Text Induced Spelling Correction

Martin REYNAERT
Induction of Linguistic Knowledge, Computational Linguistics and Al, Tilburg University
Warandelaan 2, 5000 LE Tilburg,
The Netherlands,
reynaert@Quvt.nl

Abstract

We present TISC, a language-independent
and context-sensitive spelling checking and
correction system designed to facilitate the
automatic removal of non-word spelling er-
rors in large corpora. Its lexicon is de-
rived from a very large corpus of raw text,
without supervision, and contains word un-
igrams and word bigrams. It is stored in
a novel representation based on a purpose-
built hashing function, which provides a fast
and computationally tractable way of check-
ing whether a particular word form likely
constitutes a spelling error and of retriev-
ing correction candidates. The system em-
ploys input context and lexicon evidence
to automatically propose a limited num-
ber of ranked correction candidates when
insufficient information for an unambigu-
ous decision on a single correction is avail-
able. We describe the implemented proto-
type and evaluate it on English and Dutch
text, containing real-world errors in more
or less limited contexts. The results are
compared with those of the isolated word
spelling checking programs ISPELL and the
MICROSOFT PROOFING TOOLS (MPT).

1 Introduction

All large text corpora contain spelling errors.
People’s internal language models, whatever the
form they may take, are so robust that these
errors do not necessarily affect them, nor are
errors normally passed on and incorporated in
the next generation’s language models. Lan-
guage technologists today derive statistical lan-
guage models from corpora, accumulations of
texts produced by whatever subset of a language
community in electronic form. Errors present
in these corpora are therefore passed on to the
‘next generation’ and, given the nature of elec-
tronic text, copying or archiving does not rec-
tify these errors and transmission noise can only
aggravate them. These errors accumulate and
must influence to a certain degree our statistical

language models or information-theoretic mea-
sures. They enhance the language sparseness
problem in that they may take away valuable
information, steal as it were, from the statistical
weight of the correct form. In n-gram models
the relative effect of this is further enhanced.
We think state-of-the-art spelling checking
and correction systems are not equal to the task
of cleaning up large corpora in that they are
focused on achieving high recall to the detri-
ment of precision. This means that for ev-
ery error potentially corrected, a higher number
would be erroneously replaced, if they did al-
low for automatic replacement. Automatic cor-
rection would certainly require a level of preci-
sion where more errors are removed than cor-
rect words replaced. We claim the algorithm
presented here is a step in that direction. We
further claim that the algorithm is to a large
degree language-independent. To substantiate
this we present and evaluate an English as well
as a Dutch version, which differ only in the
corpus-derived information available to them.
Section 2 presents our Text Induced Spelling
Correction algorithm (Ti1sc), while the corpus-
derived components are discussed in section 3.
We outline the implementation in section 4 and
devote section 5 to the evaluation of both lan-
guage versions and the discussion of the results.

2 The correction algorithm

We develop the idea of using the corpus itself as
the basis on which to build a spelling correction
system, since, after all, for every erroneously
spelled form, the corpus should contain far more
counterexamples of the adequate form.

2.1 Anagram hashing

We hit upon the idea of trying to line up all
those forms present in the corpus that consist
of the same set of characters so as to use that as
the basis for a corpus-derived lexicon. A means
to do this in a completely unsupervised way was

found in the theory of hashing, be it in the ‘bad’
part of it, in the normally avoided generation of
collisions. Collisions occur when the mathemat-
ical function used to bin the information, puts
more than one item of information in a single
bin (Knuth, 1981). The mathematically sim-
ple function introduced and exploited here does
precisely that, for all strings containing the pre-
cise same set of characters.

So, for each word type or word type combi-
nation (compound or word bigram) to be in-
cluded in the TISC lexicon, we obtain a numeric
value, which will serve as the hash key. The for-
mula represents the mathematical function we
devised to do this, where f is a particular nu-
merical value assigned to each character in the
alphabet and ¢; to ¢, the actual characters in
the input string w.

|w|

Key(w) =) f(ci)"
i=1

In practice, we use the ISO Latin-1 code value
of each character in the string raised to a power
n. We currently use 5 as the value for n. This
was empirically derived, lower values do not
produce collisions between anagrams only. The
rather large natural number produced by this
function in effect inflates the difference between
any two characters to such a degree, that all
strings containing the same set of characters re-
ceive the same natural number. This means
that all anagrams, words consisting of a partic-
ular set of characters and present in the lexicon,
will be identified through their common numeric
value. So, in that the collisions produced by this
function identify anagrams, we refer to this as
an anagram hash and to the numeric values ob-
tained as the anagram keys.

