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Abstract uation of their performance is necessary. Even when
This paper presents a statistical model that in- there is a solid theoretical foundation, its predictions
terprets the evaluation of ranking methods as  may not be borne out in practice. Often, the main
a random experiment. This model predicts the  goal of an evaluation experiment is the comparison
variability of evaluation results, so that appro-  of different ranking methods (i.e. scoring functions)
priate significance tests for the results can be i order to determine the most useful one.
derived. The paper concludes with an empirical A widely-used evaluation strategy classifies the
validation of the model on a collocation extrac- . ; .
tion task. candidates accepted_ _by a ranking method into
“good” ones frue positives TP) and “bad” ones
1 Introduction (false positivesFP). This is sometimes achieved by

Many tools in the area of natural-language processcomparison of the relevantacceptance sets ar

ing involve the application of ranking methods to PeSt lists with a gold standard, but for certain ap-
sets of candidates, in order to select the most usd?lications (such as collocation extraction), manual
ful items from an all too often overwhelming list. inspection of the candidates leads to more clear-cut
Examples of such tools range from syntactic parser&d meaningful results. When TPs and FPs have
(where alternative analyses are ranked by their plau®€e identified, the precisidi of a y-acceptance
sibility) to the extraction of collocations from text SEt OF ann-best list can be computed as the pro-

corpora (where a ranking according to the scores ag0rtion OffTIPS akmong ths adc_cepr)]ted canﬁidateﬁ_. The
signed by a lexical association measure is the esseff0St useiul ranking metnod is the one that achieves

tial component of an extraction “pipeline”). the highest precision, usually comparimgpest lists
To this end, a scoring functionis applied to the of a given sizen. If the full candidate set has been

candidate set, which assigns a real numjier) € annotated, it is also possible to determine the recall
R to every candidate:.! Conventionally, higher R as the number of accepted TPs divided by the to-

scores are assigned to candidates that the scorif{g "umber of TPs in the candidate set. While the
function considers more “useful”. Candidates canfvaluation of extraction tools (.g. in information

then be selected in one of two ways: (i) by Compar_retrleval) us_uaIIy requires that both precision and
ison with a pre-defined threshold € R (i.e. z is rec'aII are h|gh, rank_m_g method_s often put greater
accepted iffy(x) > 4), resulting in ay-acceptance W(_elg_ht on hlgh_preC|S|on, possibly at the price of
set (ii) by ranking the entire candidate set accord-MiSSing a considerable number of TPs. Moreover,
ing to the scoreg(x) and selecting the highest- when n-best lists of the same size are compared,

scoring candidates, resulting in arbest listwhere ~ Precision and recall are fully equivalehfor these

n is either determined by practical constraints or in-"6@S0ns, 1 will concentrate on the precisidmere.
teractively by manual inspection). Note that @n As an example, consider the identification of col-
best list can also be interpreted ag-acceptance set locations from text corpora. Following the method-

with a suitably chosen cutoff threshoigl(n) (deter- 0109y described by Evert and Krenn (2001), Ger-
mined from the scores of all candidates). man PP-verb combinations were extracted from a

Ranking methods usually involve various heuris_chunk-parsed version of the Frankfurter Rundschau
tics and statistical guesses, so that an empirical evafForpus® A cooccurrence frequency threshold of

1Some systems may directly produce a sorted candidate list 2Namely,II = ntp - R/n, wherentp stands for the total
without assigning explicit scores. However, unless this operanumber of TPs in the candidate set.
tion is (implicitly) based on an underlying scoring function, the ~ The Frankfurter Rundschau Corpus is a German newspa-
result will in most cases be a partial ordering (where some pairper corpus, comprising ca. 40 million words of text. Itis part of
of candidates are incomparable) or lead to inconsistencies. the ECI Multilingual Corpus 1 distributed by ELSNET. For this




