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Abstract 

 
Classifier combination is a promising way 

to improve performance of word sense 
disambiguation. We propose a new 
combinational method in this paper. We first 
construct a series of Naïve Bayesian 
classifiers along a sequence of orderly 
varying sized windows of context, and 
perform sense selection for both training 
samples and test samples using these 
classifiers. We thus get a sense selection 
trajectory along the sequence of context 
windows for each sample. Then we make use 
of these trajectories to make final 
k-nearest-neighbors-based sense selection for 
test samples. This method aims to lower the 
uncertainty brought by classifiers using 
different context windows and make more 
robust utilization of context while perform 
well. Experiments show that our approach 
outperforms some other algorithms on both 
robustness and performance. 

 
1  Introduction 
 

Word sense disambiguation (WSD) has long 
been a central issue in Natural Language 
Processing (NLP). In many NLP tasks, such as 
Machine Translation, Information Retrieval etc., 
WSD plays a very important role in improving 
the quality of systems. Many different algorithms 
have been used for this task, including some 
machine learning (ML) algorithms, such as 
Naïve Bayesian model, decision trees, and 
example based learners. Since different 
algorithms have different strengths and perform 
well on different feature space, classifier 
combination is a reasonable candidate to achieve 
better performance by taking advantages of 
different approaches. In the field of ML, 
ensembles of classifiers have been shown to be 
successful in last decade (Dietterich 1997). For the 
specific task of WSD, classifier combination has 
been received more and more attention in recent 
years. 

Kilgarriff and Rosenzweig (2000) presented 
the first empirical study. They combined the 
output of the participating SENSEVAL1 systems 
via simple voting. Pedersen (2000) built an 
ensemble of Naïve Bayesian classifiers, each of 
which is based on lexical features that represent 
co-occurring words in varying sized windows of 
context. The sense that receives majority of the 
votes was assigned as the final selection. 
Stevenson and Wilks (2001) presented a 
classifier combination framework where three 
different disambiguation modules were 
combined using a memory-based approach. 
Hoste et al. (2002) used word experts consisted 
of four memory-based learners trained on 
different context. Output of the word experts is 
based on majority voting or weighted voting. 
Florian et al.(2002) and Florian and Yarowsky 
(2002) used six different classifiers as 
components of their combination. They 
compared several different strategies of 
combination, which include combining the 
posterior distribution, combination based on 
order statistics and several different voting.   
Klein et al. (2002) combined a number of 
different first-order classifiers using majority 
voting, weighted voting and maximum entropy. 
In Park (2003), a committee of classifiers was 
used to learn from the unlabeled examples. The 
label of an unlabeled example is predicted by 
weighted majority voting. Frank at al. (2003) 
presented a locally weighted Naïve Bayesian 
model. For a given test instance, they first chose 
k-nearest-neighbors from training samples for it, 
then constructed a Naïve Bayesian classifier by 
using these k-nearest-neighbors in stead of all 
training samples.  

This paper presents a new combinational 
approach. We firstly construct a series of Naïve 
Bayesian classifiers along a sequence of orderly 
varying sized windows of context, and make 
sense selection for both training samples and test 
samples using these classifiers. We thus get a 
trajectory of sense selection for each sample, and 
then use the sense trajectory based 
k-nearest-neighbors to make final decision for 



  

test samples.  
This method is motivated by an observation 

that there is an unavoidable uncertainty when a 
classifier is used to make sense selection. Our 
approach aims to alleviate this uncertainty and 
thus make more robust utilization of context 
while perform well. Experiments show our 
approach outperform some other algorithms on 
both robustness and performance. 

The remainder of this paper is organized as 
follows: Section 2 gives the motivation of our 
approach, describes the uncertainty in sense 
selection brought by classifiers themselves. In 
section 3, we present the decision trajectory 
based approach. We then implement some 
experiments in section 4, and give some 
evaluations and discussions in section 5. Finally, 
we draw some conclusions. 
 
2  The Trajectory of Sense Selection 
 

Our method is originally motivated by an 
observation on relation between sense selection 
by a classifier and the context it uses to make this 
selection. 

