
 1

Discriminative Slot Detection Using Kernel Methods

Shubin Zhao, Adam Meyers, Ralph Grishman
Department of Computer Science

New York University
715 Broadway, New York, NY 10003

shubinz, meyers, grishman@cs.nyu.edu

Abstract

Most traditional information extraction
approaches are generative models that assume
events exist in text in certain patterns and these
patterns can be regenerated in various ways.
These assumptions limited the syntactic clues
being considered for finding an event and
confined these approaches to a particular
syntactic level. This paper presents a
discriminative framework based on kernel SVMs
that takes into account different levels of
syntactic information and automatically
identifies the appropriate clues. Kernels are used
to represent certain levels of syntactic structure
and can be combined in principled ways as input
for an SVM. We will show that by combining a
low level sequence kernel with a high level
kernel on a GLARF dependency graph, the new
approach outperformed a good rule-based
system on slot filler detection for MUC-6.

1 Introduction

The goal of Information Extraction (IE) is to
extract structured facts of interest from text and
present them in databases or templates. Much of
the IE research was promoted by the US
Government-sponsored MUCs (Message
Understanding Conferences). The techniques used
by Information Extraction depend greatly on the
sublanguage used in a domain, such as financial
news or medical records. The training data for an
IE system is often sparse since the target domain
changes quickly. Traditional IE approaches try to
generate patterns for events by various means
using training data. For example, the FASTUS
(Appelt et al., 1996) and Proteus (Grishman, 1996)
systems, which performed well for MUC-6, used
hand-written rules for event patterns. The symbolic
learning systems, like AutoSlog (Riloff, 1993) and
CRYSTAL (Fisher et al., 1996), generated patterns
automatically from specific examples (text
segments) using generalization and predefined
pattern templates. There are also statistical
approaches (Miller et al., 1998) (Collins et al.,
1998) trying to encode event patterns in statistical
CFG grammars. All of these approaches assume

events occur in text in certain patterns. However
this assumption may not be completely correct and
it limits the syntactic information considered by
these approaches for finding events, such as
information on global features from levels other
than deep processing. This paper will show that a
simple bag-of-words model can give us reliable
information about event occurrence. When training
data is limited, these other approaches may also be
less effective in their ability to generate reliable
patterns.

 The idea for overcoming these problems is to
avoid making any prior assumption about the
syntactic structure an event may assume; instead,
we should consider all syntactic features in the
target text and use a discriminative classifier to
decide that automatically. Discriminative
classifiers make no attempt to resolve the structure
of the target classes. They only care about the
decision boundary to separate the classes. In our
case, we only need criteria to predict event
elements from text using the syntactic features
provided. This seems a more suitable solution for
IE where training data is often sparse.

 This paper presents an approach that uses kernel
functions to represent different levels of syntactic
structure (information). With the properties of
kernel functions, individual kernels can be
combined freely into comprehensive kernels that
cross syntactic levels. The classifier we chose to
use is SVM (Support Vector Machine), mostly due
to its ability to work in high dimensional feature
spaces. The experimental results of this approach
show that it can outperform a hand-crafted rule
system for the MUC-6 management succession
domain.

2 Background

2.1 Information Extraction

The major task of IE is to find the elements of an
event from text and combine them to form
templates or populate databases. Most of these
elements are named entities (NEs) involved in the
event. To determine which entities in text are
involved, we need to find reliable clues around
each entity. The extraction procedure starts with

 2

text preprocessing, ranging from tokenization and
part-of-speech tagging to NE identification and
parsing. Traditional approaches would use various
methods of analyzing the results of deep
preprocessing to find patterns. Here we propose to
use support vector machines to identify clues
automatically from the outputs of different levels
of preprocessing.

2.2 Support Vector Machine

For a two-class classifier, with separable training
data, when given a set of n labeled vector examples

 }1,1{),,(),...,,(),,(2211 −+∈inn yyXyXyX ,

a support vector machine (Vapnik, 1998) produces
the separating hyperplane with largest margin
among all the hyperplanes that successfully
classify the examples. Suppose that all the
examples satisfy the following constraint:

 1),(≥+><× bXWy ii

It is easy to see that the margin between the two
bounding hyperplanes 1, ±=+>< bXW i is

2/||W||. So maximizing the margin is equivalent to
minimizing ||W||2 subject to the separation
constraint above. In machine learning theory, this
margin relates to the upper bound of the VC-
dimension of a support vector machine. Increasing
the margin reduces the VC-dimension of the
learning system, thus increasing the generalization
capability of the system. So a support vector
machine produces a classifier with optimal
generalization capability. This property enables
SVMs to work in high dimensional vector spaces.