f > 30 was applied, resulting in a candidate setment under similar conditions. The causes of such
of 5102 PP-verb pairs. The candidates were therrandom variation include the source material from
ranked according to the scores assigned by fouwhich the candidates are extracted (what if a slightly
association measures: theg-likelihood ratio G?  different source had been used?), noise introduced
(Dunning, 1993), Pearsorchi-squaredstatisticX? by automatic pre-processing and extraction tools,
(Manning and Sciitze, 1999, 169-172), tliescore  and the uncertainty of human annotators manifested
statistict (Church et al., 1991), and mere cooccur-in varying degrees of inter-annotator agreement.
rencefrequencyf.* TPs were identified according Most researchers understand the necessity of test-
to the definition of Krenn (2000). The graphs in ing whether their results astatistically significant
Figure 1 show the precision achieved by these meabut it is fairly unclear which tests are appropriate.
sures, forn ranging from100 to 2000 (lists with  For instance, Krenn (2000) applies the standgrd

n < 100 were omitted because the graphs becoméest to her comparative evaluation of collocation ex-
highly unstable for smakt). The baseline precision traction methods. She is aware, though, that this
of 11.09% corresponds to a random selectionnof test assumes independent samples and is hardly suit-
candidates. able for different ranking methods applied to the
same candidate set: Krenn and Evert (2001) sug-
gest several alternative tests for related samples. A
wide range of exact and asymptotic tests as well as
computationally intensive randomisation tests (Yeh,
2000) are available and add to the confusion about
an appropriate choice.

The aim of this paper is to formulate a statisti-
cal model that interprets the evaluation of ranking
methods as aandom experimentThis model de-
fines the degree to which evaluation results are af-
fected by random variation, allowing us to derive
appropriate significance tests. After formalising the
O e SRR PRISUIEE evaluation procedure in Section 2, | recast the pro-
- baseline = 11.09% .

cedure as a random experiment and make the under-
lying assumptions explicit (Section 3.1). On the ba-
o ‘ ‘ ‘ sis of this model, | develop significance tests for the

0 500 1000 1500 2000 precision of a single ranking method (Section 3.2)
and for the comparison of two ranking methods
(Section 3.3). The paper concludes with an empiri-

) . ) cal validation of the statistical model in Section 4.
Figure 1: Evaluation example: candidates for Ger-

man PP-verb collocations are ranked by four differ-2 A formal account of ranking methods
ent association measures. and their evaluation
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From Figure 1, we can see tha? and¢ are the In this section | present a formalisation of rankings
most useful ranking methods, being marginally ~and their evaluation, giving-acceptance sets a ge-
better forn ~ 800 andG?2 for n. > 1 500. Bothmea- Ometrical interpretation that is essential for the for-
sures are by far Superior to frequency-based ranH:nUIation of a statistical model in Section 3.
ing. The evaluation results also confirm the argu- The scores computed by a ranking method are
ment of Dunning (1993), who suggestéf as a based on certaifeaturesof the candidates. Each
more robust alternative t&2. Such results cannot candidate can therefore be represented Heé#tire
be taken at face value, though, as they may simplyectorz € €2, where is an abstracteature space
be due to chance. When two equally useful rankFor all practical purpose$} can be equated with a
ing methods are compared, method A might justubset of the (possibly high-dimensional) real Eu-
happen to perform better in a particular experimentclidean spac®™. The completeset of candidates

with B taking the lead in a repetition of the experi- corresponds to a discrete subéetC (2 of the fea-
ture spac€. A ranking method is represented by
experiment, the corpus was annotated with the partial parser
YAC (Kermes, 2003). SMore precisely(' is a multi-set because there may be mul-
4See Evert (2004) for detailed information about these astiple candidates with identical feature vectors. In order to sim-
sociation measures, as well as many further alternatives. plify notation | assume that' is a proper subset @2, which




a real-valued functiom : Q@ — R on the feature 3 Significance tests for evaluation results
space, called acoring function(SF). In the follow- 3 1 Eyajuation as a random experiment
ing, | assume that there are no candidates with equ
scores, and hence no ties in the rankifgs.
The~-acceptance set for a SFcontains all can-
didatesx € C with g(z) > 7. In a geomet-
rical interpretation, this condition is equivalent to
x € Ay(y) C Q, where

