

Trajectory Based Word Sense Disambiguation

Xiaojie Wang †‡ Yuji Matsumoto †
†Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
‡School of Information Engineering, Beijing University of Posts and Technology

Beijing, 100876, China
{xiaoji-w, matsu}@is.naist.jp

Abstract

Classifier combination is a promising way

to improve performance of word sense
disambiguation. We propose a new
combinational method in this paper. We first
construct a series of Naïve Bayesian
classifiers along a sequence of orderly
varying sized windows of context, and
perform sense selection for both training
samples and test samples using these
classifiers. We thus get a sense selection
trajectory along the sequence of context
windows for each sample. Then we make use
of these trajectories to make final
k-nearest-neighbors-based sense selection for
test samples. This method aims to lower the
uncertainty brought by classifiers using
different context windows and make more
robust utilization of context while perform
well. Experiments show that our approach
outperforms some other algorithms on both
robustness and performance.

1 Introduction

Word sense disambiguation (WSD) has long
been a central issue in Natural Language
Processing (NLP). In many NLP tasks, such as
Machine Translation, Information Retrieval etc.,
WSD plays a very important role in improving
the quality of systems. Many different algorithms
have been used for this task, including some
machine learning (ML) algorithms, such as
Naïve Bayesian model, decision trees, and
example based learners. Since different
algorithms have different strengths and perform
well on different feature space, classifier
combination is a reasonable candidate to achieve
better performance by taking advantages of
different approaches. In the field of ML,
ensembles of classifiers have been shown to be
successful in last decade (Dietterich 1997). For the
specific task of WSD, classifier combination has
been received more and more attention in recent
years.

Kilgarriff and Rosenzweig (2000) presented
the first empirical study. They combined the
output of the participating SENSEVAL1 systems
via simple voting. Pedersen (2000) built an
ensemble of Naïve Bayesian classifiers, each of
which is based on lexical features that represent
co-occurring words in varying sized windows of
context. The sense that receives majority of the
votes was assigned as the final selection.
Stevenson and Wilks (2001) presented a
classifier combination framework where three
different disambiguation modules were
combined using a memory-based approach.
Hoste et al. (2002) used word experts consisted
of four memory-based learners trained on
different context. Output of the word experts is
based on majority voting or weighted voting.
Florian et al.(2002) and Florian and Yarowsky
(2002) used six different classifiers as
components of their combination. They
compared several different strategies of
combination, which include combining the
posterior distribution, combination based on
order statistics and several different voting.
Klein et al. (2002) combined a number of
different first-order classifiers using majority
voting, weighted voting and maximum entropy.
In Park (2003), a committee of classifiers was
used to learn from the unlabeled examples. The
label of an unlabeled example is predicted by
weighted majority voting. Frank at al. (2003)
presented a locally weighted Naïve Bayesian
model. For a given test instance, they first chose
k-nearest-neighbors from training samples for it,
then constructed a Naïve Bayesian classifier by
using these k-nearest-neighbors in stead of all
training samples.

This paper presents a new combinational
approach. We firstly construct a series of Naïve
Bayesian classifiers along a sequence of orderly
varying sized windows of context, and make
sense selection for both training samples and test
samples using these classifiers. We thus get a
trajectory of sense selection for each sample, and
then use the sense trajectory based
k-nearest-neighbors to make final decision for

test samples.
This method is motivated by an observation

that there is an unavoidable uncertainty when a
classifier is used to make sense selection. Our
approach aims to alleviate this uncertainty and
thus make more robust utilization of context
while perform well. Experiments show our
approach outperform some other algorithms on
both robustness and performance.

The remainder of this paper is organized as
follows: Section 2 gives the motivation of our
approach, describes the uncertainty in sense
selection brought by classifiers themselves. In
section 3, we present the decision trajectory
based approach. We then implement some
experiments in section 4, and give some
evaluations and discussions in section 5. Finally,
we draw some conclusions.