2.3 Kernel SVM

The vectors in SVM are usually feature vectors
extracted by a certain procedure from the original
objects, such as images or sentences. Since the
only operator used in SVM is the dot product
between two vectors, we can replace this operator
by a function),(ji SSϕ on the object domain. In

our case, Si and Sj are sentences. Mathematically
this is still valid as long as),(ji SSϕ satisfies

Mercer’s condition1 . Function),(ji SSϕ is often

referred to as a kernel function or just a kernel.
Kernel functions provide a way to compute the
similarity between two objects without
transforming them into features.

The kernel set has the following properties:

1 The matrix must be positive semi-definite

1. If),(1 yxK and),(2 yxK are kernels on YX × ,

0, >βα , then),(),(21 yxKyxK βα + is a kernel

on YX × .
2. If),(1 yxK and),(2 yxK are kernels on YX × ,

then),(),(21 yxKyxK × is a kernel on YX × .

3. If),(1 yxK is a kernel on YX × and

),(2 vuK is a kernel on VU × , then

),(),()),(),,((21 vuKyxKvyuxK += is a kernel

on)()(VYUX ××× .
When we have kernels representing information
from different sources, these properties enable us
to incorporate them into one kernel. The general
kernels such as RBF or polynomial kernels (Müller
et al., 2001), which extend features nonlinearly
into higher dimensional space, can also be applied
to either the combination kernel or to each
component kernel individually.

2.4 Related Work

 There have been a number of SVM applications
in NLP using particular levels of syntactic
information. (Lodhi et al., 2002) compared a word-
based string kernel and n-gram kernels at the
sequence level for a text categorization task. The
experimental results showed that the n-gram
kernels performed quite well for the task. Although
string kernels can capture common word
subsequences with gaps, its geometric penalty
factor may not be suitable for weighting the long
distance features. (Collins et al., 2001) suggested
kernels on parse trees and other structures for
general NLP tasks. These kernels count small
subcomponents multiple times so that in practice
one has to be careful to avoid overfitting. This can
be achieved by limiting the matching depth or
using a penalty factor to downweight large
components.

(Zelenko et al., 2003) devised a kernel on
shallow parse trees to detect relations between
named entities, such as the person-affiliation
relation between a person name and an
organization name. The so-called relation kernel
matches from the roots of two trees and continues
recursively to the leaf nodes if the types of two
nodes match.

All the kernels used in these works were applied
to a particular syntactic level. This paper presents
an approach for information extraction that uses
kernels to combine information from different
levels and automatically identify which
information contributes to the task. This
framework can also be applied to other NLP tasks.

 3

3 A Discriminative Framework

 The discriminative framework proposed here is
called ARES (Automated Recognition of Event
Slots). It makes no assumption about the text
structure of events. Instead, kernels are used to
represent syntactic information from various
syntactic sources. The structure of ARES is shown
in Fig 1. The preprocessing modules include a
part-of-speech tagger, name tagger, sentence parser
and GLARF parser, but are not limited to these.
Other general tools can also be included, which are
not shown in the diagram. The triangles in the
diagram are kernels that encode the corresponding
syntactic processing result. In the training phase,
the target slot fillers are labeled in the text so that
SVM slot detectors can be trained through the
kernels to find fillers for the key slots of events. In
the testing phase, the SVM classifier will predict
the slot fillers from unlabeled text and a merging
procedure will merge slots into events if necessary.
The main kernel we propose to use is on GLARF
(Meyers et al., 2001) dependency graphs.

Fig 1. Structure of the discriminative model

 The idea is that an IE model should not commit

itself to any syntactic level. The low level
information, such as word collocations, may also
give us important clues. Our experimentation will
show that for the MUC-6 management succession
domain, even bag-of-words or n-grams can give us
helpful information about event occurrence.

