
Feature Weighting for Co-occurrence-based Classification of Words

Viktor PEKAR
CLG, U. of Wolverhampton

Wolverhampton
UK, WV1 1SB

v.pekar@wlv.ac.uk

Michael KRKOSKA
Mentasys GmbH

Schonfeldstrasse 8
Karlsruhe, Germany, 76131

michael@mentasys.de

Steffen STAAB
Ontoprise GmbH & Institute

AIFB, U. of Karlsruhe
Karlsruhe, Germany, 76128

staab@aifb.uni-karlsruhe.de

Abstract*

The paper comparatively studies methods of
feature weighting in application to the task of
cooccurrence-based classification of words
according to their meaning. We explore parameter
optimization of several weighting methods
frequently used for similar problems such as text
classification. We find that successful application
of all the methods crucially depends on a number
of parameters; only a carefully chosen weighting
procedure allows to obtain consistent improvement
on a classifier learned from non-weighted data.

1 Introduction

Lexical repositories like thesauri and lexicons are
today a key component of many NLP technologies,
where they serve as background knowledge for
processing the semantics of text. But, as is well
known, manual compilation of such resources is a
very costly procedure, and their automated
construction is an important research issue.

One promising possibility to speed up the lexical
acquisition process is to glean the semantics of
words from a corpus by adopting the co-
occurrence model of word meaning. Previous
research has investigated a wide range of its
applications, including automatic construction of
thesauri, their enrichment, acquisition of bilingual
lexicons, learning of information extraction
patterns, named entity classification and others..

The basic idea behind the approach is that the
distribution of a word across lexical contexts (other
words and phrases it co-occurs with) is highly
indicative of its meaning. The method represents
the meaning of a word as a vector where each
feature corresponds to a context and its value to the
frequency of the word’s occurring in that context.
Once such representation is built, machine learning
techniques can be used to perform various lexical
acquisition tasks, e.g. automatically classify or
cluster words according to their meaning.

However, using natural language words as
features inevitably results in very noisy

.* The study was partially supported by the Russian
Foundation Basic Research grant #03-06-80008.

representations. Because of their inherent
polysemy and synonymy, many context words
become ambiguous or redundant features. It is
therefore desirable to determine a measure of
usefulness of each feature and weight it
accordingly. Still, despite a wide variety of feature
weighting methods existing in machine learning,
these methods are poorly explored in application to
lexical acquisition. There have been a few studies
(e.g., Lin, 1998; Ciaramita, 2002; Alfonseca and
Manandhar, 2002) where word representations are
modified through this or that kind of feature
weighting. But in these studies it is performed only
as a standard pre-processing step on the analogy
with similar tasks like text categorization, and the
choice of a particular weighting procedure is
seldom motivated. To our knowledge, there is no
work yet on evaluation and comparison of different
weighting methods for lexical acquisition.

The goal of this paper is to comparatively study
a number of popular feature weighting methods in
application to the task of word classification.

The structure of the paper is the following.
Section 2 more formally describes the task of
feature weighting. Section 3 describes the
weighting methods under study. Section 4 details
the experimental data, classification algorithms
used, and evaluation methods. Section 5 is
concerned with the results of the experiments and
their discussion. Section 6 presents conclusions
from the study.

2 Two feature weighting strategies

In machine learning, feature weighting before
classification is performed with the purpose to
reflect how much particular features reveal about
class membership of instances. The weights of
features are determined from their distribution
across training classes, which is why the weighting
procedure can be called supervised. In the context
of word classification this procedure can be
formalized as follows.

Let us assume that each word n∈N of the
training set is represented as a feature vector,
consisting of features f ∈ F, and that each n is
assigned a class label c∈C, i.e. ∀n∃c∈C: n∈c. For

each f, from its distribution across C, a certain
function computes its relevance score, specific to
each class. This score can be used directly as its
local weight w(f,c). Alternatively, from class-
specific weights of a feature, one can compute its
single global weight, using some globalization
policy. For example, as a global weight one can
use the maximum local weight of f across all
classes wglob(f)=),(max cfwCc∈ . After the weights
have been applied to the training data, a classifier
is learned and evaluated on the test data.