2 The Trajectory of Sense Selection

Our method is originally motivated by an
observation on relation between sense selection
by a classifier and the context it uses to make this
selection.

As well known, context is the only means to
identify the sense of a polysemous word. Ide
(1998) identified three types of context:
micro-context, topical context and domain. In
practice, a context window (l , r), which
includes l words to the left and r words to
the right of the target word, is predetermined by
human or chosen automatically by a performance
criterion. Only information in the context
window is then used for classifiers and
disambiguating. What is the best window size for
WSD has been long for a problem. Weaver (1955)
hoped we could find a minimum value of the
window size which can lead to the correct choice
of sense for the target ambiguous word.
Yarowsky (1994) argued the optimal value is
sensitive to the type of ambiguity. Semantic or
topic-based ambiguities warrant a larger window
(from 20 to 50), while more local syntactic
ambiguities warrant a smaller window (3 or 4).
Leacock at el (1998) showed the local context is
superior to topical context as an indicator of
word sense. Yarowsky (2002) suggested that
different algorithms prefer different window
sizes.

Followed by these works, it is clear that
different window sizes might cause different
sense selection for an occurrence of the target
word even when a same algorithm is used.
Yarowsky (2002) gave a investigation on how
the performance changes with different window

sizes for several different algorithms and several
different types of word. In fact, even for human,
different window sizes might cause different
sense selections for a same occurrence of an
ambiguous word. For example, considering word
“看”(It has two different senses: “read” and
“think”) in senesce S1.

S1: 我/ 看/ 这/本/ 书/ 值得/ 一/ 读/.

(I) (think) (this) (book) (worthy) (a) (read)

When we use a context window (1,1), it is not

clear which sense should be more possible in this
sentence. When we use (3,3), because the
collocation with 书 give a very strong
indication for 看’s sense, it is natural that we
select the sense of “read” for 看. When we use
window (6,6), we select the sense of “think” for
it.

Here, the occurrence of the ambiguous word is
the same; it is the difference of context windows
that make the sense selection different. Since the
context window is a built-in parameter of a
classifier, as long as we use a classifier to
distinguish an ambiguous word, we had to
choose a window size. Supposing a classifier is
an observer, choosing a window size is necessary
for the observer to implement an observation.
Different choices of the window size might cause
different observational results for the same
occurrence. That means there is an uncertainty
brought by observer itself. It reminds us that the
relation between the window size and the sense
selection is to some extent similar with the
relation between a particle’s position and its
momentum in Heisenberg Uncertainty Principle.

By the Uncertainty Principle, when we
measure the position and the momentum of a
particle, we cannot measure them with
zero-variance simultaneously. In Quantum
Theory, the wave-function is used to describe the
state of a particle. The method to deal with this
problem in Quantum Theory suggests us an idea
to deal with the similar problem in WSD.

Firstly, since the existence of the uncertainty
of sense selection at different window sizes,
sense selection for the target word at only one
context window cannot give a complete
description of its sense. To grasp a complete
description of its sense, it is necessary to get
sense selections along a series of observation, i.e.
using a sequence of context window to get a
trajectory of sense selection.

Secondly, unlike that in Uncertainty Principle,
the intuition is that, in most of time, when we
have enough observations, we can be doubtlessly

sure the sense of the target word. So, we make
final unique sense selection based on the
trajectory of sense selection. Since the final
selection is based on a sense trajectory along
different window sizes, we thus think it may
helpful to alleviate the uncertainty brought by
difference of context windows.

In this way, our approach aims to improve
robustness of WSD. Here the robustness means
that sense selection is not sensitive to the
window size. This kind of robustness is
especially important to WSD system in noise or
oral corpus, where there are many occasional
inserted words near the target word. Besides
robustness, to achieve better performance is also
necessary, if robustness is at a low level of
performance, it is useless.