%hen an evaluation experiment is repeated, the re-
sults will not be exactly the same. There are many
causes for such variation, including different source
material used by the second experiment, changes in
the tool settings, changes in the evaluation criteria,
or the different intuitions of human annotators. Sta-
o tistical significance tests are designed to account for
Ay() = {z € Xglw) 27} a small f?action of this variation t%\at is due to ran-
dom effects, assuming that all parameters that may

acceptance set gfis then given by the intersection have a systematic influence on the evaluation results

Ay(y)NC =: Cy(7). The selection of an-best list & kept constant. Thus, they provide a lower limit
4(n)) for for the variation that has to be expected in an actual

is based on the-acceptance regiod, (v, > ;
a suitably chosen-best thresholdy, (n).” repetition of the experiment. Only when results are
J significant can we expect them to be reproducible,

As an example, consider the collocation extrac h ) ”
tion task introduced in Section 1. The feature vecPUt €ven then a second experiment may draw a dif-
ferent picture.

tor x associated with a collocation candidate rep : , . _
In particular, the influence of qualitatively differ-

resents the cooccurrence frequency information for - : . o
this candidate:z = (O11, O, Oa1, Oa2), Where ent source material or different evaluation criteria
- - ) ) ) 1

0,; are the cell counts of & x 2 contingency ~Can never be predicted by statistical means alone.

table (Evert, 2004). Therefore, we have a four-In the example of the collocation extraction task,
dimensional feature spade C R4 and each as- randomness is mainly introduced by the selection

sociation measure defines a §F © — R. The of a source corpus, e.g. the choice of_one partic-
selection of collocation candidates is usually madé/lar newspaper rather than another. Disagreement

in the form of ann-best list, but may also be based between human annotators and uncertainty about
on a pre-defined threshohd’s the interpretation of annotation guidelines may also

lead to an element of randomness in the evaluation.
However, even significant results cannot be gener-
alised to a different type of collocation (such as
adjective-noun instead of PP-verb), different eval-
uation criteria, a different domain or text type, or
even a source corpus of different size, as the results
4= |CyNA|/|CN A 1) of Krgnn and I_Evert (2001) show. ' _

A first step in the search for an appropriate sig-

i.e. the proportion of TPs among the accepted candidificance test is to formulate a (plausible) model
old v is I, (). Note that the numerator in Eg. (1) cause of the inherent randomness, every repetition
reduces tO;]l’onr an n-best list (i.e.y = 7,(n)) of an evaluation experiment under similar condi-
L.y = 74(n)), : _ . .
yielding then-best precisiofil,,,. Figure 1 shows tions will lead to dlfferent can@date sefs, qnd
graphs offI, ,, for 100 < n < 2000, for the SFs C_. Some elements will be entirely new candidates,
e — Y2 andn. — f sometimes the same candidate appears with a differ-
gl—G,gz—t,gg—X,andg4_f. i
ent feature vector (and thus represented by a differ-
can be enforced by adding a small amount of rangitter to ~ ent pointz € 2), and sometimes a candidate that
the feature vectors of candidates. o was annotated as a TP in one experiment may be
e ) Sxoes o o e v s v gnotated a5 & FP in the next. In orer o encaps-
procedure is (almost) equivalent to breaking ties in the ranking gte all three kinds of variation, let us assume that
randomly. Cy andC_ are randomly selected from a large set
’Since | assume that there are no ties in the rankings;) ~ Of hypothetical possibilities (where each candidate
can always be determined in such a way that the acceptance sgbrresponds to many different possibilities with dif-

containsexactlyn candidates. ferent feature vectors, some of which may be TPs
For instance, Church et al. (1991) use a thresholg ef and some FPs)

1.65 for the t-scoremeasure corresponding to a nominal sig- ) .

nificance level ofx = .05. This threshold is obtained from the ~ FOr @any acceptance regioh both the number of

limiting distribution of thet statistic. TPsinA, Ty := |C4 N AJ, and the number of FPs

is called the~y-acceptance regiorof g. The -

For an evaluation in terms of precision and re-
call, the candidates in the sét are classified into
true positive”, andfalse positives”_. The pre-
cision corresponding to an acceptance regibis
then given by




in A, Fy := |C_nN A|, are thugandom variables should be equal to the average precisign Conse-