As well known, context is the only means to 
identify the sense of a polysemous word. Ide 
(1998) identified three types of context: 
micro-context, topical context and domain. In 
practice, a context window ( l , r ), which 
includes l  words to the left and r  words to 
the right of the target word, is predetermined by 
human or chosen automatically by a performance 
criterion. Only information in the context 
window is then used for classifiers and 
disambiguating. What is the best window size for 
WSD has been long for a problem. Weaver (1955) 
hoped we could find a minimum value of the 
window size which can lead to the correct choice 
of sense for the target ambiguous word. 
Yarowsky (1994) argued the optimal value is 
sensitive to the type of ambiguity. Semantic or 
topic-based ambiguities warrant a larger window 
(from 20 to 50), while more local syntactic 
ambiguities warrant a smaller window (3 or 4). 
Leacock at el (1998) showed the local context is 
superior to topical context as an indicator of 
word sense. Yarowsky (2002) suggested that 
different algorithms prefer different window 
sizes.  

Followed by these works, it is clear that 
different window sizes might cause different 
sense selection for an occurrence of the target 
word even when a same algorithm is used. 
Yarowsky (2002) gave a investigation on how 
the performance changes with different window 

sizes for several different algorithms and several 
different types of word. In fact, even for human, 
different window sizes might cause different 
sense selections for a same occurrence of an 
ambiguous word. For example, considering word 
“看”(It has two different senses: “read” and 
“think”) in senesce S1. 

 
S1: 我/  看/ 这/本/  书/   值得/   一/  读/. 

(I) (think) (this) (book) (worthy)  (a) (read) 
 
When we use a context window (1,1), it is not 

clear which sense should be more possible in this 
sentence. When we use (3,3), because the 
collocation with 书  give a very strong 
indication for 看’s sense, it is natural that we 
select the sense of “read” for 看. When we use 
window (6,6), we select the sense of “think” for 
it. 

Here, the occurrence of the ambiguous word is 
the same; it is the difference of context windows 
that make the sense selection different. Since the 
context window is a built-in parameter of a 
classifier, as long as we use a classifier to 
distinguish an ambiguous word, we had to 
choose a window size. Supposing a classifier is 
an observer, choosing a window size is necessary 
for the observer to implement an observation. 
Different choices of the window size might cause 
different observational results for the same 
occurrence. That means there is an uncertainty 
brought by observer itself. It reminds us that the 
relation between the window size and the sense 
selection is to some extent similar with the 
relation between a particle’s position and its 
momentum in Heisenberg Uncertainty Principle.  

By the Uncertainty Principle, when we 
measure the position and the momentum of a 
particle, we cannot measure them with 
zero-variance simultaneously. In Quantum 
Theory, the wave-function is used to describe the 
state of a particle. The method to deal with this 
problem in Quantum Theory suggests us an idea 
to deal with the similar problem in WSD.  

Firstly, since the existence of the uncertainty 
of sense selection at different window sizes, 
sense selection for the target word at only one 
context window cannot give a complete 
description of its sense. To grasp a complete 
description of its sense, it is necessary to get 
sense selections along a series of observation, i.e. 
using a sequence of context window to get a 
trajectory of sense selection.  

Secondly, unlike that in Uncertainty Principle, 
the intuition is that, in most of time, when we 
have enough observations, we can be doubtlessly 



  

sure the sense of the target word. So, we make 
final unique sense selection based on the 
trajectory of sense selection. Since the final 
selection is based on a sense trajectory along 
different window sizes, we thus think it may 
helpful to alleviate the uncertainty brought by 
difference of context windows.  

In this way, our approach aims to improve 
robustness of WSD. Here the robustness means 
that sense selection is not sensitive to the 
window size. This kind of robustness is 
especially important to WSD system in noise or 
oral corpus, where there are many occasional 
inserted words near the target word. Besides 
robustness, to achieve better performance is also 
necessary, if robustness is at a low level of 
performance, it is useless.  
 
3  Decision Trajectory Based WSD 
 

In our approach, we firstly use Naïve Bayesian 
(NB) algorithm to construct a sense selection 
trajectory along a sequence of orderly varying 
sized windows of context for each sample, 
including both training samples and test samples. 
Then we use k-nearest-neighbors(KNN) 
algorithm to make final decision for each test 
sample based on these trajectories.  

Let w  be an ambiguous word, it has n  
different senses, 1s … is … ns . Supposing we 
have q  training samples 1S … jS … qS , where 

iq  samples are tagged with sense is , 
qqi =∑ . We present our approach in two 

stages: training stage and test stage. Figure 1 
gives a skeleton of the algorithm.  