3 Decision Trajectory Based WSD

In our approach, we firstly use Naïve Bayesian
(NB) algorithm to construct a sense selection
trajectory along a sequence of orderly varying
sized windows of context for each sample,
including both training samples and test samples.
Then we use k-nearest-neighbors(KNN)
algorithm to make final decision for each test
sample based on these trajectories.

Let w be an ambiguous word, it has n
different senses, 1s … is … ns . Supposing we
have q training samples 1S … jS … qS , where

iq samples are tagged with sense is ,
qqi =∑ . We present our approach in two

stages: training stage and test stage. Figure 1
gives a skeleton of the algorithm.

In the training stage, we first choose a
sequence of context windows.

 mT : (1p ,… kp ... mp)

Where kp =(kl , kr) is a context window
which includes kl words to the left of word w
and kr words to the right. We call mT a
trajectory of context windows, kp is a window
point in this trajectory. For example, a trajectory
((1,1), (3,3), (5,5), (7,7), (9,9)) includes 5 points.

For each window point kp in mT , we
construct a classier by using NB algorithm based
on context word in kp . Let)(kpC denote the
classifier, it can be thought as an operator that make
sense selection upon samples. With the change of
the window point, we can get a operate vector:

))(),...,(),...,((1 mk pCpCpCC =

Training stage:
1. To construct a operator vector C along a

sequence of context windows Tm :
))(),...,(),...,((1 mk pCpCpCC = .

)(kpC is a NB classifier learned by all the
tagged data using kp as the context
window.

2. For each training sample jS , to operate C
upon it to construct a sense trajectory, jω
(qj ,...,1=).

Test stage:
1. For a new sample S , to construct its

decision trajectory ω by operating C
upon it.

2. For qj ,...,1= , to calculate),(jd ωω
3. to make KNN-based sense choice for S .
Figure 1. The algorithm of trajectory-based WSD

For a sample jS for sense is , we use

)(kpC (jS) to denote using)(kpC to classify
jS , we can get a sense selection denoted by

)(kj pω , i.e.,)(kpC (jS)=)(kj pω . We call
)(kj pω a point decision. If)(kj pω = is , we

borrow a term to call jS an eigen-sample of the
operator)(kpC , is is its eigenvaluve.

With the change of the window point, we get a
sequence of point decisions for sample jS
along the window trajectory mT , we denoted it
by

 jω =()(1pjω ,…,)(mj pω)

We call it decision trajectory of sample jS
along the context windows trajectory mT . If all
elements of jω is is , i.e. jω =(is ,…, is), we
call jS an eigen-sample of operator C , jω is
a eigen-trajectory of C .

In this way, we transfer training samples into
training decision trajectories, which will be used
as instance for final KNN-based sense selection.
An eigen-trajectory is a good indication for a
sample, but when all the training samples are
eigen-samples, it is not a good thing for
disambiguating new samples. We will discuss
this case in section 5.2.

After finishing training stage of our approach,
we have a context windows trajectory mT , a
sequence of classifiers)(kpC along mT ， and

a decision trajectory for each training sample. All
these compose of our classifier for a new sample
in test. When a new sample is given, we first
calculate a decision trajectory ω for it by using
C operating upon it. Let

 ω =()(1pω ,…,)(mpω)

We then calculate the similarity between ω and

jω , kj ,...2,1= by using (3.1).

m

pp
Sim

m

i
iji

j

∑
== 1

))(),((
),(

ωωδ
ωω (3.1)

Where 1),(=yxδ at yx = , and 0),(=yxδ
at yx ≠ . We then choose h training decision
trajectory samples as ω ’s h nearest neighbors,
supposing that ih samples are tagged with
sense is among these nearest neighbors,

hhi =∑ , ii qh ≤ , then by solving (3.2), We
choose ∗i

s as the final sense selection for the
new sample.