In the implementation we used chaining for
collision resolution, as the anagram keys and
their associated word forms are there stored in
a regular hash. The anagram key will enable
us to look up immediately whether any string
consisting of the same character set as the input
string was encountered in the corpus. When not
present in the lexicon, close (numeric) neigh-
bours might very well be present, and simple
arithmetic will allow us to identify and retrieve
these.

It is this novel representation that makes
the implementation computationally tractable.
The net effect of obtaining anagram hash key
values is that it provides a cheap abstraction

Anagram key

100036040884
108656935573

anagrams

routt, rutto, tortu, trout, tutor

a trout, a tutor, art out, at tour, out art, rat out,
rout at, tar out, tour at, trout a, tutor a

rout the, the rout, the tour, tour the, tout her,
trout he, true hot

art unto, or taunt, taunt or, trout an, un trato
or statue, our state, our taste, ouster at, out
rates, out tears, rates out, routes at, sea trout,
stare out, state our, statue or, taste our, tears

122746224841

124762035573
139280607949

out, touts are

red trout

ours that, out trash, sour that, that ours, that
sour, trash out, trout has

fried trout, if tortured, tortured if, turf editor,
tutor fired

out resort, roster out, routers to, sore trout, store
tour, to routers, to trouser, trout rose, true roots

139833841641
140937036472

163637465298

166797995067

Table 1: Extract from a TISC lexicon with the
anagram keys and associated, chained anagrams

from the surface sequence of characters which
furthermore allows, through simple addition,
subtraction or both, for moving from one partic-
ular combination of characters to another. The
numeric distance obtained by means of this ab-
straction will in all cases be exactly the same
for e.g. the difference between ‘randomise’ and
‘randomize’ or any other verb possibly ending in
‘-ise’ or ‘-ize’. The same goes for all systematic
differences between e.g. American and British
English (think of single or double ‘I’ or ‘ou’ ver-
sus ‘o).

Anagram key based spelling correction is an
inexpensive solution to the string correction
problem as it does not entail expensive search-
ing: it uses the non-search strategy implied in
hashing.

2.2 Anagram key based correction

Based on a word form’s anagram key it becomes
possible to systematically query the lexicon for
any variants present, be they morphological, ty-
pographical or orthographical. These variants
can all be seen as variations of the usual taxon-
omy in terms of *trasnpositions, *deletons, *in-
serrtions or *substatutions (Damerau, 1964).

transpositions These we get for free: they
have the same anagram key value, so when
queried, the lexicon returns the correct
form and its anagrams (if any).

deletions We iterate over the alphabet and
query the lexicon for the input word ana-
gram value plus each value from the alpha-
bet.

insertions We iterate over the list of anagram
values for the character unigrams and bi-
grams collected from the input type and
query the lexicon for the input word ana-
gram value minus each of these values.

ANAGRAM
INPUT WORD VALUE Transposition L
INPUT WORD
E
X
CORRECTION |
— Deletion = 8
Anagram values
Alphabet N
For each value: H
ADD g
b Insertion = H
Anagram values
character unigrams
L(bigramsinput word
For each value:
SUBTRACT = Substitution =

Figure 1: The correction module

both

lists
adding each value from the one and sub-
tracting each value of the second to the
input word anagram value and repeatedly
query the lexicon.

substitutions We iterate over

We thus retrieve from the lexicon all numeri-
cal near-neighbours (NNNs) and apply standard
string matching techniques to store those that
either in front or back match the input type for
a specific amount of characters, depending on
the input type’s length. After doing so, we iter-
ate over the list of NNNs obtained and upgrade
the actual retrieval counts for those that have
the greater substring matches and whose Lev-
enshtein distance (LD) (Levenshtein, 1965) does
not exceed 4, as the algorithm is not in itself
limited to a particular LD. The elements of this
list have thereby been ranked and the top n are
then proposed as correction candidates. This
ranking is an automatic side effect of the algo-
rithm which produces more hits on the actual
nearest NNN’s. A deletion error, e.g. such as
*cateory, will return the correct ‘category’ on
the basis of adding the value for ‘g’ as well as
of substituting the value for ‘e’ with that for
‘eg’ and substituting the value for ‘o’ with that
for ‘go’. The redundancy inherent to our algo-
rithm thereby produces the desirable side-effect
of converging on what is usually the best correc-
tion candidate, besides the actual input string
itself, if present in the lexicon.