In the training stage, we first choose a 
sequence of context windows.   

 mT : ( 1p ,… kp ... mp ) 

Where kp =( kl , kr ) is a context window 
which includes kl  words to the left of word w  
and kr  words to the right. We call mT  a 
trajectory of context windows, kp  is a window 
point in this trajectory. For example, a trajectory 
((1,1), (3,3), (5,5), (7,7), (9,9)) includes 5 points.  

For each window point kp  in mT , we 
construct a classier by using NB algorithm based 
on context word in kp . Let )( kpC  denote the 
classifier, it can be thought as an operator that make 
sense selection upon samples. With the change of 
the window point, we can get a operate vector:  

))(),...,(),...,(( 1 mk pCpCpCC =  
 
Training stage: 
1. To construct a operator vector C  along a 

sequence of context windows Tm :  
   ))(),...,(),...,(( 1 mk pCpCpCC = . 

)( kpC  is a NB classifier learned by all the 
tagged data using kp  as the context 
window.   

2.  For each training sample jS , to operate C  
upon it to construct a sense trajectory, jω  
( qj ,...,1= ). 

 

Test stage:  
1.  For a new sample S , to construct its 

decision trajectory ω  by operating C  
upon it.  

2.  For qj ,...,1= , to calculate ),( jd ωω  
3.  to make KNN-based sense choice for S . 
Figure 1. The algorithm of trajectory-based WSD 

 
 
For a sample jS  for sense is , we use 

)( kpC ( jS ) to denote using )( kpC  to classify 
jS , we can get a sense selection denoted by 

)( kj pω , i.e., )( kpC ( jS )= )( kj pω . We call 
)( kj pω  a point decision. If )( kj pω = is , we 

borrow a term to call jS  an eigen-sample of the 
operator )( kpC , is  is its eigenvaluve. 

With the change of the window point, we get a 
sequence of point decisions for sample jS  
along the window trajectory mT , we denoted it 
by 

  jω =( )( 1pjω ,…, )( mj pω ) 

We call it decision trajectory of sample jS  
along the context windows trajectory mT . If all 
elements of jω  is is , i.e. jω =( is ,…, is ), we 
call jS  an eigen-sample of operator C , jω  is 
a eigen-trajectory of C .  

In this way, we transfer training samples into 
training decision trajectories, which will be used 
as instance for final KNN-based sense selection. 
An eigen-trajectory is a good indication for a 
sample, but when all the training samples are 
eigen-samples, it is not a good thing for 
disambiguating new samples. We will discuss 
this case in section 5.2.  

After finishing training stage of our approach, 
we have a context windows trajectory mT , a 
sequence of classifiers )( kpC  along mT ， and 



  

a decision trajectory for each training sample. All 
these compose of our classifier for a new sample 
in test. When a new sample is given, we first 
calculate a decision trajectory ω  for it by using 
C  operating upon it. Let  

 
 ω =( )( 1pω ,…, )( mpω ) 

 
We then calculate the similarity between ω  and 

jω , kj ,...2,1=  by using (3.1). 

m
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j

∑
== 1
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ωωδ
ωω      (3.1) 

Where 1),( =yxδ  at yx = , and 0),( =yxδ  
at yx ≠ . We then choose h  training decision 
trajectory samples as ω ’s h  nearest neighbors, 
supposing that ih  samples are tagged with 
sense is  among these nearest neighbors, 

hhi =∑ , ii qh ≤ , then by solving (3.2), We 
choose ∗i

s  as the final sense selection for the 
new sample. 

∑
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If all training samples are eign-samples, the 
similarity between ω  and jω  for the same 
sense are the same, (3.2) is changed to:  

},...,1|,})({{|maxarg
1

mkipi k
ni

===
≤≤

∗ ω  (3.3) 

Then the final KNN-based decision is simplified 
to majority voting along the decision trajectory 
of the new sample. 
 
4  Experiments 
 
4.1 Experimental Data  
 

All experimental data were extracted from 
Chinese People Daily from January 1995 to 
December 1996. Eight Chinese ambiguous words 
were used in the experiments as listed in the first 
column of Table1. In the Second column, we 
give some information about samples used in 
experiments. The number before each bracket is 
the number of senses. Numbers in each bracket 
are amounts of samples used for each sense. 
They were annotated by a Chinese native speaker, 
and checked by another native speaker. Some 
samples without inter-agreement between two 
native speakers had been excluded. 