∑
≤≤≤≤

∗ =
ihj

j
ni

Simi
11

),(maxarg ωω (3.2)

If all training samples are eign-samples, the
similarity between ω and jω for the same
sense are the same, (3.2) is changed to:

},...,1|,})({{|maxarg
1

mkipi k
ni

===
≤≤

∗ ω (3.3)

Then the final KNN-based decision is simplified
to majority voting along the decision trajectory
of the new sample.

4 Experiments

4.1 Experimental Data

All experimental data were extracted from
Chinese People Daily from January 1995 to
December 1996. Eight Chinese ambiguous words
were used in the experiments as listed in the first
column of Table1. In the Second column, we
give some information about samples used in
experiments. The number before each bracket is
the number of senses. Numbers in each bracket
are amounts of samples used for each sense.
They were annotated by a Chinese native speaker,
and checked by another native speaker. Some
samples without inter-agreement between two
native speakers had been excluded.

Only word co-occurrences in given windows
are used as features through all experiments in
this paper.

4.2 Experimental Method

In order to do a comparative study, we have

implemented not only our algorithm, but also
four other related algorithms in our experiments.
They fall into two classes. NB (Manning and
Schutze 1999) and KNN (Ng and Lee 1996) are
two components of our approach. Locally
weighted NB(LWNB, Frank et al. 2003) and
Ensemble NB(ENB Pedersen 2000) are two
combinational approaches. Since our aim is to
compare not only the performance but also the
robustness of these algorithms, we implemented
each algorithm in following way.

We note our approach TB_KNN when (3.2) is
used for final decision, and TB_VOTE when (3.3)
is used for final decision.

We firstly constructed a sequence of context
windows kp =(kl , kr) 40,...,1=k in
following way:
1. Initiate: 1,0 11 == rl
2. Generate next window:





<=+=
=+==

++

++

kkkkkk

kkkkkk

rlifrrll
rlifrrll

11

11

,1
1,

39,...,1=k

We then constructed a sequence of window
trajectories.

),...,(1 ii ppT = 40,...,1=i

We implemented TB_KNN and TB_VOTE on
each trajectory from 1T to 40T .

Obviously, our iT -based sense selection and
ip -based selection in fact make use of same

context surrounding the target word. ip is the
biggest window along iT . We implemented NB
classifiers (noted by P) from 1p to 40p .
 KNN was implemented along the same
sequence of context window, from 1p to 40p .

For the implementation of algorithm LWNB,
we used the measure in (Ng and Lee 1996) to find k
nearest neighbors for each sample, and then
constructed a NB classifier according to
(Frank2003). This algorithm was also implemented
for each context window along the sequence from

1p to 40p .
ENB was implemented according to (Petersen

2000). Different left and right window sizes we
used is (1,2,3,4,5,6,10,15,20). Since one
implementation of this algorithm make use of all
these different window sizes. It cannot be
implemented along above windows sequence, so
there is only one implementation for this

algorithm.
For each ambiguous word, we implemented

above experiments respectively, each experiment
was a 10-fold cross-validation, at each time 90%
of the data were used as training data, 5% were
used as development data, and other 5% were
used as test data.

4.3 Experimental Results

We give the results curves for word “告” in
Figure 2 and for word “想” in Figure 3. In both
figures, x-axis is the context window, from (0,1)
to (20,20), y-axis is F-measure, and different
marker style is for different algorithms. Results
curves for other six target words have similar
shapes.

We list a summary of results for all 8 words in
Table 1. In TB_KNN column, there are three values:
mean, maximum and standard variance of
F-measure of 40 different trajectories from 1T to

40T . Results are summarized in the same way in
column TB_VOTE. For column P, KNN and
LWNB, three values are mean, maximum and
standard variance of F-measure of 40 different
points from 1p to 40p . In column ENB, there is
only one F-measure.