We do not know their precise distributions, but it is quently, P(7'4 | N4) should follow a binomial dis-

reasonable to assume thatqi) andF4 are always tribution with success probability 4, i.e.

independent and (iiJ’4 andTs (as well asF'4 and

Fg) are independent for any two disjoint regians ~ P(Ta = k[ Na) =

and B. Note thatTy and Tz cannot be indepen- Na X Nk

dent forA N B # () because they include the same k) (ma)" - (1= ma) (2)

number of TPs from the regioA N B. The total

number of candidates in the regiehis also a ran- for £ = 0,..., N4. We can now make inferences

dom variableN 4 := T4+ F4, and the same follows about the average precisiany based on this bino-

for the precisioril 4, which can now be written as Mmial distribution’?

g =T4/Ny2 As a second step in our search for an appropriate
Following the standard approach, we may nowSigniﬁcanC.e test,. it iS essential to Understand exaCt|y

assume thaﬂA approximately fO”OWS a normal What quest|0n thIS test Sh0u|d addl‘eSSZ What doeS It

distribution with meanr, and variances%, i.e. ~mean for an evaluation result (or result difference)

14 ~ N(m4,0%). The meanr, can be interpreted 0 be significant? In fact, two different questions
as theaverage precisiorof the acceptance region ¢an be asked:

A (obtained by averaging over many repetitions of a: |f we repeat an evaluation experiment under
the evaluation experiment). However, there are two the same conditions, to what extent will the ob-

problems with this assumption. First, whilg, is served precision values varyThis question is
an unbiased estimator fat,, the variancer? can- addressed in Section 3.2.

not be estimated from a single experim&htSec-
ond,II4 is a discrete variable because bth and

N4 are non-negative integers. When the number
of candidatesV, is small (as in Section 3.3), ap-
proximating the distribution off 4 by a continuous
normal distribution will not be valid. 3.2 The stability of evaluation results

It is reasonable to assume that the distribution ofQuestion A can be rephrased in the following way:
N4 does not depend on the average precisignin - How much does the observed precision value for
this case/V 4 is called arancillary statisticand can  an acceptance regionl differ from the true aver-
be eliminated without loss of information by condi- age precisionr4? In other words, our goal here
tioning on its observed value (see Lehmann (1991js to make inferences abouty, for a given SFg
542ff) for a formal definition of ancillary statistics and thresholdy. From Eq. (2), we obtain a bino-
and the merits of conditional inference). Instead ofmial confidence interval for the true valug, given
probabilitiesP(I14) we will now consider the con-  the observed values @, and N 4 (Lehmann, 1991,
ditional probabilitiesP (114 | N4). BecauseN is  89ff). Using the customary 95% confidence level,
fixed to the observed valué] 4 is proportional to 7, should be contained in the estimated interval in
T4 and the conditional probabilities are equivalenta|| but one out of twenty repetitions of the experi-
to P(Ta|N4). When we choose one of 4 ment. Binomial confidence intervals can easily be
candidates at random, the probablllty thatitis a Tpcomputed with standard software packages such as
(averaged over many repetitions of the experimentR (R Development Core Team, 2003). As an ex-
ample, assume that an observed precisioH gf=
°In the definition of then-best precisionl, ,, i.e. for 40% is based o’y = 200 TPs out of N4 = 500

A = Cy(v4(n)), the number of candidates i is constant: . - .
N4 = n. At first sight, this may seem to be inconsistent with accepted candidates. Precision graphs as those in

the interpretation ofV.4 as a random variable. However, one Figure 1 displayil4 as a maximum-likelihood es-
has to keep in mind that, (n), which is determined from the timate for w4, but its true value may range from
candidate set’, is itself a random variable. Consequentlyis  35.7% to 44.4% (with 95% confidenceF).z
nota fixed acceptance region and its variation counter-balances
that of N 4. "Note that some of the assumptions leading to Eq. (2) are
50metimes, cross-validation is used to estimate the varifar from self-evident. As an example, (2) tacitly assumes that
ability of evaluation results. While this method is appropri- the success probability is equaltq regardless of the particu-
ate e.g. for machine learning and classification tasks, it is notar value of N4 on which the distribution is conditioned, which
useful for the evaluation of ranking methods. Since the crossheed not be the case. Therefore, an empirical validation is nec-
validation would have to be based on random samples from &ssary (see Section 4).
single candidate set, it would not be able to tell us anything !?This confidence interval was computed with the R com-
about random variation between different candidate sets. mandbinom.test(200,500)

B: If we repeat an evaluation experiment under
the same conditions, will method A again per-
form better than method BPhis question is
addressed in Section 3.3.