Only word co-occurrences in given windows 
are used as features through all experiments in 
this paper. 

4.2  Experimental  Method 
 
In order to do a comparative study, we have 

implemented not only our algorithm, but also 
four other related algorithms in our experiments. 
They fall into two classes. NB (Manning and 
Schutze 1999) and KNN (Ng and Lee 1996) are 
two components of our approach. Locally 
weighted NB(LWNB, Frank et al. 2003) and 
Ensemble NB(ENB Pedersen 2000) are two 
combinational approaches. Since our aim is to 
compare not only the performance but also the 
robustness of these algorithms, we implemented 
each algorithm in following way. 

We note our approach TB_KNN when (3.2) is 
used for final decision, and TB_VOTE when (3.3) 
is used for final decision.  

We firstly constructed a sequence of context 
windows kp =( kl , kr ) 40,...,1=k  in 
following way:  
1. Initiate: 1,0 11 == rl  
2. Generate next window:   





<=+=
=+==

++

++

kkkkkk

kkkkkk

rlifrrll
rlifrrll

11

11

,1
1,

 

39,...,1=k  
 

We then constructed a sequence of window 
trajectories. 

),...,( 1 ii ppT =    40,...,1=i  

We implemented TB_KNN and TB_VOTE on 
each trajectory from 1T  to 40T .  

Obviously, our iT -based sense selection and 
ip -based selection in fact make use of same 

context surrounding the target word. ip  is the 
biggest window along iT . We implemented NB 
classifiers (noted by P) from 1p  to 40p . 
  KNN was implemented along the same 
sequence of context window, from 1p  to 40p .  

For the implementation of algorithm LWNB, 
we used the measure in (Ng and Lee 1996) to find k 
nearest neighbors for each sample, and then 
constructed a NB classifier according to 
(Frank2003). This algorithm was also implemented 
for each context window along the sequence from 

1p  to 40p . 
ENB was implemented according to (Petersen 

2000). Different left and right window sizes we  
used is (1,2,3,4,5,6,10,15,20). Since one 
implementation of this algorithm make use of all 
these different window sizes. It cannot be 
implemented along above windows sequence, so 
there is only one implementation for this 



  

algorithm. 
For each ambiguous word, we implemented 

above experiments respectively, each experiment 
was a 10-fold cross-validation, at each time 90% 
of the data were used as training data, 5% were 
used as development data, and other 5% were 
used as test data. 
 
4.3 Experimental Results 
 

We give the results curves for word “告” in 
Figure 2 and for word “想” in Figure 3. In both 
figures, x-axis is the context window, from (0,1) 
to (20,20), y-axis is F-measure, and different 
marker style is for different algorithms. Results 
curves for other six target words have similar 
shapes.  

We list a summary of results for all 8 words in 
Table 1. In TB_KNN column, there are three values: 
mean, maximum and standard variance of 
F-measure of 40 different trajectories from 1T  to 

40T . Results are summarized in the same way in 
column TB_VOTE. For column P, KNN and 
LWNB, three values are mean, maximum and 
standard variance of F-measure of 40 different 
points from 1p  to 40p . In column ENB, there is 
only one F-measure. 
 
5  Evaluation 
 
5.1 Comparison with other algorithms 
 

As we have mentioned, we compare results of 
each algorithm on both performance and 
robustness. Performance can be compared 
directly from F-measure point-wise along a 
sequence of context windows(or trajectories). We 
also use mean and maximum (max) along the 
sequence to give an overall comparison. 
Robustness of an algorithm means that sense 
decision varies gracefully with the change of 
context windows (or trajectories) it uses. 
Intuitionally, it can be reflected by a 
context-performance curve, a flat curve is more 
robust than a sharp one. We also use standard 
variance (S.V.) along a sequence of sense 
selection to give an overall comparison. A 
sequence with small standard variance is more 
robust than that with a big one. 

From Figures 2 and 3, we can get an 
intuitional impression that TB_KNN not only 
achieve the best performance at most of points, 
but also has the flattest curve shape. This means 
TB_KNN outperforms other algorithm on both 
performance and robustness. This can be detailed 
in Table 1 by comparing mean/max/S.V. of 

TB_KNN with their correspondences in other 
algorithms. 