5 Evaluation

5.1 Comparison with other algorithms

As we have mentioned, we compare results of
each algorithm on both performance and
robustness. Performance can be compared
directly from F-measure point-wise along a
sequence of context windows(or trajectories). We
also use mean and maximum (max) along the
sequence to give an overall comparison.
Robustness of an algorithm means that sense
decision varies gracefully with the change of
context windows (or trajectories) it uses.
Intuitionally, it can be reflected by a
context-performance curve, a flat curve is more
robust than a sharp one. We also use standard
variance (S.V.) along a sequence of sense
selection to give an overall comparison. A
sequence with small standard variance is more
robust than that with a big one.

From Figures 2 and 3, we can get an
intuitional impression that TB_KNN not only
achieve the best performance at most of points,
but also has the flattest curve shape. This means
TB_KNN outperforms other algorithm on both
performance and robustness. This can be detailed
in Table 1 by comparing mean/max/S.V. of

TB_KNN with their correspondences in other
algorithms.

Comparing values in the TB_KNN column
with their correspondences in column P, we can
find all values of TB_KNN are consistently
better than those in P. For “mean” and “max”, a
bigger one is better, while for S.V., a little one is
better. Comparing values in the TB_KNN
column with their correspondences in column
KNN, we can find nearly all values of TB_KNN
are better than those in KNN. (Except that
KNN’s max and S.V. for word “穿” are better
then those in TB_KNN). All differences are
significant. This means our decision trajectory
based classifier is better than a NB classifier or a
KNN classifier. The combination takes
advantages of both NB and KNN methods. It
seems that KNN directly based on word
co-occurrence features suffers deeply from data
sparseness. While KNN based on decision
trajectory can alleviate the influence of data
sparseness. In our final KNN decision, sense
selection is also not sensitive to the number of
nearest neighbors.

Comparing values in TB_KNN column with
their correspondences in column LWNB, we can
find most of values in TB_KNN are better than
their correspondences in LWNB. But the
differences are not so bigger than those described

points in the trajectory

F-
M

ea
su

re

1.0

.9

.8

.7

告

TB_K

TB_V

P

KNN

LWNB

Figure 2. context-performance curves for “告”

points in the trajectory

F-
M

ea
su

re

1.0

.9

.8

.7

想

TB_K

TB_V

P

KNN

LWNB

 Figure 3. context-performance curves for “想”

Word Num-Sen TB_KNN TB_VOTE P KNN LWNB ENB

待 3(68,73,35) 0.88/0.91/0.03 0.86/0.89/0.03 0.83/0.88/0.06 0.86/0.91/0.04 0.87/0.92/0.04 0.89

告 3(31,62,64) 0.95/0.98/0.04 0.94/0.96/0.05 0.90/0.95/0.05 0.83/0.91/0.05 0.90/0.96/0.04 0.96

看 3(25,28,18) 0.89/0.94/0.03 0.88/0.94/0.04 0.80/0.90/0.10 0.69/0.82/0.07 0.76/0.87/0.07 0.82

存 4(42,36,31,28) 0.80/0.84/0.04 0.79/0.83/0.04 0.74/0.83/0.06 0.75/0.81/0.05 0.74/0.80/ 0.04 0.79

想 2(24,33) 0.93/ 0.97/0.03 0.92/0.97/0.04 0.88/0.95/0.05 0.85/0.92/0.05 0.91/ 0.97/0.04 0.89

穿 2(40,36) 0.91/0.96/0.06 0.89/0.94/0.07 0.85/0.96/0.18 0.89/0.97/0.06 0.87/0.97/0.06 0.84

换 2(43,52) 0.86/0.89/0.03 0.84/0.87/0.04 0.83/0.88/0.04 0.73/0.80/0.03 0.82/0.88/0.04 0.89

爱 2(15,15) 0.83/ 0.92/0.05 0.82/ 0.89/0.05 0.77/0.87/0.07 0.49/0.82/0.13 0.79/0.89/0.06 0.77

Table 1 result summary

in above paragraph, especially when the number
of training samples is relatively big. In Frank et
al.(2003), the number of training samples is
large.(Most of them are more than several
hundreds.) They used 50 local training samples
to construct a NB classifier. It is always
impossible in our experiments and in most WSD
tasks.
 Although not all of the values of mean in
TB_KNN column are bigger than their
correspondences in ENB, all maximums are
bigger (or equal) than those in ENB. Comparing
with ENB, We think the trajectory based approach
may make use of NB decisions in a more
systematical way than selecting some classifiers
for voting in ENB, and also, our approach receives
benefits from the final KNN decision, which can
make some exceptions under consideration.