A key decision in the weighting procedure is to
choose a function computing w(f,c). Such functions
typically try to capture the intuition that the best
features for a class are the ones that best
discriminate the sets of its positive and negative
examples. They determine w(f,c) from the
distribution of f between c and c , attributing
greater weights to those f that correlate with c or c
most. In the present study we include three such
functions widely used in text categorization:
mutual information, information gain ratio and
odds ratio.

There is another view on feature scoring that it is
sometimes adopted in classification tasks.
According to this view, useful are those features
that are shared by the largest number of positive
examples of c. The purpose of emphasizing these
features is to characterize the class without
necessarily discriminating it from other classes.
Functions embodying this view assess w(f,c) from
the distribution of f across n ∈ c, giving greater
weight to those f that are distributed most uniformly.
Although they do not explicitly aim at underpinning
differences between classes, these functions were
shown to enhance text retrieval (Wilbur and
Sirotkin, 1992) and text categorization (Yang and
Pedersen, 1997). In this paper we experimented with
term strength, a feature scoring function previously
shown to be quite competitive in information
retrieval. Since term strength is an unsupervised
function, we develop two supervised variants of it
tailoring them for the classification task.

3 Feature Weighting Functions

3.1 Mutual Information

Mutual information (MI) is an information-
theoretic measure of association between two
words, widely used in statistical NLP. Pointwise
MI between class c and feature f measures how
much information presence of f contains about c:

)()(
),(log),(
cPfP

cfPcfMI = (1)

3.2 Gain Ratio

Gain Ratio (GR) is a normalized variant of
Information Gain (IG), introduced into machine
learning from information theory (Quinlan, 1993).
IG measures the number of bits of information
obtained about presence and absence of a class by
knowing the presence or absence of the feature1:

∑ ∑
∈ ∈

=
},{ },{)()(

),(
log),(),(

ccd ffg dPgP
dgP

dgPcfIG (2)

Gain Ratio aims to overcome one disadvantage
of IG which is the fact that IG grows not only with
the increase of dependence between f and c, but
also with the increase of the entropy of f. That is
why features with low entropy receive smaller IG
weights although they may be strongly correlated
with a class. GR removes this factor by
normalizing IG by the entropy of the class:

∑
∈

−
=

},{

)(log)(
),(

),(

ffg

gPgP
cgIG

cfGR (3)

3.3 Odds Ratio

Odds Ratio (OR) is used in information retrieval
to rank documents according to their relevance on
the basis of association of their features with a set
of positive documents. Mladenic (1998) reports
OR to be a particularly successful method of
selecting features for text categorization. The OR
of a feature f, given the set of positive examples
and negative examples for class c, is defined as2:

)|())|(1(
))|(1()|(

),(
cfpcfp

cfpcfp
cfOR

⋅−
−⋅

= (4)

3.4 Term Strength

Term Strength (TS) was introduced by Wilbur
and Sirotkin (1992) for improving efficiency of
document retrieval by feature selection. It was later
studied in a number of works by Yang and her
colleagues (e.g., Yang and Pedersen, 1997), who
found that it performs on par with best
discriminative functions on the document
categorization task. This method is based on the
idea that most valuable features are shared by
related documents. It defines the weight of a

1 Strictly speaking, the definition does not define IG,
but conditional entropy H(c|f) ; the other ingredient of
the IG function, the entropy of c, being constant and
thus omitted from actual weight calculation.

2 In cases when p(f|c) equals 1 or p(f|c) equals 0, we
mapped the weight to the maximum OR weight in the class.

feature as the probability of finding it in some
document d given that it has also appeared in the
document d’, similar to d. To calculate TS for
feature f, for each n we first retrieved several
related words n’ using a distributional similarity
measure, thus preparing a set of pairs (n, n’). The
TS weight for f was then calculated as the
conditional probability of f appearing in n given
that f appears also in n’ (the ordering of words
inside a pair is ignored):

)'|()(nfnfPfTS ∈∈= (5)

An important parameter in TS is the threshold on
the similarity measure used to judge two words to
be sufficiently related. Yang and Pedersen
determined this threshold by first deciding how
many documents can be related to a given one and
then finding the average minimum similarity
measure for this number of neighbors over all
documents in the collection. It should be noted that
TS does not make use of the information about
feature-class associations and therefore is
unsupervised and can be used only for global
feature weighting.