3 TISC corpus-derived components
3.1 The Lexicon

The English corpus we used was the New York
Times (1994-2002) material available in the LDC
Gigaword Corpus (NYT) (Graff, 2003). For
Dutch we used both the 1Lk Corpus' and the

lhttp://ilk.uvt .n1/ilkcorpus/

| Corpus | NYT | LK-TWC]
language English Dutch
tokens 1,106,376,695 | 681,686,340
bigrams (frq.>2) | 11,246,986 9,927,378
derived unigrams | 672,502 861,604
keys/anagrams 10,287,826 9,000,131

Table 2: Statistics of NYT and ILK-TWENTE cor-
pus and lexicon

Twente Corpus? (TWC). Statistics on these cor-
pora are presented in table 2.

A TIsC lexicon is derived from a large cor-
pus of tokenised, but otherwise raw text, from
which all XML or other tags have been discarded.
We normalise the corpus by replacing all word-
external punctuation by a single unique mark,
as well as all digits and numbers by another.
We apply a rule-based tokenizer and use the
cMU Statistical Toolkit for deriving a bigram
frequency list from the corpus (Clarkson and
Rosenfeld, 1997). We discard the tail of the bi-
gram list below a threshold frequency. Apart
from the fact that this reduces the list to a size
manageable for a standard PC with 1 gigabyte
of RAM, it also ensures we do not incorporate the
bulk of erroneous types present in the corpus.
Next the frequency information is discarded and
a unigram list derived from the retained part of
the bigram list. We lowercase the unigram list
and concatenate the three lists obtained, remov-
ing any doubles. We finally compute the ana-
gram key values for the unigram/bigram list.
Together, the anagram keys and their lined-up
unigrams or bigrams (no unigrams can line up
with bigrams as the space is regarded as a char-
acter in its own right) constitute the lexicon.
Note that the lexicon will contain names and
higher frequency errors.

3.2 The alphabet

Transformations on the word type to be evalu-
ated are necessary in order to identify correc-
tion candidates. These transformations occur
on the anagram key of the word type under con-
sideration on the basis of numeric values for the
alphabet used, which are read in at the start
of run time. Our alphabet consists of the ana-
gram key values for all character unigrams and
character bigrams we want to work with. These
have been derived from character unigram and
bigram counts on the corpus.

2ht'l'.p ://wwwhome.cs.utwente.nl/~druid/TwNC/
TwNC-main.html

3.3 The cooccurrence information

From the word bigram and unigram lists we de-
rive cooccurrence information for all the word
types present. For each word type we count the
number of times it forms the:

e left part of a compound (LPC)
e right part of a compound (RPC)
e left part of a bigram (LPB)

e right part of a bigram (RPB)

Note that these cooccurrence counts (COOC)
are counts on word types and not on word to-
kens. The cooc table contains only the counts
per word-type, not the actual cooccurring word

types.

4 TISC: the implementation
4.1 Zipf filters

Recall that Zipf stated that the frequency of
a word is inversely proportional to its length
(Zipf, 1935). This implies that we should ex-
pect to see more combinations of any given short
word, be it in bigrams or as part of compounds,
than of longer words. A long compound, e.g.
one composed of three or more shorter words,
cannot reasonably be expected to combine with
very many more words. Short words can be ex-
pected to combine in a myriad of ways, be it as
part of compounds or of numerous bigrams. It
is this idea we exploit in what we would like to
call the Zipf Filters implemented in our proto-
type. We make the number of expected cooccur-
rences of a word dependent on the length of the
word form. This then allows to detect anoma-
lies in the coocs for particular word types. We
posit a particular amount of times a string or
substring is seen as sufficient to conclude the
string is likely well-formed as it is highly pro-
ductive. To this end we take a constant, which
is higher for the shorter strings and lower be-
yond a particular amount of characters, divided
by the number of characters in the string, or
the string’s length. We compare the coocs of a
string to be evaluated with the outcome of this
calculation and accept the string as being well-
formed when the coocs are higher, reject and
thus send on to the correction module, when
lower.