Let us give a discussion on how our
trajectory-based approach makes use of
information in context.

Firstly, although each NB classifier use
bag-of-words as its features, because window
size for NB classifiers is extended sequentially,
the decision trajectory thus reflects influences
brought by context words in different positions.
That is to say, changing the position of a
co-occurrence word in a sentence might cause
different final decision in trajectory-based
approach. While in point-based approach, as
long as the co-occurrence word is in the context
window, a classifier based on bag-of-words
features always makes the same selection no
matter how to change the position of that word.
From this view, the trajectory-based approach in
fact makes use of position information of words
in context.

Secondly, because of its implicit utilization of
position information of context words, it may
make use of information from some decisions
locally correct but globally wrong. For example,
we consider sentence S1 in section 2 again.

S1:我/ 看/ 这/本/ 书/ 值得/ 一/ 读/.

(I) (think) (this) (book) (worthy) (a) (read)

On the one hand, as we have said, when we

use context window (3,3), we select the sense of
“read” for 看. Although it is a wrong sense
selection for this word in this sentence (when
context window is (6,6)), it is a correct selection
for the local collocation (when 看 collocates
with 书, its sense is “read”). By saving this
information, we cannot only make use of
information of sense selection for the sentence,
but also information for this collocation. In other
words, the sentence S1 gives us two samples for
different senses of the target word.

On the other hand, that a polysemous word
changes their probability for different sense with
the change of context window is one type of
pattern for sense ambiguity, the trajectory based
approach seems an efficient way to grasp this
pattern of ambiguity.

5.2 Trajectory

In TB_KNN, we need to calculate a sense
decision trajectory for each training sample, not
all of these trajectories are eigen-trajecories. In
TB_VOTE, we don’t calculate sense decision
trajectories for training samples, all training
decision trajectories are regarded as eigen-
trajectory, final decision for a new sample
reduces to majority voting along the trajectory.
Comparing TB_KNN and TB_VOTE, we can
find that both performance and robustness of
TB_VOTE fall. This means existence of
non-eigen-trajectory is in fact helpful, which can
make some exceptions under consideration by
using KNN.
 In above experiments, we generated a
trajectory by adding one context word each time.
We further explored if a looser trajectory can get
the same performance. We first excluded even
points in original trajectories in above

experiments to get some new trajectories. For
example, by excluding even points of the
trajectory },...,{ 40140 ppT = , we got:
 20,...,1},,..,,...,{ 3912120

' == − kpppT k

Note this 20

'T is different from 20T in above
experiments, where 20T is:

20,...,1},,..,,...,{ 20120 == kpppT k

In this way, we got 20 different trajectories
TG2: 20

'
1
' ,...,TT , jT ' includes half number

of points comparing with its correspondence
jT2 in above experiments. The longest

trajectory includes 20 points. We repeated above
TB_KNN experiment along these new
trajectories. Results are listed in column
TB_KNN TG2 in Table2. We excluded even
points to generate TG3 and TG4 which include
at most 10 and 5 points respectively in their
trajectories. We also repeated same TB_KNN
experiment on TG3 and TG4.