We introduce two supervised variants of TS,
which can be applied locally: TSL1 and TSL2. The
first one is different from TS in that, firstly, related
words for n are looked for not in the entire training
set, but within the class of n; secondly, the weight
for a feature is estimated from the distribution of
the feature across pairs of members of only that
class:

c ,with),'|(),(1 ∈∈∈= n'nnfnfPcfTSL (6)

Thus, by weighting features using TSL1 we aim
to increase similarity between members of a class
and disregard possible similarities across classes.

Both TS and TSL1 require computation of
similarities between a large set of words and thus
incur significant computational costs. We therefore
tried another, much more efficient method to
identify features characteristic of a class, called
TSL2. As TSL1, it looks at how many members of
a class share a feature. But instead of computing a
set of nearest neighbors for each member, it
simply uses all the words in the class as the set
of related words. TSL2 is the proportion of
instances which possess feature f to the total
number of instances in c :

|}{|
|}|{|

),(2 cn
nfcn

cfTSL
∈

∈∈
= (7)

Table 1 illustrates the 10 highest scored features
according to five supervised functions for the class
{ambulance, car, bike, coupe, jeep, motorbike,

taxi, truck} (estimated from the BNC co-
occurrence data described in Section 4).

MI GR OR TSL1 TSL2

see_into
die_after
drive_into
remand_to
run_from
privatise
release_into
switch_to
make_about
entrust_to

knock_by
climb _of
die_after
drive_into
remand_to
privatise
make_about
force_of
plan_with
recover_in

die_after
drive_into
remand_to
privatise
make_about
force_of
plan_with
recover_in
start_up
explode_in

see
drive
take
get
get_into
hear
need
call
send
go_by

see
drive
get
take
get_into
park
hear
wait_for
need
call

Table 1. 10 highest scored features for class
{ambulance, car, bike, coupe, jeep, motorbike,

taxi, truck} according to MI, GR, OR, TSL1, TSL2

The examples vividly demonstrate the basic
differences between the functions emphasizing
discriminative features vs. those emphasizing
characteristic features. The former attribute
greatest weights to very rare context words, some
of which seem rather informative (knock_by,
climb_of, see_into), some also appear to be
occasional collocates (remand_to, recover_in) or
parsing mistakes (entrust_to, force_of). In contrast,
the latter encourage frequent context words.
Among them are those that are intuitively useful
(drive, park, get_into), but also those that are too
abstract (see, get, take). The inspection of the weights
suggests that both feature scoring strategies are able
to identify different potentially useful features, but at
the same time often attribute great relevance to quite
non-informative features. We next describe an
empirical evaluation of these functions.

4 Experimental Settings

4.1 Data

The evaluation was carried out on the task of
classifying English nouns into predefined semantic
classes. The meaning of each noun n∈N was
represented by a vector where features are verbs
v∈V with which the nouns are used as either direct
or prepositional objects. The values of the features
were conditional probabilities p(v|n). Two different
datasets were used in the experiments: verb-noun
co-occurrence pairs extracted from the British
National Corpus (BNC)3 and from the Associated
Press 1988 corpus (AP)4. Rare nouns were filtered:
the BNC data contained nouns that appeared with
at least 5 different verbs and the AP data contained
1000 most frequent nouns, each of which appeared

3 http://www.wlv.ac.uk/~in8113/data/bnc.tar.gz
4 http://www.cs.cornell.edu/home/llee/data/sim.html

with at least 19 different verbs. Co-occurrences
that appeared only once were removed.

To provide the extracted nouns with class labels
needed for training and evaluation, the nouns were
arranged into classes using WordNet in the
following manner. Each class was made up of
those nouns whose most frequent senses are
hyponyms to a node seven edges below the root
level of WordNet. Only those classes were used in
the study that had 5 or more members. Thus, from
the BNC data we formed 60 classes with 514 nouns
and from the AP data 42 classes with 375 nouns.

