the candidate set. While the
evaluation of extraction tools (e.g. in information
retrieval) usually requires that both precision and
recall are high, ranking methods often put greater
weight on high precision, possibly at the price of
missing a considerable number of TPs. Moreover,
when n-best lists of the same size are compared,
precision and recall are fully equivalent.2 For these
reasons, I will concentrate on the precisionΠ here.

As an example, consider the identification of col-
locations from text corpora. Following the method-
ology described by Evert and Krenn (2001), Ger-
man PP-verb combinations were extracted from a
chunk-parsed version of the Frankfurter Rundschau
Corpus.3 A cooccurrence frequency threshold of

2Namely,Π = nTP · R/n, wherenTP stands for the total
number of TPs in the candidate set.

3The Frankfurter Rundschau Corpus is a German newspa-
per corpus, comprising ca. 40 million words of text. It is part of
the ECI Multilingual Corpus 1 distributed by ELSNET. For this



f ≥ 30 was applied, resulting in a candidate set
of 5 102 PP-verb pairs. The candidates were then
ranked according to the scores assigned by four
association measures: thelog-likelihood ratio G2

(Dunning, 1993), Pearson’schi-squaredstatisticX2

(Manning and Scḧutze, 1999, 169–172), thet-score
statistict (Church et al., 1991), and mere cooccur-
rencefrequencyf .4 TPs were identified according
to the definition of Krenn (2000). The graphs in
Figure 1 show the precision achieved by these mea-
sures, forn ranging from100 to 2 000 (lists with
n < 100 were omitted because the graphs become
highly unstable for smalln). The baseline precision
of 11.09% corresponds to a random selection ofn
candidates.
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Figure 1: Evaluation example: candidates for Ger-
man PP-verb collocations are ranked by four differ-
ent association measures.

From Figure 1, we can see thatG2 andt are the
most useful ranking methods,t being marginally
better forn ≈ 800 andG2 for n ≥ 1 500. Both mea-
sures are by far superior to frequency-based rank-
ing. The evaluation results also confirm the argu-
ment of Dunning (1993), who suggestedG2 as a
more robust alternative toX2. Such results cannot
be taken at face value, though, as they may simply
be due to chance. When two equally useful rank-
ing methods are compared, method A might just
happen to perform better in a particular experiment,
with B taking the lead in a repetition of the experi-

experiment, the corpus was annotated with the partial parser
YAC (Kermes, 2003).

4See Evert (2004) for detailed information about these as-
sociation measures, as well as many further alternatives.

ment under similar conditions. The causes of such
random variation include the source material from
which the candidates are extracted (what if a slightly
different source had been used?), noise introduced
by automatic pre-processing and extraction tools,
and the uncertainty of human annotators manifested
in varying degrees of inter-annotator agreement.
Most researchers understand the necessity of test-
ing whether their results arestatistically significant,
but it is fairly unclear which tests are appropriate.
For instance, Krenn (2000) applies the standardχ2-
test to her comparative evaluation of collocation ex-
traction methods. She is aware, though, that this
test assumes independent samples and is hardly suit-
able for different ranking methods applied to the
same candidate set: Krenn and Evert (2001) sug-
gest several alternative tests for related samples. A
wide range of exact and asymptotic tests as well as
computationally intensive randomisation tests (Yeh,
2000) are available and add to the confusion about
an appropriate choice.

The aim of this paper is to formulate a statisti-
cal model that interprets the evaluation of ranking
methods as arandom experiment. This model de-
fines the degree to which evaluation results are af-
fected by random variation, allowing us to derive
appropriate significance tests. After formalising the
evaluation procedure in Section 2, I recast the pro-
cedure as a random experiment and make the under-
lying assumptions explicit (Section 3.1). On the ba-
sis of this model, I develop significance tests for the
precision of a single ranking method (Section 3.2)
and for the comparison of two ranking methods
(Section 3.3). The paper concludes with an empiri-
cal validation of the statistical model in Section 4.

2 A formal account of ranking methods
and their evaluation

In this section I present a formalisation of rankings
and their evaluation, givingγ-acceptance sets a ge-
ometrical interpretation that is essential for the for-
mulation of a statistical model in Section 3.