 TB_KNN TG2 TB_KNN TG3 TB_KNN TG4

待 0.87/0.90/0.03 0.87/0.91/0.03 0.86/0.89/0.03

告 0.95/0.97/0.01 0.95/0.96/0.01 0.94/0.95/0.02

看 0.90/0.93/0.02 0.90/0.91/0.02 0.90/0.93/0.03

存 0.80/0.84/0.02 0.78/0.82/0.03 0.77/0.81/0.02

想 0.93/0.97/0.03 0.93/0.95/0.02 0.92/0.96/0.03

穿 0.91/0.94/0.06 0.91/0.93/0.06 0.90/0.94/0.09

换 0.86/0.90/0.03 0.86/0.90/0.04 0.82/0.85/0.03

爱 0.83/0.92/0.05 0.85/0.92/0.05 0.82/0.92/0.07

Table 2: shorter length in the trajectory
From Table 2, we can find that performance

of classifiers using trajectories with small
number of points do not decrease significantly.
That is to say, a shorter trajectory can also
achieve good performance.

6 conclusions

This paper presents a new type of classifier
combination method. We firstly construct a
sequence of NB classifiers along orderly varying
sized windows of context, and get a trajectory of
sense selection for each sample, then use the
sense trajectory based KNN to make final
decision for test samples. Experiments show that
our approach outperforms some other algorithms
on both robustness and performance.

We will do further investigations on the
trajectory to see if there exists some skeletal
points like quantum numbers in the
wavefunction in Quantum Theory.

References

Thomas G. Dietterich. 1997. Machine Learning

Research: Four Current Directions. AI Magazine.
Vol. 18, No. 4 pp.97-136.

Radu Florian, Silviu Cucerzan, C Schafer and D.
Yarowsky. 2002. Combining Classifiers for
Word Sense Disambiguation. Journal of Natural
Language Engineering. Vol. 8 No.4.

Radu Florian and D. Yarowsky. 2002. Modeling
Consensus: Classifier Combination for Word
Sense Disambiguation. In Proceedings of
EMNLP'02, pp25-32.

Eibe Frank, M. Hall and Bernhard Pfahringer.
2003. Locally Weighted Naïve Bayes.
Proceedings of the Conference on Uncertainty
in Artificial Intelligence.

Véronique Hoste, I. Hendrickx, W. Daelemans,
and A. van den Bosch.2002. Parameter
optimization for machine-learning of word
sense disambiguation. Natural Language
Engineering,8(3).

Nancy Ide, J Veronis.1998. Introduction to the
Special Issue on Word Sense Disambiguation:
The State of the Art. Computational Linguistics,
24(1):1-40.

Dan Klein, K. Toutanova, H. Tolga Ilhan, S. D.
Kamvar, and C. D. Manning. 2002. Combining
Heterogeneous Classifiers for Word-Sense
Disambiguation. In Workshop on Word Sense
Disambiguation at ACL 40, pages 74-80.

Adam Kilgarriff and J. Rosenzweig (2000).
Framework and results for English Senseval.
Computers and the Humanities. 34(1):15-48.

Chris D. Manning and H. Schutze. 1999.
Foundations of Statistical Natural Language
Processing. MIT Press.

Rada Mihalcea. 2002. Word Sense Disambiguation
Using Pattern Learning and Automatic Feature
Selection, Journal of Natural Language and
Engineering, 8(4):343-358.

Hwee Tou Ng, Hian Beng Lee. 1996. Integrating
Multiple Knowledge Sources to Disambiguate
Word Sense: An Exemplar-Based Approach. In
Proceedings of the Thirty-Fourth ACL.

Ted Pedersen 2000. A Simple Approach to
Building Ensembles of Naive Bayesian
Classifiers for Word Sense Disambiguation. In
the Proceedings of the NAACL-00.

David Yarowsky 1994. Decision Lists for
Lexical Ambiguity Resolution: Application to
Accent Restoration in Spanish and French.'' In
Proceedings of the 32nd ACL. pp. 88-95.

David Yarowsky and R. Florian.2002.
Evaluating Sense Disambiguation Performance
Across Diverse Parameter Spaces. Journal of
Natural Language Engineering, Vol.8, No 4.