4.2 Compound splitting

Given that a language such as Dutch to a large
degree allows for compounding, any text may
contain quite a number of previously unseen
compounds. While iterating over the input

word string to compute its anagram value, TISC
repeatedly queries the lexicon to check for the
presence of the substring handled so far. If this
is successful for the whole string, the substrings,
if any, which show the best balance between
length and coocCs are stored with their ana-
gram values. If no full parse was possible, the
process is repeated from right to left and a de-
cision made over both the left-right and right-
left parses and the split deemed most usable
stored. TISC proposes a single particular split
to be further provided to the checking and cor-
rection modules. The implementation currently
allows for only a split in a left and right part.

4.3 Checking

The input text is first fully analysed: anagram
values are added to the type list, frequencies
of types and their compounding parts tallied,
track kept of how many times the type was
capitalised, recurrent LPC’s not in the lexicon
stored. Then, all the types are sent to the
spelling checking module. Since we cannot con-
tent ourselves with simply checking whether a
type is present in the dictionary or not, we
query the cooccurrence information table to see
whether the particular type’s cooCs conform
to our expectation of how many times a type
of the given length should have been incorpo-
rated in the lexicon, i.e. the expectancy level or
threshold set by the Zipf filter. If this is the
case, the type is not further evaluated, which
we will refer to as ‘let go’. If not, the COOCs
for its LPC and the RPC are evaluated against
the threshold. We do not, at this stage, want
to risk to lose too many of the erroneous types,
so the level of expectancy is set rather high.
We simultaneously check whether perhaps the
lexicon contains possible bigrams based on the
type’s anagram key value with the value for a
space added. All the types which did not con-
form to the expected levels or were found to
be present with an additional space, are further
evaluated. Further checks are:

e extra-space cases: If it turns out the lex-
icon contains only the inverted form with
the added space (e.g. ‘koffiebekertje’ [cof-
fee cup]: not in the lexicon, but ‘bekertje
koffie’ [cup of coffee] is present), we accept
the form as being correct, the rest are fur-
ther evaluated.

e whether perhaps the LPC was seen in vari-
ous other input text compounds or whether
the RPC was perhaps seen as a word in its

Type A
i nagram
List Values

Input
Text

Checking

TISC

Compound J

Splitting

PROCESSING L

HC\O;I

Bigram Word

Unigram
Frequency List
L ower cased

Unigram
Frequency List

Frequency List

Cut—off if frequency < n

PREPROCESSING

ARCHITECTURE

TO
BE
CORRECTED?

Type Co—occurrence

Frequencies

Correction
— unigram level
LEXICON — bigram level

Paired anagram values &
"chained’ anagrams

v

Correction
— compound level

Agreement
between
levels

ALPHABET

= Anagram value list

Post—correction
Evaluation

!

Figure 2: The TISC architecture

own right with a given frequency in the in-
put text, the other part’s coocs conform-
ing. Again those passing this test are let
go.

e whether perhaps the coocs for the LPC
with first or all characters upper-cased con-
form to expectance.

e if the input type contains a dash, we check
whether the coocs for the type without
the dash conform. Or perhaps whether the
type without the dash but with an extra
space is present in the lexicon.

e finally we check those forms for which the
cooccurrence table contains no information
at all. If the coocs for their LPC and RPC
exceed a high expectancy threshold, these
are let go too.

All types not let go by one of these checks are

sent on to the correction module.

4.4 Correction

By default, TISC’s correction works on two lev-
els, a third being invoked when these do not
return satisfactory results. The unigram level
consists of two tiers: unigram correction on the
basis of the lexicon and on the basis of the list
of input context derived types and compound-
ing parts (with frequency threshold). On the
bigram level, TISC performs context-dependent

error correction, to some extent. It examines
the 4 bigrams contained within a 2-1-2 window
around the type in the input text (e.g. the green
*bottel was empty — the *bottel, green *bottel,
*bottel was, *bottel empty). The only difference
with the unigram correction module lies in the
fact that for the 4 bigrams sent through the cor-
rection loop, all the correction candidates re-
trieved are stored in the same list. This pro-
duces more reliable counts after upgrading. Af-
ter correction on these levels, the output can-
didates are compared and if both levels con-
cur, i.e. the same candidate(s) were returned,
they are accepted if they differ from the input
type, or rejected (and ’let go’) if not. When
no output is returned by the unigram and bi-
gram correction levels, or the results of these
do not concur, the type is further checked on
the third level, that of its substrings, i.e. the
compounding parts returned by the compound
splitter. The compound correction level treats
both LPC and RPC as words in their own right,
queries the system for correction candidates in
the same way as on the unigram level for both
parts and finally concatenates the top candi-
dates returned and proposes these as correction
candidates. Given a sufficiently high frequency
in the input text of the correct form for an in-
correct compounding part, this may enable the