4.2 Classification algorithms

Two classification algorithms were used in the
study: k nearest neighbors (kNN) and Naïve Bayes,
which were previously shown to be quite robust on
highly dimensional representations on tasks
including word classification (e.g., Ciaramita 2002).

The kNN algorithm classifies a test instance by
first identifying its k nearest neighbors among the
training instances according to some similarity
measure and then assigning it to the class that has
the majority in the set of nearest neighbors. We
used the weighted kNN algorithm: the vote of each
neighbor was weighted by the score of its
similarity to the test instance.

As is well known, kNN’s performance is highly
sensitive to the choice of the similarity metric.
Therefore, we experimented with several similarity
metrics and found that on both datasets Jensen-
Shannon Divergence yields the best classification
results (see Table 1). Incidentally, this is in
accordance with a study by (Dagan et al., 1997)
who found that it consistently performed better
than a number of other popular functions.

Similarity function BNC AP
Jensen-Shannon 41.67 41.33
L1 distance 38.15 39.72
Jaccard 36.82 37.01
Cosine 36.80 34.95
Skew Divergence 35.82 37.34
L2 distance 24.15 26.62

Table 2. Comparison of similarity functions for
the kNN algorithm.

Jensen-Shannon Divergence measures the
(dis)similarity between a train instance n and test
instance m as:

)]||()||([
2
1

),(,, mnmn avgmDavgnDmnJ += (8)

where D is the Kullback Leibler divergence
between two probability distributions x and y:

∑ ∈
=

Vv yvp
xvp

xvpyxD
)|(
)|(

log)|()||((9)

and avgn,m is the average of the distributions of n
and m.

In testing each weighting method, we
experimented with k = 1, 3, 5, 7, 10, 15, 20, 30, 50,
70, and 100 in order to take into account the fact
that feature weighting typically changes the
optimal value of k . The results for kNN reported
below indicate the highest effectiveness measures
obtained among all k in a particular test.

The Naïve Bayes algorithm classifies a test
instance m by finding a class c that maximizes
p(c|Vm∈m). Assuming independence between
features, the goal of the algorithm can be stated as:

)|()(maxarg)|(maxarg i
Vv

iimii cvpcpVcp
m

∏
∈

≈ (10)

where p(ci) and p(v|ci) are estimated during the
training process from the corpus data.

The Naïve Bayes classifier adopted in the study
was the binary independence model, which
estimates p(v|ci) assuming the binomial distribution
of features across classes. In order to introduce the
information inherent in the frequencies of features
into the model all input probabilities were
calculated from the real values of features, as
suggested in (Lewis, 1998).

4.3 Evaluation method

To evaluate the quality of classifications, we
adopted the ten-fold cross-validation technique. The
same 10 test-train splits were used in all experiments.
Since we found that the difficulty of particular test
sets can vary quite a lot, using the same test-train
splits allowed for estimation of the statistical
significance of differences between the results of
particular methods (one-tailed paired t-test was used
for this purpose). Effectiveness was first measured
in terms of precision and recall, which were then
used to compute the Fβ score5. The reported
evaluation measure is microaveraged F scores.

As a baseline, we used the k-nn and the Naïve
Bayes classifiers trained and tested on non-
weighted instances.

5 Results

5.1 Term Strength

We first describe experiments on finding the
most optimal parameter settings for Term Strength.