3.1 Syntactic Kernels

 To make use of syntactic information from
different levels, we can develop kernel functions or
syntactic kernels to represent a certain level of
syntactic structure. The possible syntactic kernels
include

• Sequence kernels: representing sequence
level information, such as bag-of-words, n-
grams, string kernel, etc.

• Phrase kernel: representing information at
an intermediate level, such as kernels
based on multiword expressions, chunks or
shallow parse trees.

• Parsing kernel: representing detailed
syntactic structure of a sentence, such as
kernels based on parse trees or dependency
graphs.

 These kernels can be used alone or combined

with each other using the properties of kernels.
They can also be combined with high-order kernels
like polynomial or RBF kernels, either individually
or on the resulting kernel.

As the depth of analysis of the preprocessing
increases, the accuracy of the result decreases.
Combining the results of deeper processing with
those of shallower processing (such as n-grams)
can also give us a back-off ability to recover from
errors in deep processing.

In practice each kernel can be tested for the task
as the sole input to an SVM to determine if this
level of information is helpful or not. After
figuring out all the useful kernels, we can try to
combine them to make a comprehensive kernel as
final input to the classifier. The way to combine
them and the parameters in combination can be
determined using validation data.

4 Introduction to GLARF

GLARF (Grammatical and Logical Argument
Regularization Framework) [Meyers et al., 2001] is
a hand-coded system that produces comprehensive
word dependency graphs from Penn TreeBank-II
(PTB-II) parse trees to facilitate applications like
information extraction. GLARF is designed to
enhance PTB-II parsing to produce more detailed
information not provided by parsing, such as
information about object, indirect object and
appositive relations. GLARF can capture more
regularization in text by transforming non-
canonical (passive, filler-gap) constructions into
their canonical forms (simple declarative clauses).
This is very helpful for information extraction
where training data is often sparse. It also
represents all syntactic phenomena in uniform
typed PRED-ARG structures, which is convenient
for computational purposes. For a sentence,
GLARF outputs depencency triples derived
automatically from the GLARF typed feature
structures [Meyers et al., 2001]. A directed
dependency graph of the sentence can also be
constructed from the depencency triples. The
following is the output of GLARF for the sentence
“Tom Donilon, who also could get a senior job
…”.

<SBJ, get, Tom Donilon>
<OBJ, get, job>
<ADV, get, also>
<AUX, get, could>
<T-POS, job, a>

 Texts

Input

Output

Templates
POS
Tagger

Sent
Parser

Glarf
Parser

Name
Tagger

SGML
Parser Event

Merger
S

lot D
ete

cto
r

Documents

 4

<A-POS, job, senior>
 . . .
GLARF can produce logical relations in addition

to surface relations, which is helpful for IE tasks. It
can also generate output containing the base form
of words so that different tenses of verbs can be
regularized. Because of all these features, our main
kernels are based on the GLARF dependency
triples or dependency graphs.

5 Event and Slot Kernels

Here we will introduce the kernels used by ARES
for event occurrence detection (EOD) and slot
filler detection (SFD).

5.1 EOD Kernels

 In Information Extraction, one interesting issue
is event occurrence detection, which is determining
whether a sentence contains an event occurrence or
not. If this information is given, it would be much
easier to find the relevant entities for an event from
the current sentence or surrounding sentences.
Traditional approaches do matching (for slot
filling) on all sentences, even though most of them
do not contain any event at all. Event occurrence
detection is similar to sentence level information
retrieval, so simple models like bag-of-words or n-
grams could work well. We tried two kernels to do
this, one is a sequence level n-gram kernel and the
other is a GLARF-based kernel that matches
syntactic details between sentences. In the
following formulae, we will use an identity
function),(yxI that gives 1 when yx ≡ and 0
otherwise, where xand y are strings or vectors of
strings.

1. N-gram kernel),(21 SSNϕ that counts common

n-grams between two sentences. Given two
sentence: >=<

1
,..., 211 NwwwS , and >=<

2
,..., 211 NwwwS ,

a bigram kernel),(21 SSbiϕ is

∑∑
−

=
++

−

=

><><
1

1
11

1

1

21

),,,(
N

j
jjii

N

i

wwwwI .

Kernels can be inclusive, in other words, the
trigram kernel includes bigrams and unigrams. For
the unigram kernel a stop list is used that removes
words other than nouns, verbs, adjectives and
adverbs.