Figure 2 shows binomial confidence intervals fordifference between the two ranking methods. Both
the association measuré® and X? as shaded re- observed precision values are consistent with an av-
gions around the precision graphs. It is obviouserage precisiom4 = mp in the region of overlap,
that a repetition of the evaluation experiment mayso that the observed differences may be due to ran-
lead to quite different precision values, especiallydom variation in opposite directions. However, this
for n < 1000. In other words, there is a consider- conclusion is premature because the two rankings

able amount of uncertainty in the evaluation resultsare not independent Therefore, the observed pre-
for each individual measure. However, we can becision values ofy; and gs will tend to vary in the
confident that both ranking methods offer a substansame direction, the degree of correlation being de-

tial improvement over the baseline.
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Figure 2: Precision graphs for tli¢? and X% mea-
sures with 95% confidence intervals.

For an evaluation based enbest lists (as in the
collocation extraction example), it has to be note

that the confidence intervals are estimates for tr:jg

average precisiomr4 of a fixed y-acceptance re-
gion (withy = ~4(n) computed from the observed
candidate set). While this region contains exactl
N4 = n candidates in the current evaluatialiy
may be different fromn when the experiment is re-
peated. Consequently, is not necessarily identi-
cal to the average precision nfbest lists.

3.3 The comparison of ranking methods

Question B can be rephrased in the following way:
Does the Sky; on average achieve higher precision
than the SFg,? (This question is normally asked
wheng; performed better thag in the evaluation.)
In other words, our goal is to test whethef > 7w

for given acceptance regioasof g, and B of gs.

The confidence intervals obtained for two §f
and g» will often overlap (cf. Figure 2, where the
confidence intervals of;? and X2 overlap for all
list sizesn), suggesting that there is no significant

termined by the amount of overlap between the two
rankings. Given acceptance regiats= A, (71)
andB := Ay, (72), both SF make the same decision
for any candidates in the intersectieghn B (both
SF accept) and in the “complemerf?’\ (A U B)
(both SF reject). Therefore, the performanceypf
andgs can only differ in the region®; := A\ B
(91 accepts, buy, rejects) andB \ A (vice versa).
Correspondingly, the counfs4, andT’z are corre-
lated because they include the same number of TPs
from the regionA N B (namely, the set’;y N AN B),
Indisputably,g, is a better ranking method than
g2 iff mp, > mp, and vice versa® Our goal is thus
to test the null hypothesi#y : 7p, = mp, on the
basis of the binomial distribution®(7p, | Np,)
and P(Tp, | Np,). | assume that these distribu-
tions are independent becaubg N Dy = () (cf.
Section 3.1). The number of candidates in the
difference regionsNp, and Np,, may be small,
especially for acceptance regions with large over-
lap (this was one of the reasons for using condi-
tional inference rather than a normal approximation
in Section 3.1). Therefore, it is advisable to use
Fisher's exact test (Agresti, 1990, 60-66) instead
of an asymptotic test that relies on large-sample ap-
roximations. The data for Fisher’s test consist of
2 x 2 contingency table with columnd'p, , Fip, )
and(7Tp,, Fp,). Note that a two-sided test is called
for because there is na priori reason to assume

Yihat g1 is better tharys (or vice versa). Although

the implementation of a two-sided Fisher’s test is
not trivial, it is available in software packages such
as R.

Figure 3 shows the same precision graphs as
Figure 2. Significant differences between 8
and X2 measures according to Fisher's test (at a
95% confidence level) are marked by grey triangles.

Note thatrp, > 7p, does not necessarily entail; >
mp if Na and Np are vastly different aneanp > 7p,. In
this case, the winner will always be the SF that accepts the
smaller number of candidates (because the additional candi-
dates only serve to lower the precision achieveddim B).
This example shows that it is “unfair” to compare acceptance
sets of (substantially) different sizes just in terms of their over-
all precision. Evaluation should therefore either be based on
n-best lists or needs to take recall into account.