Comparing values in the TB_KNN column 
with their correspondences in column P, we can 
find all values of TB_KNN are consistently 
better than those in P. For “mean” and “max”, a 
bigger one is better, while for S.V., a little one is 
better. Comparing values in the TB_KNN 
column with their correspondences in column 
KNN, we can find nearly all values of TB_KNN 
are better than those in KNN. (Except that 
KNN’s max and S.V. for word “穿” are better 
then those in TB_KNN). All differences are 
significant. This means our decision trajectory 
based classifier is better than a NB classifier or a 
KNN classifier. The combination takes 
advantages of both NB and KNN methods. It 
seems that KNN directly based on word 
co-occurrence features suffers deeply from data 
sparseness. While KNN based on decision 
trajectory can alleviate the influence of data 
sparseness. In our final KNN decision, sense 
selection is also not sensitive to the number of 
nearest neighbors. 

Comparing values in TB_KNN column with 
their correspondences in column LWNB, we can 
find most of values in TB_KNN are better than 
their correspondences in LWNB. But the 
differences are not so bigger than those described 
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  Figure 3. context-performance curves for “想” 



  

Word Num-Sen TB_KNN TB_VOTE  P KNN LWNB ENB 

待  3(68,73,35) 0.88/0.91/0.03 0.86/0.89/0.03 0.83/0.88/0.06 0.86/0.91/0.04 0.87/0.92/0.04 0.89 

告 3(31,62,64) 0.95/0.98/0.04 0.94/0.96/0.05 0.90/0.95/0.05 0.83/0.91/0.05 0.90/0.96/0.04 0.96 

看 3(25,28,18) 0.89/0.94/0.03 0.88/0.94/0.04 0.80/0.90/0.10 0.69/0.82/0.07 0.76/0.87/0.07 0.82 

存 4(42,36,31,28) 0.80/0.84/0.04 0.79/0.83/0.04 0.74/0.83/0.06 0.75/0.81/0.05 0.74/0.80/ 0.04 0.79 

想 2(24,33) 0.93/ 0.97/0.03 0.92/0.97/0.04 0.88/0.95/0.05 0.85/0.92/0.05 0.91/ 0.97/0.04 0.89 

穿 2(40,36) 0.91/0.96/0.06 0.89/0.94/0.07 0.85/0.96/0.18 0.89/0.97/0.06 0.87/0.97/0.06 0.84 

换 2(43,52) 0.86/0.89/0.03 0.84/0.87/0.04 0.83/0.88/0.04 0.73/0.80/0.03 0.82/0.88/0.04 0.89 

爱 2(15,15) 0.83/ 0.92/0.05 0.82/ 0.89/0.05 0.77/0.87/0.07 0.49/0.82/0.13 0.79/0.89/0.06 0.77 

Table 1 result summary 
 
in above paragraph, especially when the number 
of training samples is relatively big. In Frank et 
al.(2003), the number of training samples is 
large.(Most of them are more than several 
hundreds.) They used 50 local training samples 
to construct a NB classifier. It is always 
impossible in our experiments and in most WSD 
tasks. 
  Although not all of the values of mean in 
TB_KNN column are bigger than their 
correspondences in ENB, all maximums are 
bigger (or equal) than those in ENB. Comparing 
with ENB, We think the trajectory based approach 
may make use of NB decisions in a more 
systematical way than selecting some classifiers 
for voting in ENB, and also, our approach receives 
benefits from the final KNN decision, which can 
make some exceptions under consideration. 

Let us give a discussion on how our 
trajectory-based approach makes use of 
information in context. 

Firstly, although each NB classifier use 
bag-of-words as its features, because window 
size for NB classifiers is extended sequentially, 
the decision trajectory thus reflects influences 
brought by context words in different positions. 
That is to say, changing the position of a 
co-occurrence word in a sentence might cause 
different final decision in trajectory-based 
approach. While in point-based approach, as 
long as the co-occurrence word is in the context 
window, a classifier based on bag-of-words 
features always makes the same selection no 
matter how to change the position of that word. 
From this view, the trajectory-based approach in 
fact makes use of position information of words 
in context. 