Metrol | Metro2 | Reutl | Reut2 |

key code M1 M2 3P 1P
context article | article | 3 par. | 1 par.
tokens 21,919 | 25,750 | 97,432 | 40,349
types 5,747 6,441 15,341 | 9,590
errors 129 123 1,222 1,222
error/type | 2.25% | 1.9% 8% 12.7%

Table 3: Statistics of Metro and Reuters evalu-
ation files

system to correct the error even if the correct
form is not present in the lexicon.

5 Evaluation
5.1 Test settings

For T1SC we report learning curves obtained by
varying the threshold at which the corpora’s bi-
gram lists were truncated (Frequencies: 3, 5,
10, 20, 30, 40, 50 and 100 for NyT, 3-10 and
15 for ILK-TWENTE). The implementation used
was the same for both languages as it contains
no provisions specific to either. Both ISPELL
and MPT were run with their standard US and
standard Dutch dictionaries, the first in batch
mode, the second manually emulating ISPELL’s
output for automatic evaluation purposes.

5.2 Composition of the evaluation files

For evaluation purposes, we proofread the
Dutch version of the newspaper Metro during
April-May 2003 and collected the non-word er-
rors encountered. This amounts to 129 non-
word errors, which were extracted from the on-
line version with the full article they appeared
in. We used this first batch (Metrol) for de-
velopment purposes. A second bout of proof-
reading yielded a second, similar batch, which
we reserved for testing purposes only (Metro2).
We report the scores on both batches.

For evaluating the English version of TISC we
manually collected 1093 erroneous types from
the alphabetically sorted unigram frequency list
of the Reuters Corpus (Lewis et al., 2003). We
took care not to collect only very low frequency
items. We then extracted their contexts from
the tokenized corpus. The context ran to the
paragraph containing the error, as well as the
paragraphs preceding and following it, in all,
almost 100.000 words of running text. This
we proofread, which yielded another 105 errors,
bringing the count up to 1198. A preliminary
Ispell run finally yielded another 24 errors we
had overlooked. We ran our evaluation test

1
0.8 A o My
=
5
b
5 06 5
(2} o
©
[
3 044 - N
x
02 A
0 ‘ ‘ ‘ ‘
0 0.2 04 06 08 1
recall
ISPELL-1P - WORD-1P —x TISC-1P -~ =~
ISPELL-3P -~ WORD-3P ---5-- TISC-3P o

Figure 3: Evaluation results: English

1
0.8 -
.
-
§ 064 e,
@ e
(5] o
o
s 04 A
0.2 4
.+
0 T T T
0 0.2 0.4 0.6 0.8 1
recall
ISPELL-M1 ——+— WORD-M1 TISC-M1 -+~
ISPELL-M2 - WORD-M2 ---8-- TISC-M2 ---e-

Figure 4: Evaluation results: Dutch

with these 1222 known errors. Evaluation re-
sults presented are those for the larger (Reutl)
and a more limited context (Reut2), namely
only those paragraphs actually containing er-
rors. Statistics on the evaluation files are pre-
sented in table 3.

5.3 Scoring and evaluation results

We measure performance in terms of the F-
score. Given that the three systems are pre-
sented with errors in a context, we do not solely
measure their ability to correct incorrect forms,
but also to discern between correct and incor-
rect input forms. The fact that the context
is limited means that the distribution of errors
versus non-errors here is seriously skewed com-
pared to their actual distribution in the full cor-
pora. Of the word forms for which correction
candidates are returned, we check if the out-
put contains the correct form. If so, the score
for successful correction (recall) is augmented
by one, no account being taken of the ranking
of the correction candidates. For all the forms
marked by ISPELL or MPT as ‘not in the dictio-
nary’ the score for false positives (precision er-
rors) is incremented by one. The same goes for