Contrary to what the confidence intervals in Fig-is impossible to test the conditional distribution di-
ure 2 suggested, the observed differences turn ouectly, which would require that/ 4 is the same for
to be significant for alk-best lists up to» = 1250  all samples. Therefore, | use the following approach
(marked by a thin vertical line). based on the unconditional distributidth(Il4). If

N4 is sufficiently large P(I14 | N4) can be approx-
imated by a normal distribution with mean= m 4
and variance? = w4 (1 — 74)/Na (from Eq. (2)).
-~ &2 Since . does not depend o4 and the standard
-a X deviationo is proportional to(N 4)~1/2, it is valid

to make the approximation

50

40
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to pool the data from all samples, predicting that
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P(ILx) ~ N(u, 0%) 4

- 7 baseline = 11.09% i

with 4 = 74 ando? = 74(1 — 74)/N. Here,N

stands for the@veragenumber of TPs i.

° \ \ \ These predictions were tested for the measures
0 500 1000 1500 2000 g1 = G? andg, = t, with cutoff thresholdsy, =

32.5 andvyy = 2.09 (chosen so thaV = 100 candi-

dates are accepted on average). Figure 4 compares

the empirical distribution ofl 4 with the expected

distribution according to Eq. (4). These histograms

show that the theoretical model agrees quite well

with the empirical results, although there is a lit-

4 Empirical validation tle more variation than expectéel. The empirical

In order to validate the statistical model and the sig-Standard deviation is betwea0% and40% larger

nificance tests proposed in Section 3, it is necesthan expected, with = 0.057 vs.o = 0.044 for G

sary to simulate the repetition of an evaluation ex-2nds = 0.066 vs.o = 0.047 for . These findings

periment. Following the arguments of Section 3.1,Suggest that the model proposed in Section 3.1 may

the conditions should be the same for all repetitiondndeed represent a lower bound on the true amount

so that the amount of purely random variation carf random variation. _ _

be measured. To achieve this, | divided the Frank- Further evidence for this conclusion comes from

furter Rundschau Corpus into 80 contiguous, non@ vaI_idation of the confiden_ce inter.vals defined in

overlapping parts, each one containing approx. soofeection 3.2. For a 95% conﬁdence mterval, the_ true

words. Candidates for PP-verb collocations wergProportionm4 should fall within the confidence in-

extracted as described in Section 1, with a frequencjerval in all but 4 of the 80 samples. F6F (with

threshold off > 4. The 80 samples of candidate 7 = 32.5) and X? (with v = 239.0), 74 was out-

sets were ranked using the association meagiffes Side the confidence interval in 9 cases each (three

X2 andt as scoring functions, and true positivesof them very close to the boundary), while the con-

were manually identified according to the criteriafidence interval fort (with v = 2.09) failed in 12

of (Krenn, 2000):4 The true average precision,  CaSes, which is 3|gn|f|cantly'mor(.a than can be ex-

of an acceptance set was estimated by averaging Plained by chancep(< .001, binomial test).

over all 80 samples. C usi
Both the confidence intervals of Section 3.2 and5 onciusion

the significance tests of Section 3.3 are based ol the past, various statistical tests have been used

the assumption tha® (T4 | N4) follows a binomial ~to assess the significance of results obtained in the

distribution as given by Eqg. (2). Unfortunately, it €valuation of ranking methods. There is much con-
fusion about their validity, though, mainly due to

n-best list

Figure 3: Significant differences between tté
and X2 measures at 95% confidence level.

141 would like to thank Brigitte Krenn for making her annota-
tion database of PP-verb collocations (Krenn, 2000) available, °The agreement is confirmed by the Kolmogorov test of
and for the manual annotation bf13 candidates that were not goodness-of-fit, which does not reject the theoretical model (4)
covered by the existing database. in either case.
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Figure 4: Distribution of the observed precisibiy for y-acceptance regions of the association measures
G? (left panel) and (right panel). The solid lines indicate the expected distribution according to Eq. (2).
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