2. Glarf kernel),(21 GGgϕ : this kernel is based

on the GLARF dependency result. Given the triple
outputs of two sentences produced by
GLARF: },,{1 ><= iii aprG , 11 Ni ≤≤ and

},,{2 ><= jjj aprG , 21 Nj ≤≤ , where r i, pi, ai

correspond to the role label, predicate word and
argument word respectively in GLARF output, it
matches the two triples, their predicates and
arguments respectively. So),(21 GGgϕ equals

)),(),(),,,,,((
21

11
∑∑

==

++><><
N

j
jijijjjiii

N

i

aaIppIapraprI βα

In our experiments, α andβ were set to 1.

5.2 SFD Kernels

 Slot filler detection (SFD) is the task of
determining which named entities fill a slot in
some event template. Two kernels were proposed
for SFD: the first one matches local contexts of
two target NEs, while the second one combines the
first one with an n-gram EOD kernel.

 1.),(1
jiSFD GGϕ : This kernel was also defined

on a GLARF dependency graph (DG), a directed
graph constructed from its typed PRED-ARG
outputs. The arcs labeled with roles go from
predicate words to argument words. This kernel
matches local context surrounding a name in a
GLARF dependency graph. In preprocessing, all
the names of the same type are translated into one
symbol (a special word). The matching starts from
two anchor nodes (NE nodes of the same type) in
the two DG’s and recursively goes from these
nodes to their successors and predecessors, until
the words associated with nodes do not match. In
our experiment, the matching depth was set to 2.
Each node n contains a predicate word w and
relation pairs },{ >< ii ar , pi ≤≤1 representing

its p arguments and the roles associated with them.
A matching function),(21 nnC is defined as

∑∑
==

+><><
21

11

)),(),,,((
p

j
jijjii

p

i

rrIararI .

Then),(1
jiSFD GGϕ : can be written as

∑∑

≡
∈
∈

≡
∈
∈

++

ji

jj

ii

ji

jj

ii

nn
Eedn
Eedn

ji

nn
ESuccn
ESuccn

jiji nnCnnCEEC

)(Pr
)(Pr

)(
)(

),(),(),(

where Ei and Ej are the anchor nodes in the two
DG’s; ji nn ≡ is true if the predicate words

associated with them match. Functions Succ(n) and
Pred(n) give the successor and predecessor node
set of a node n. The reason for setting a depth limit
is that it covers most of the local syntax of a node
(before matching stops); another reason is that the
cycles currently present in GLARF dependency
graph prohibit unbounded recursive matching.

 2.),(2
jiSFD SSϕ : This kernel combines linearly

the n-gram event kernel and the slot kernel above,

 5

in the hope that the general event occurrence
information provided by EOD kernel can help the
slot kernel to ignore NEs in sentences that do not
contain any event occurrence.

),(),(),(12
jiSFDjiNjiSFD GGSSSS βϕαϕϕ += ,

where βα , were set to be 1 in our experiments.
The Glarf event kernel was not used, simply
because it uses information from the same source
as),(1

jiSFD GGϕ . The n-gram kernel was chosen

to be the trigram kernel, which gives us the best
EOD performance among n-gram kernels.

We also tried the dependency graph kernel
proposed by (Collins et al., 2001), but it did not
give us better result.

6 Experiments

6.1 Corpus

 The experiments of ARES were done on the
MUC-6 corporate management succession domain
using the official training data and, for the final
experiment, the official test data as well. The
training data was split into a training set (80%) and
validation set (20%). In ARES, the text was
preprocessed by the Proteus NE tagger and
Charniak sentence parser. Then the GLARF
processor produced dependency graphs based on
the parse trees and NE results. All the names were
transformed into symbols representing their types,
such as #PERSON# for all person names. The
reason is that we think the name itself does not
provide a significant clue; the only thing that
matters is what type of name occurs at certain
position.
 Two tasks have been tried: one is EOD (event
occurrence detection) on sentences; the other is
SFD (slot filler detection) on named entities,
including person names and job titles. EOD is to
determine whether a sentence contains an event or
not. This would give us general information about
sentence-level event occurrences. SFD is to find
name fillers for event slots. The slots we
experimented with were the person name and job
title slots in MUC-6. We used the SVM package
SVMlight in our experiments, embedding our own
kernels as custom kernels.