As was mentioned in Section 3.4, an important
parameter of term strength that needs to be tuned for

5 β was set to 1.

a task is the similarity threshold which is used to
judge a pair of words to be semantically related.
Since in both datasets the minimum number of
words in a class was 5, we chose 4 to be the number
of words that can be related to any given word.
Finding the four nearest neighbors for each word in
the collection, we calculated the average minimum
similarity score that a pair of words must have in
order to be considered related. However, since words
vary a lot in terms of the amount of corpus data
available on them, the average similarity threshold
might be inappropriate for many words. Therefore
we tried also another way to select pairs of related
words by simply taking the four most similar words
for each particular word. Table 4 compares the two
methods of locating related words (significant
improvements at a=0.05 are shown in bold).

kNN Naïve Bayes
TS TSL1 TS TSL1

BNC
Threshold 39.54 36.84 41.67 37.97
Top 4 words 40.90 39.74 41.86 42.64
AP
Threshold 42.12 40.22 37.80 33.82
Top 4 words 42.12 44.45 38.07 36.47

Table 4. Two methods of identifying semantically
related words for TS and TSL1.

We see that using a similarity threshold indeed
produces worse results, significantly so for TSL1. In
the rest of the experiments we used a fixed number
of related words in calculating TS and TSL1.

5.2 Globalization methods

Before comparing global and local variants of
the functions, we studied three ways to derive a
global weight for a feature: (1) using the maximum
local relevance score of a feature across all classes,
(2) its weighted average score (the contribution of
each class-specific score is weighted by the size of
the class), and (3) the sum of all local scores. The
results are shown on Tables 5 and 6 (in bold are
the figures that are significantly different from the
second-best achievement at a=0.05).

MI GR OR TSL1 TSL2

BNC
max 42.83 48.88 46.35 37.9 41.52
wavg 41.29 45.95 42.65 26.47 27.24
sum 41.29 45.95 42.65 26.46 27.24
AP
max 43.17 43.44 44.77 32.48 35.95
wavg 42.93 43.98 41. 37.31 38.12
sum 43.20 43.99 41.61 37.04 37.85

Table 5. Globalization methods on kNN.

MI GR OR TSL1 TSL2

BNC
max 46.52 42.82 43.96 37.17 38.53
wavg 43.4 41.45 43.98 21. 24.5
sum 40.48 43.59 45.15 18.66 22.96
AP
max 39.68 38.6 42.07 38.1 38.64
wavg 39.15 42.1 40.23 33.82 35.15
sum 39.68 42.38 40.76 34.1 35.96

Table 6. Globalization methods on Naïve Bayes.

As one can see, using a maximum local weight is
usually the best method of globalization. Its
performance is often significantly higher than that
of the other methods. The explanation for this can
be the fact that a feature often has very high scores
relative to specific classes, while in the rest of the
classes its weight is low. Using its weighted
average score or a sum of local scores results in
obscuring its high relevance to some classes. In
contrast, the maximum local score does reflect
high relevance of the feature to these classes. If, in
addition to that, the feature appears in very few
classes, it is unlikely that its being weighted too
highly interferes with the representations of
irrelevant classes. This is confirmed by the fact
that the maximum weight is noticeably better on
the BNC dataset, which contains much more rare
features than the AP one.

5.3 Global vs. Local Weighting

In carrying out either local or global weighting,
there is a choice either to weight only training
instances or also test instances before their
classification. The test instance can be weighted
either by the global weights or by the local weights
of the class it is compared with. Tables 7 and 8
present the results of the evaluation of the
functions along two dimensions: (1) local versus
global weighting and (2) weighted versus un-
weighted test instances. As before, the results for
those methods whose superiority over other ones is
statistically significant appear in bold.

MI GR OR TS TSL1 TSL2

BNC
gl y 42.83 48.88 46.35 34.72 32.48 35.95
loc y 28.43 35.84 34.29 - 15.38 20.75
gl n 40.12 39.74 38.36 40.90 38.35 36.99
loc n 40.32 40.33 39.72 - 39.74 41.29
AP
gl y 43.17 43.44 44.77 38.12 37.9 41.52
loc y 37.31 31.74 37.04 - 33.06 36.68
gl n 41.59 40.78 40.51 42.12 39.25 40.24
loc n 40.74 37.86 41.34 - 44.45 43.70

Table 7. Local vs. global weighting schemas
on kNN.