The scores computed by a ranking method are
based on certainfeaturesof the candidates. Each
candidate can therefore be represented by itsfeature
vectorx ∈ Ω, whereΩ is an abstractfeature space.
For all practical purposes,Ω can be equated with a
subset of the (possibly high-dimensional) real Eu-
clidean spaceRm. The completeset of candidates
corresponds to a discrete subsetC ⊆ Ω of the fea-
ture space.5 A ranking method is represented by

5More precisely,C is a multi-set because there may be mul-
tiple candidates with identical feature vectors. In order to sim-
plify notation I assume thatC is a proper subset ofΩ, which



a real-valued functiong : Ω → R on the feature
space, called ascoring function(SF). In the follow-
ing, I assume that there are no candidates with equal
scores, and hence no ties in the rankings.6

Theγ-acceptance set for a SFg contains all can-
didatesx ∈ C with g(x) ≥ γ. In a geomet-
rical interpretation, this condition is equivalent to
x ∈ Ag(γ) ⊆ Ω, where

Ag(γ) := {x ∈ Ω | g(x) ≥ γ }

is called theγ-acceptance regionof g. The γ-
acceptance set ofg is then given by the intersection
Ag(γ)∩C =: Cg(γ). The selection of ann-best list
is based on theγ-acceptance regionAg(γg(n)) for
a suitably chosenn-best thresholdγg(n).7

As an example, consider the collocation extrac-
tion task introduced in Section 1. The feature vec-
tor x associated with a collocation candidate rep-
resents the cooccurrence frequency information for
this candidate:x = (O11, O12, O21, O22), where
Oij are the cell counts of a2 × 2 contingency
table (Evert, 2004). Therefore, we have a four-
dimensional feature spaceΩ ⊆ R4, and each as-
sociation measure defines a SFg : Ω → R. The
selection of collocation candidates is usually made
in the form of ann-best list, but may also be based
on a pre-defined thresholdγ.8

For an evaluation in terms of precision and re-
call, the candidates in the setC are classified into
true positivesC+ andfalse positivesC−. The pre-
cision corresponding to an acceptance regionA is
then given by

ΠA := |C+ ∩A| / |C ∩A| , (1)

i.e. the proportion of TPs among the accepted candi-
dates. The precision achieved by a SFg with thresh-
old γ is ΠCg(γ). Note that the numerator in Eq. (1)
reduces ton for an n-best list (i.e.γ = γg(n)),
yielding then-best precisionΠg,n. Figure 1 shows
graphs ofΠg,n for 100 ≤ n ≤ 2 000, for the SFs
g1 = G2, g2 = t, g3 = X2, andg4 = f .

can be enforced by adding a small amount of randomjitter to
the feature vectors of candidates.

6Under very general conditions, random jittering (cf. Foot-
note 5) ensures that no two candidates have equal scores. This
procedure is (almost) equivalent to breaking ties in the rankings
randomly.

7Since I assume that there are no ties in the rankings,γg(n)
can always be determined in such a way that the acceptance set
containsexactlyn candidates.

8For instance, Church et al. (1991) use a threshold ofγ =
1.65 for the t-scoremeasure corresponding to a nominal sig-
nificance level ofα = .05. This threshold is obtained from the
limiting distribution of thet statistic.

3 Significance tests for evaluation results
3.1 Evaluation as a random experiment

When an evaluation experiment is repeated, the re-
sults will not be exactly the same. There are many
causes for such variation, including different source
material used by the second experiment, changes in
the tool settings, changes in the evaluation criteria,
or the different intuitions of human annotators. Sta-
tistical significance tests are designed to account for
a small fraction of this variation that is due to ran-
dom effects, assuming that all parameters that may
have a systematic influence on the evaluation results
are kept constant. Thus, they provide a lower limit
for the variation that has to be expected in an actual
repetition of the experiment. Only when results are
significant can we expect them to be reproducible,
but even then a second experiment may draw a dif-
ferent picture.

In particular, the influence of qualitatively differ-
ent source material or different evaluation criteria
can never be predicted by statistical means alone.
In the example of the collocation extraction task,
randomness is mainly introduced by the selection
of a source corpus, e.g. the choice of one partic-
ular newspaper rather than another. Disagreement
between human annotators and uncertainty about
the interpretation of annotation guidelines may also
lead to an element of randomness in the evaluation.
However, even significant results cannot be gener-
alised to a different type of collocation (such as
adjective-noun instead of PP-verb), different eval-
uation criteria, a different domain or text type, or
even a source corpus of different size, as the results
of Krenn and Evert (2001) show.

A first step in the search for an appropriate sig-
nificance test is to formulate a (plausible) model
for random variation in the evaluation results. Be-
cause of the inherent randomness, every repetition
of an evaluation experiment under similar condi-
tions will lead to different candidate setsC+ and
C−. Some elements will be entirely new candidates,
sometimes the same candidate appears with a differ-
ent feature vector (and thus represented by a differ-
ent pointx ∈ Ω), and sometimes a candidate that
was annotated as a TP in one experiment may be
annotated as a FP in the next. In order to encapsu-
late all three kinds of variation, let us assume that
C+ andC− are randomly selected from a large set
of hypothetical possibilities (where each candidate
corresponds to many different possibilities with dif-
ferent feature vectors, some of which may be TPs
and some FPs).