[system [[1-3p [M-3p | T-3p [=M2 [M-M2 | T-M2
thresh. - - 5 - _ 5
recall 0.85 0.94 0.85 0.60 0.66 0.67
precision 0.27 | 0.38 0.80 0.07 | 0.10 0.60
f-score 0.41 0.54 0.82 0.12 0.17 0.63
returned 3810 | 3065 1302 1087 | 820 137
corrected 1040 | 1154 | 1036 74 81 82
E.R. 2770 | 1911 266 1013 | 739 55
FAC 0.38 0.60 3.89 0.07 0.11 1.49

Table 4: Statistics of best test scores

those forms for which the three systems return
correction candidates, but where the correct one
is missing. Results presented were obtained on
the types, for all three systems. Results for En-
glish are presented in figure 3, for Dutch: fig-
ure 4.

5.4 Discussion

For both languages, TiSC’s lower thresholded
lexicons consistently produce the highest preci-
sion. Recall rises as the threshold is set higher,
to drop again, as does precision, with more and
more information not being available. As fig-
ure 3 shows, recall for ISPELL and MPT is unaf-
fected by more context. TISC shows a slight gain
on recall due to its context-awareness. Only
the 3-paragraph context for *noe-emission con-
tains the correct form no-emission. The lexi-
con does not have this, but has zero-emission,
on which both unigram and bigram levels con-
cur. The input context evidence, which concurs
with the compound level, allows TISC to nev-
ertheless propose the correct form. More con-
text does explain the drop in precision (TISC:
7%, I1SPELL: 14%, MPT: 17%). More words
to be checked create more opportunity to re-
port false positives. This is also clearly demon-
strated by the Dutch results, where the evalu-
ation files contain an even lower error to type
ratio. The drop in precision given more con-
text seems to us to be the main cause of current
spelling checking systems not being able to at-
tain automatic correction levels of performance.
If we accept the ratio of errors corrected versus
correct words erroneously replaced (E.R.) to be
a measure for a system’s fitness for the purposes
of automatic correction (FAC) (in the hypothet-
ical case where the systems actually make the
replacements and correction candidates are per-
fectly ranked), then TISC is fit (FAC > 1), for
both languages, ISPELL and MPT are not.

6 Conclusion

We have presented TISC, a new algorithm for
spelling checking and correction. We have out-

lined how the system is built up from scratch
from a large corpus of raw text. We have intro-
duced a novel representation for lexical informa-
tion which allows for an exact calculation of the
difference between two character strings. Not
only does this make the problem computation-
ally tractable, it also allows for building a fully
scaled system. We have shown that incorpo-
rating word bigrams, cooccurrence information
about individual word types and context infor-
mation about the text to be spelling checked,
all combine to enable automatic spelling correc-
tion. We have compared TIsC with two state-of-
the-art systems and shown that it consistently
outperforms both, with balanced precision and
recall, for both Dutch and English and for all
evaluation sets.

Acknowledgements

Heartfelt thanks to my supervisors Prof. Dr. Walter Daele-
mans and Dr. Antal van den Bosch for their trust and sup-
port. This work was funded by the Netherlands Organisation
for Scientific Research (NWO/FWO VNC 205-41-119).

References

P.R. Clarkson and R. Rosenfeld. 1997. Sta-
tistical language modeling using the CMU-
Cambridge toolkit. In Proceedings ESCA Eu-
rospeech 1997.

Fred J. Damerau. 1964. A technique for com-
puter detection and correction of spelling er-
rors. Communications of the ACM, Volume
7, Issue 3 (March 1964):171 — 176.

David Graff. 2003. The New York Times
Newswire Service. FEnglish Gigaword LDC-
2003T05.

Donald E. Knuth, 1981. Sorting and Searching,
volume 2 of The Art of Computer Program-
ming, section 6.4, pages 513-558. Addison-
Wesley, Reading, Massachusetts, second edi-
tion.

V.I. Levenshtein. 1965. Binary codes capable of
correcting deletions, insertions, and reversals.
In Cybernetics and Control Theory, volume
10(8), pages 707-710. Original in: Doklady
Nauk SSSR 163(4): 845-848 (1965).

D. Lewis, Y.Yang, T.G. Rose, and F. Li. 2003.
RCV1: A new benchmark collection for text
categorization research. Journal of Machine
Learning Research.

George Kingsley Zipf. 1935. The psycho-biology
of language: an introduction to dynamic
philology. The M.I.T. Press, Cambridge, MA,
1965 - 2nd. edition.