MI GR OR TS TSL1 TSL2

BNC
gl y 46.52 42.82 43.96 33.87 37.17 38.53
loc y 41.84 43.79 38.32 - 36.01 39.53
gl n 45.54 42.63 40.87 41.86 41.65 45.54
loc n 43.99 38.93 44.38 - 42.64 46.53
AP
gl y 39.68 38.60 42.07 36.22 38.10 38.64
loc y 36.50 31.72 37.04 - 33.56 35.66
gl n 39.16 35.44 38.65 38.07 39.43 39.95
loc n 38.89 27.96 38.15 - 36.47 39.42

Table 8. Local vs. global weighting schemas on
Naïve Bayes.

The results are largely consistent both across the
datasets and across the classification methods.
Discriminative functions are almost always best in
their global variants; when applying them globally,
it is also advisable to weight test instances. In
contrast, the characteristic functions TSL1 and
TSL2 are usually better when applied locally. It is
also noteworthy that all the variants of TS fare
better when test instances are not weighted.

We believe that the good performance of the
global versions of MI, GR, and OR should be
explained by the fact that features they weight
highest are rare and likely to appear only in one
class so that using the same weight for all classes
does not cause confusion between them. It is also
beneficial to weight test instances globally,
because this guarantees that most features of a test
instance always have a non-zero weight. With
characteristic functions, however, highest weighted
are rather frequent features which are often present
in other classes as well. Using the same weight of
these features for all classes therefore fails to
differentiate classes from each other. Local TSL1

and TSL2 are more advantageous. Although
individual features they weight highest may be
mediocre separators, usually several such features
are given prominence within a class. Taken
collectively they appear to be able to successfully
discriminate a class from other classes.

An interesting observation is that the
combination of a local schema with weighted test
instances is very undesirable with all the functions.
The reason for this is that very often a test instance
has many features different from those in the
training class to which it is being compared.
Because of this, these features receive zero local
weights, which renders the representation of the
test instance extremely sparse.

Table 9 shows how the performance of the most
optimal settings for the six studied function
compares with the baseline (improvements on the
baseline are in bold).

kNN Naïve Bayes
BNC AP BNC AP

MI 42.83 43.17 46.52 39.68
GR 48.88 43.44 43.79 38.60
OR 46.35 44.77 43.96 42.07
TS 40.90 42.12 41.86 38.07
TSL1 39.74 44.45 42.64 39.43
TSL2 41.29 43.70 46.53 39.95
baseline 41.67 41.33 45.55 39.16
Table 9. The most optimal settings for MI, GR,

OR, TS, TSL1 and TSL2 compared to the baselines.

All the functions often show superiority over the
baseline, except for TS which only once slightly
outperformed it. However, statistical significance
of the improvement was registered only for MI and
OR on the BNC data, using the kNN classifier,
which was 17% and 11% better than the baseline
correspondingly.

Comparing discriminative and characteristic
weighting functions we see that the supervised
variants of TS frequently perform on a par with
MI, GR, and OR. Particularly, TSL2 was the best
performer on Naive Bayes, BNC and the second
best on kNN, AP. We also see that the supervised
variants of TS very often surpass its original
unsupervised variant, but the improvement is
significant only for TSL2, on the BNC dataset
using Naive Bayes (at a=0.001).

5.4 Correlations between the functions

As was mentioned before, an informal inspection
of features emphasized by different functions
suggests that the discriminative functions tend to
give greater weights to rare features, while
characteristic ones to frequent features. In order to
see if this results in disagreement between them as
to the classifications of test instances, we measured
the extent to which classifications resulting from
MI, GR, OR, TSL1, and TSL2 overlap. For this
purpose, we calculated the Kappa coefficient for
all the 10 possible pairs of these functions. The
results are reported in Table 10.

GR OR TSL1 TSL2

MI 0.676
0.762

0.711
0.729

0.584
0.668

0.801
0.788

GR 0.873
0.855

0.483
0.617

0.571
0.703

OR 0.473
0.614

0.588
0.695

TSL1 0.658
0.721

Table 10. The agreement in classifications using
Naïve Bayes between MI, GR, OR, TSL1, and

TSL2 on the BNC and AP datasets.