For any acceptance regionA, both the number of
TPs inA, TA := |C+ ∩A|, and the number of FPs



in A, FA := |C− ∩A|, are thusrandom variables.
We do not know their precise distributions, but it is
reasonable to assume that (i)TA andFA are always
independent and (ii)TA andTB (as well asFA and
FB) are independent for any two disjoint regionsA
andB. Note thatTA andTB cannot be indepen-
dent forA ∩ B 6= ∅ because they include the same
number of TPs from the regionA ∩ B. The total
number of candidates in the regionA is also a ran-
dom variableNA := TA+FA, and the same follows
for the precisionΠA, which can now be written as
ΠA = TA/NA.9

Following the standard approach, we may now
assume thatΠA approximately follows a normal
distribution with meanπA and varianceσ2

A, i.e.
ΠA ∼ N(πA, σ2

A). The meanπA can be interpreted
as theaverage precisionof the acceptance region
A (obtained by averaging over many repetitions of
the evaluation experiment). However, there are two
problems with this assumption. First, whileΠA is
an unbiased estimator forπa, the varianceσ2

A can-
not be estimated from a single experiment.10 Sec-
ond,ΠA is a discrete variable because bothTA and
NA are non-negative integers. When the number
of candidatesNA is small (as in Section 3.3), ap-
proximating the distribution ofΠA by a continuous
normal distribution will not be valid.

It is reasonable to assume that the distribution of
NA does not depend on the average precisionπA. In
this case,NA is called anancillary statisticand can
be eliminated without loss of information by condi-
tioning on its observed value (see Lehmann (1991,
542ff) for a formal definition of ancillary statistics
and the merits of conditional inference). Instead of
probabilitiesP (ΠA) we will now consider the con-
ditional probabilitiesP (ΠA |NA). BecauseNA is
fixed to the observed value,ΠA is proportional to
TA and the conditional probabilities are equivalent
to P (TA |NA). When we choose one of theNA

candidates at random, the probability that it is a TP
(averaged over many repetitions of the experiment)

9In the definition of then-best precisionΠg,n, i.e. for
A = Cg(γg(n)), the number of candidates inA is constant:
NA = n. At first sight, this may seem to be inconsistent with
the interpretation ofNA as a random variable. However, one
has to keep in mind thatγg(n), which is determined from the
candidate setC, is itself a random variable. Consequently,A is
nota fixed acceptance region and its variation counter-balances
that ofNA.

10Sometimes, cross-validation is used to estimate the vari-
ability of evaluation results. While this method is appropri-
ate e.g. for machine learning and classification tasks, it is not
useful for the evaluation of ranking methods. Since the cross-
validation would have to be based on random samples from a
single candidate set, it would not be able to tell us anything
about random variation between different candidate sets.

should be equal to the average precisionπA. Conse-
quently,P (TA |NA) should follow a binomial dis-
tribution with success probabilityπA, i.e.

P (TA = k |NA) =(
NA

k

)
· (πA)k · (1− πA)NA−k (2)

for k = 0, . . . , NA. We can now make inferences
about the average precisionπA based on this bino-
mial distribution.11

As a second step in our search for an appropriate
significance test, it is essential to understand exactly
what question this test should address: What does it
mean for an evaluation result (or result difference)
to be significant? In fact, two different questions
can be asked:

A: If we repeat an evaluation experiment under
the same conditions, to what extent will the ob-
served precision values vary?This question is
addressed in Section 3.2.

B: If we repeat an evaluation experiment under
the same conditions, will method A again per-
form better than method B?This question is
addressed in Section 3.3.

3.2 The stability of evaluation results
Question A can be rephrased in the following way:
How much does the observed precision value for
an acceptance regionA differ from the true aver-
age precisionπA? In other words, our goal here
is to make inferences aboutπA, for a given SFg
and thresholdγ. From Eq. (2), we obtain a bino-
mial confidence interval for the true valueπA, given
the observed values ofTA andNA (Lehmann, 1991,
89ff). Using the customary 95% confidence level,
πA should be contained in the estimated interval in
all but one out of twenty repetitions of the experi-
ment. Binomial confidence intervals can easily be
computed with standard software packages such as
R (R Development Core Team, 2003). As an ex-
ample, assume that an observed precision ofΠA =
40% is based onTA = 200 TPs out ofNA = 500
accepted candidates. Precision graphs as those in
Figure 1 displayΠA as a maximum-likelihood es-
timate for πA, but its true value may range from
35.7% to 44.4% (with 95% confidence).12

11Note that some of the assumptions leading to Eq. (2) are
far from self-evident. As an example, (2) tacitly assumes that
the success probability is equal toπA regardless of the particu-
lar value ofNA on which the distribution is conditioned, which
need not be the case. Therefore, an empirical validation is nec-
essary (see Section 4).