6.2 EOD Experiments

 In this experiment, ARES was trained on the
official MUC-6 training data to do event
occurrence detection. The data contains 1940
sentences, of which 158 are labeled as positive
instances (contain an event). Five-fold cross
validation was used so that the training and test set
contain 80% and 20% of the data respectively.

Three kernels defined in the previous section were
tried. Table 1 shows the performance of each
kernel. Three n-gram kernels were tested: unigram,
bigram and trigram. Subsequences longer than
trigrams were also tried, but did not yield better
results.
 The results show that the trigram kernel
performed the best among n-gram kernels. GLARF
kernel did better than n-gram kernels, which is
reasonable because it incorporates detailed syntax
of a sentence. But generally speaking, the n-gram
kernels alone performed fairly well for this task,
which indicates that low level text processing can
also provide useful information. The mix kernel
that combines the trigram kernel with GLARF
kernel gave the best performance, which might
indicate that the low level information provides
additional clues or helps to overcome errors in
deep processing.

Kernel Precision Recall F-score

Unigram 66.0% 66.5% 66.3%
Bigram 73.9% 60.3% 66.4%
Trigram 77.5% 61.5% 68.6%
GLARF 77.5% 63.9% 70.1%

Mix 81.5% 66.4% 73.2%

Table 1. EOD performance of ARES using
different kernels. The Mix kernel is a linear
combination of the trigram kernel and the Glarf
kernel.

6.3 SFD Experiments

The slot filler detection (SFD) task is to find the
named entities in text that can fill the
corresponding slots of an event.2 We treat job title
as a named entity throughout this paper, although it
is not included in the traditional MUC named
entity set. The slots we used for evaluation were
PERSON_IN (the person who took a position),
PERSON_OUT (the person who left a position)
and POST (the position involved). We generated
the two person slots from the official MUC-6
templates and the corresponding filler strings in
text were labeled. Three SVM predictors were
trained to find name fillers of each slot. Two
experiments have been tried on MUC-6 training
data using five-fold cross validation.

 The first experiment of ARES used slot kernel
),(1

jiSFD GGϕ alone, relying solely on local

2 We used this task for evaluation, rather than the

official MUC template-filling task, in order to assess the
system’s ability to identify slot fillers separately from its
ability to combine them into templates.

 6

context around a NE. From the performance table
(Table 2), we can see that local context can give a
fairly good clue for finding PERSON_IN and
POST, but not for PERSON_OUT. The main
reason is that local context might be not enough to
determine a PERSON_OUT filler. It often requires
inference or other semantic information. For
example, the sentence “Aaron Spelling, the
company's vice president, was named president.”,
indicates that “Aaron Spelling” left the position of
vice president, therefore it should be a
PERSON_OUT. But the sentence “Aaron Spelling,
the company's vice president, said …”, which is
very similar to first one in syntax, has no such
indication at all. In complicated cases, a person can
even hold two positions at the same time.

Accuracy Precision Recall F-score
PER_IN 63.6% 62.5% 63.1%

PER_OUT 54.8% 54.2% 54.5%
POST 64.4% 55.2% 59.4%

Table 2. SFD performance of ARES using kernel

),(1
jiSFD GGϕ .

 In this experiment, the SVM predictor

considered all the names identified by the NE
tagger; however, most of the sentences do not
contain an event occurrence at all, so NEs in these
sentences should be ignored no matter what their
local context is. To achieve this we need general
information about event occurrence, and this is just
what the EOD kernel can provide. In our second
experiment, we tested the kernel),(2

jiSFD SSϕ ,

which is a linear combination of the trigram EOD
kernel and the SFD kernel),(1

jiSFD GGϕ . Table 3

shows the performance of the combination kernel,
from which we can see that there is clear
performance improvement for all three slots. We
also tried to use the mix kernel which gave us the
best EOD performance, but it did not yield a better
result. The reason we think is that the GLARF
EOD kernel and SFD kernel are from the same
syntactic source, so the information was repeated.

Accuracy Precision Recall F-score

PER_IN 86.6% 60.5% 71.2%
PER_OUT 69.2% 58.2% 63.2%

POST 68.5% 68.9% 68.7%

Table 3. SFD performance of ARES using kernel

),(2
jiSFD SSϕ . It combines the Glarf SFD kernel

with trigram EOD kernel. For PER_OUT,
unigram EOD kernel was used.