Secondly, because of its implicit utilization of 
position information of context words, it may 
make use of information from some decisions 
locally correct but globally wrong. For example, 
we consider sentence S1 in section 2 again.  

 
S1:我/ 看/ 这/本/ 书/    值得/  一/  读/. 

(I) (think) (this) (book) (worthy) (a)  (read) 
 
On the one hand, as we have said, when we 

use context window (3,3), we select the sense of 
“read” for 看. Although it is a wrong sense 
selection for this word in this sentence (when 
context window is (6,6)), it is a correct selection 
for the local collocation (when 看 collocates 
with 书, its sense is “read”). By saving this 
information, we cannot only make use of 
information of sense selection for the sentence, 
but also information for this collocation. In other 
words, the sentence S1 gives us two samples for 
different senses of the target word.  

On the other hand, that a polysemous word 
changes their probability for different sense with 
the change of context window is one type of 
pattern for sense ambiguity, the trajectory based 
approach seems an efficient way to grasp this 
pattern of ambiguity. 
 
5.2 Trajectory 
 

In TB_KNN, we need to calculate a sense 
decision trajectory for each training sample, not 
all of these trajectories are eigen-trajecories. In 
TB_VOTE, we don’t calculate sense decision 
trajectories for training samples, all training 
decision trajectories are regarded as eigen- 
trajectory, final decision for a new sample 
reduces to majority voting along the trajectory. 
Comparing TB_KNN and TB_VOTE, we can 
find that both performance and robustness of 
TB_VOTE fall. This means existence of 
non-eigen-trajectory is in fact helpful, which can 
make some exceptions under consideration by 
using KNN.  
  In above experiments, we generated a 
trajectory by adding one context word each time. 
We further explored if a looser trajectory can get 
the same performance. We first excluded even 
points in original trajectories in above 



  

experiments to get some new trajectories. For 
example, by excluding even points of the 
trajectory },...,{ 40140 ppT = , we got:  
 20,...,1},,..,,...,{ 3912120

' == − kpppT k  
 
Note this 20

'T  is different from 20T  in above 
experiments, where 20T  is:  

20,...,1},,..,,...,{ 20120 == kpppT k  
 

In this way, we got 20 different trajectories 
TG2: 20

'
1
' ,...,TT , jT '  includes half number 

of points comparing with its correspondence 
jT2  in above experiments. The longest 

trajectory includes 20 points. We repeated above 
TB_KNN experiment along these new 
trajectories. Results are listed in column 
TB_KNN TG2 in Table2. We excluded even 
points to generate TG3 and TG4 which include 
at most 10 and 5 points respectively in their 
trajectories. We also repeated same TB_KNN 
experiment on TG3 and TG4.  
 

 TB_KNN TG2 TB_KNN TG3 TB_KNN TG4

待 0.87/0.90/0.03 0.87/0.91/0.03 0.86/0.89/0.03 

告 0.95/0.97/0.01 0.95/0.96/0.01 0.94/0.95/0.02 

看 0.90/0.93/0.02 0.90/0.91/0.02 0.90/0.93/0.03 

存 0.80/0.84/0.02 0.78/0.82/0.03 0.77/0.81/0.02 

想 0.93/0.97/0.03 0.93/0.95/0.02 0.92/0.96/0.03 

穿 0.91/0.94/0.06 0.91/0.93/0.06 0.90/0.94/0.09 

换 0.86/0.90/0.03 0.86/0.90/0.04 0.82/0.85/0.03 

爱 0.83/0.92/0.05 0.85/0.92/0.05 0.82/0.92/0.07 

Table 2: shorter length in the trajectory  
From Table 2, we can find that performance 

of classifiers using trajectories with small 
number of points do not decrease significantly. 
That is to say, a shorter trajectory can also 
achieve good performance.  
  
6  conclusions 
 

This paper presents a new type of classifier 
combination method. We firstly construct a 
sequence of NB classifiers along orderly varying 
sized windows of context, and get a trajectory of 
sense selection for each sample, then use the 
sense trajectory based KNN to make final 
decision for test samples. Experiments show that 
our approach outperforms some other algorithms 
on both robustness and performance. 

We will do further investigations on the 
trajectory to see if there exists some skeletal 
points like quantum numbers in the 
wavefunction in Quantum Theory. 
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