12This confidence interval was computed with the R com-
mandbinom.test(200,500) .



Figure 2 shows binomial confidence intervals for
the association measuresG2 andX2 as shaded re-
gions around the precision graphs. It is obvious
that a repetition of the evaluation experiment may
lead to quite different precision values, especially
for n < 1 000. In other words, there is a consider-
able amount of uncertainty in the evaluation results
for each individual measure. However, we can be
confident that both ranking methods offer a substan-
tial improvement over the baseline.
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Figure 2: Precision graphs for theG2 andX2 mea-
sures with 95% confidence intervals.

For an evaluation based onn-best lists (as in the
collocation extraction example), it has to be noted
that the confidence intervals are estimates for the
average precisionπA of a fixed γ-acceptance re-
gion (with γ = γg(n) computed from the observed
candidate set). While this region contains exactly
NA = n candidates in the current evaluation,NA

may be different fromn when the experiment is re-
peated. Consequently,πA is not necessarily identi-
cal to the average precision ofn-best lists.

3.3 The comparison of ranking methods

Question B can be rephrased in the following way:
Does the SFg1 on average achieve higher precision
than the SFg2? (This question is normally asked
wheng1 performed better thang2 in the evaluation.)
In other words, our goal is to test whetherπA > πB

for given acceptance regionsA of g1 andB of g2.
The confidence intervals obtained for two SFg1

andg2 will often overlap (cf. Figure 2, where the
confidence intervals ofG2 andX2 overlap for all
list sizesn), suggesting that there is no significant

difference between the two ranking methods. Both
observed precision values are consistent with an av-
erage precisionπA = πB in the region of overlap,
so that the observed differences may be due to ran-
dom variation in opposite directions. However, this
conclusion is premature because the two rankings
arenot independent. Therefore, the observed pre-
cision values ofg1 andg2 will tend to vary in the
same direction, the degree of correlation being de-
termined by the amount of overlap between the two
rankings. Given acceptance regionsA := Ag1(γ1)
andB := Ag2(γ2), both SF make the same decision
for any candidates in the intersectionA ∩ B (both
SF accept) and in the “complement”Ω \ (A ∪ B)
(both SF reject). Therefore, the performance ofg1

andg2 can only differ in the regionsD1 := A \ B
(g1 accepts, butg2 rejects) andB \ A (vice versa).
Correspondingly, the countsTA andTB are corre-
lated because they include the same number of TPs
from the regionA∩B (namely, the setC+∩A∩B),

Indisputably,g1 is a better ranking method than
g2 iff πD1 > πD2 and vice versa.13 Our goal is thus
to test the null hypothesisH0 : πD1 = πD2 on the
basis of the binomial distributionsP (TD1 |ND1)
and P (TD2 |ND2). I assume that these distribu-
tions are independent becauseD1 ∩ D2 = ∅ (cf.
Section 3.1). The number of candidates in the
difference regions,ND1 and ND2 , may be small,
especially for acceptance regions with large over-
lap (this was one of the reasons for using condi-
tional inference rather than a normal approximation
in Section 3.1). Therefore, it is advisable to use
Fisher’s exact test (Agresti, 1990, 60–66) instead
of an asymptotic test that relies on large-sample ap-
proximations. The data for Fisher’s test consist of
a2× 2 contingency table with columns(TD1 , FD1)
and(TD2 , FD2). Note that a two-sided test is called
for because there is noa priori reason to assume
that g1 is better thang2 (or vice versa). Although
the implementation of a two-sided Fisher’s test is
not trivial, it is available in software packages such
as R.

Figure 3 shows the same precision graphs as
Figure 2. Significant differences between theG2

and X2 measures according to Fisher’s test (at a
95% confidence level) are marked by grey triangles.

13Note thatπD1 > πD2 does not necessarily entailπA >
πB if NA andNB are vastly different andπA∩B � πDi . In
this case, the winner will always be the SF that accepts the
smaller number of candidates (because the additional candi-
dates only serve to lower the precision achieved inA ∩ B).
This example shows that it is “unfair” to compare acceptance
sets of (substantially) different sizes just in terms of their over-
all precision. Evaluation should therefore either be based on
n-best lists or needs to take recall into account.