On results from both datasets, we see that the
highest agreement is indeed between MI, OR, and
GR and between TSL1 and TSL2. Interestingly,
there is also a relatively strong correlation between
classification resulting from using MI and TSL2.
The lowest agreement is between the
discriminative functions and TSL1.

kNN Naïve Bayes
BNC AP BNC AP

MI 42.83 43.17 46.52 39.68
GR 48.88 43.44 43.79 38.60
OR 46.35 44.77 43.96 42.07
TSL1 39.74 44.45 42.64 39.43
TSL2 41.29 43.70 46.53 39.95
MI*TSL1 40.51 45.27 44.2 38.1
GR*TSL1 42.47 43.2 43.6 34.37
OR*TSL1 41.49 44.72 46.32 37.3
MI*TSL2 44.81 45.04 46.73 42.36
GR*TSL2 47.53 44.77 44.17 37.55
OR*TSL2 46.35 45.29 46.5 40.47

Table 11. Combinations of TSL1 and TSL2 with
MI, GR, and OR.

5.5 Combination of the functions

An obvious question is whether the effectiveness
of classifications can be increased by combining
the discriminative and the characteristic weights of
a feature given that both provide useful, but
different kinds of evidence about the correct class
label of test instances. To investigate this, we tried
combining each of the discriminative weights of a
feature with each of its supervised characteristic
weights in the following manner. First, both kinds
of weights were estimated from non-weighted
training data. Then they were applied one after the
other to the training data. During the test procedure,
test instances were weighted only with the global
weights. The results of these experiments are
shown in Table 11. Results for those combined
weighting methods which outperformed both of the
component functions are shown in bold.

Certain combined weighting procedures did
improve on both of the component methods.
However, none of them showed an improvement
over 2.5% on the best of the component weighting
methods (no significance for any of the
improvements could be established).

6 Conclusion

In the paper we studied several feature weighting
methods in application to automatic word
classification. Our particular focus was on the
differences between those weighting methods
which encourage features discriminating classes

from each other (odds ratio, gain ratio, mutual
information) and those which favor features that
best characterize classes (term strength).

We find that classification of words into flatly
organized classes is a very challenging task with
quite low upper and lower bounds, which suggests
that a considerable improvement on the baseline is
hard to achieve. We explicitly explored
parameterization of the weighting functions,
finding that the choice of certain parameters,
notably the application of local vs. global weights
and weighted vs. un-weighted test instances, is
critical for the performance of the classifier. We
find that the most optimal weighting procedure
often brings the performance of a classifier
significantly closer to the upper bound, achieving
up to 17% improvement on the baseline.

We find that discriminative and characteristic
weighting procedures are able to identify different
kinds of features useful for learning a classifier,
both consistently enhancing the classification
accuracy. These findings indicate that although
individual characteristic features may be less
powerful class separators, several such features,
taken collectively, are helpful in differentiating
between classes.

References

E. Alfonseca and S. Manandhar. 2002. Extending a
lexical ontology by a combination of
distributional semantics signatures. In
Proceedings of EKAW’02, pp.1-7.

M. Ciaramita. 2002. Boosting automatic lexical
acquisition with morphological information. In
Proceedings of the ACL-02 Workshop on
Unsupervised Lexical Acquisition. pp.17-25.

I. Dagan, L. Lee, and F. C. N. Pereira. 1997.
Similarity-based methods for word sense dis-
ambiguation. In Proceedings of ACL’97, pp. 56-63.

D. Lewis. 1998. Naive (Bayes) at forty: The
independence assumption in information re-
trieval. In Proceedings of ECML’98, pp.4-15.

D. Lin (1998) Automatic retrieval and clustering of
similar words. In Proceedings of COLING-
ACL’98, pp. 768-773.

D. Mladenic. 1998. Feature subset selection in text
learning. In Proceedings of ECML’98, pp.95-100.

J.R. Quinlan. 1993. C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

J.W. Wilbur and K. Sirotkin. 1992. The automatic
identification of stopwords. Journal of
Information Science, (18):45-55.

Y. Yang and J.O. Pedersen. 1997. A comparative
study on feature selection in text categorization.
Proceedings of ICML’97, pp. 412-420.