Contrary to what the confidence intervals in Fig-
ure 2 suggested, the observed differences turn out
to be significant for alln-best lists up ton = 1 250
(marked by a thin vertical line).
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Figure 3: Significant differences between theG2

andX2 measures at 95% confidence level.

4 Empirical validation
In order to validate the statistical model and the sig-
nificance tests proposed in Section 3, it is neces-
sary to simulate the repetition of an evaluation ex-
periment. Following the arguments of Section 3.1,
the conditions should be the same for all repetitions
so that the amount of purely random variation can
be measured. To achieve this, I divided the Frank-
furter Rundschau Corpus into 80 contiguous, non-
overlapping parts, each one containing approx. 500k
words. Candidates for PP-verb collocations were
extracted as described in Section 1, with a frequency
threshold off ≥ 4. The 80 samples of candidate
sets were ranked using the association measuresG2,
X2 and t as scoring functions, and true positives
were manually identified according to the criteria
of (Krenn, 2000).14 The true average precisionπA

of an acceptance setA was estimated by averaging
over all 80 samples.

Both the confidence intervals of Section 3.2 and
the significance tests of Section 3.3 are based on
the assumption thatP (TA |NA) follows a binomial
distribution as given by Eq. (2). Unfortunately, it

14I would like to thank Brigitte Krenn for making her annota-
tion database of PP-verb collocations (Krenn, 2000) available,
and for the manual annotation of1 913 candidates that were not
covered by the existing database.

is impossible to test the conditional distribution di-
rectly, which would require thatNA is the same for
all samples. Therefore, I use the following approach
based on the unconditional distributionP (ΠA). If
NA is sufficiently large,P (ΠA |NA) can be approx-
imated by a normal distribution with meanµ = πA

and varianceσ2 = πA(1− πA)/NA (from Eq. (2)).
Sinceµ does not depend onNA and the standard
deviationσ is proportional to(NA)−1/2, it is valid
to make the approximation

P (ΠA |NA) ≈ P (ΠA) (3)

as long asNA is relatively stable. Eq. (3) allows us
to pool the data from all samples, predicting that

P (ΠA) ∼ N(µ, σ2) (4)

with µ = πA andσ2 = πA(1 − πA)/N . Here,N
stands for theaveragenumber of TPs inA.

These predictions were tested for the measures
g1 = G2 andg2 = t, with cutoff thresholdsγ1 =
32.5 andγ2 = 2.09 (chosen so thatN = 100 candi-
dates are accepted on average). Figure 4 compares
the empirical distribution ofΠA with the expected
distribution according to Eq. (4). These histograms
show that the theoretical model agrees quite well
with the empirical results, although there is a lit-
tle more variation than expected.15 The empirical
standard deviation is between20% and40% larger
than expected, withs = 0.057 vs.σ = 0.044 for G2

ands = 0.066 vs.σ = 0.047 for t. These findings
suggest that the model proposed in Section 3.1 may
indeed represent a lower bound on the true amount
of random variation.

Further evidence for this conclusion comes from
a validation of the confidence intervals defined in
Section 3.2. For a 95% confidence interval, the true
proportionπA should fall within the confidence in-
terval in all but 4 of the 80 samples. ForG2 (with
γ = 32.5) andX2 (with γ = 239.0), πA was out-
side the confidence interval in 9 cases each (three
of them very close to the boundary), while the con-
fidence interval fort (with γ = 2.09) failed in 12
cases, which is significantly more than can be ex-
plained by chance (p < .001, binomial test).

5 Conclusion
In the past, various statistical tests have been used
to assess the significance of results obtained in the
evaluation of ranking methods. There is much con-
fusion about their validity, though, mainly due to

15The agreement is confirmed by the Kolmogorov test of
goodness-of-fit, which does not reject the theoretical model (4)
in either case.
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Figure 4: Distribution of the observed precisionΠA for γ-acceptance regions of the association measures
G2 (left panel) andt (right panel). The solid lines indicate the expected distribution according to Eq. (2).

the fact that assumptions behind the application
of a test are seldom made explicit. This paper
is an attempt to remedy the situation by interpret-
ing the evaluation procedure as a random experi-
ment. The model assumptions, motivated by intu-
itive arguments, are stated explicitly and are open
for discussion. Empirical validation on a colloca-
tion extraction task has confirmed the usefulness
of the model, indicating that it represents a lower
bound on the variability of evaluation results. On
the basis of this model, I have developed appro-
priate significance tests for the evaluation of rank-
ing methods. These tests are implemented in the
UCS toolkit, which was used to produce the graphs
in this paper and can be downloaded fromhttp:
//www.collocations.de/ .
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