Since five-fold cross validation was used, ARES

was trained on 80% of the MUC-6 training data in
these two experiments.

6.4 Comparison with MUC-6 System

This experiment was done on the official MUC-
6 training and test data, which contain 50K words
and 40K words respectively. ARES used the
official corpora as training and test sets, except that
in the training data, all the slot fillers were
manually labeled. We compared the performance
of ARES with the NYU Proteus system, a rule-
based system that performed well for MUC-6. To
score the performance for these three slots, we
generated the slot-filler pairs as keys for a
document from the official MUC-6 templates and
removed duplicate pairs. The scorer matches the
filler string in the response file of ARES to the
keys. The response result for Proteus was
extracted in the same way from its template output.
Table 4. shows the result of ARES using the
combination kernel in the previous experiment.

Accuracy Precision Recall F-score

PER_IN 77.3% 62.2% 68.9%
PER_OUT 58.9% 69.7% 63.9%

POST 77.1% 71.5% 73.6%

Table 4. Slot performance ARES using kernel
),(2

jiSFD SSϕ on MUC-6 test data.

Table 5 shows the test result of the Proteus

system. Comparing the numbers we can see that
for slot PERSON_IN and POST, ARES
outperformed the Proteus system by a few points.
The result is promising considering that this model
is fully automatic and does not involve any post-
processing. As for the PERSON_OUT slot, the
performance of ARES was not as good. As we
have discussed before, relying purely on syntax
might not help us much; we may need an
inference model to resolve this problem.

Accuracy Precision Recall F-score

PER_IN 85.7% 51.2% 64.1%
PER_OUT 78.4% 58.6% 67.1%

POST 83.3% 59.7% 69.5%

Table 5. Slot performance of the rule-based

Proteus system for MUC-6.

7 Related Work

(Chieu et al., 2003) reported a feature-based
SVM system (ALICE) to extract MUC-4 events of

 7

terrorist attacks. The Alice-ME system
demonstrated competitive performance with rule-
based systems. The features used by Alice are
mainly from parsing. Comparing with ALICE, our
system uses kernels on dependency graphs to
replace explicit features, an approach which is
fully automatic and requires no enumeration of
features. The model we proposed can combine
information from different syntactic levels in
principled ways. In our experiments, we used both
word sequence information and parsing level
syntax information. The training data for ALICE
contains 1700 documents, while for our system it
is just 100 documents. When data is sparse, it is
more difficult for an automatic system to
outperform a rule-based system that incorporates
general knowledges.

8 Discussion and Further Works

 This paper describes a discriminative approach
that can use syntactic clues automatically for slot
filler detection. It outperformed a hand-crafted
system on sparse data by considering different
levels of syntactic clues. The result also shows that
low level syntactic information can also come into
play in finding events, thus it should not be ignored
in the IE framework.
 For slot filler detection, several classifiers were
trained to find names for each slot and there is no
correlation among these classifiers. However,
entity slots in events are often strongly correlated,
for example the PER_IN and POST slots for
management succession events. Since these
classifiers take the same input and produce
different results, correlation models can be used to
integrate these classifiers so that the identification
of slot fillers might benefit each other.
 It would also be interesting to experiment with
the tasks that are more difficult for pattern
matching, such as determining the on-the-job
status property in MUC-6. Since events often span
multiple sentences, another direction is to explore
cross-sentence models, which is difficult for
traditional approaches. For our approach it is
possible to extend the kernel from one sentence to
multiple sentences, taking into account the
correlation between NE’s in adjacent sentences.

9 Acknowledgements

This research was supported in part by the
Defense Advanced Research Projects Agency as
part of the TIDES program, under Grant N66001-
001-1-8917 from the Space and Naval Warfare
Systems Center, San Diego, and by the National
Science Foundation under Grant ITS-0325657.

This paper does not necessarily reflect the position
of the U.S. Government.

References

D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama,
A. Kehler, D. Martin, K. Meyers, and M. Tyson
1996. SRI International FASTUS system: MUC-6 test
results and analysis. In Proceedings of the Sixth
Message Understanding Conference.

H. L. Chieu, H. T. Ng, & Y. K. Lee. 2003. Closing the
Gap: Learning-Based Information Extraction
Rivaling Knowledge-Engineering Methods. In
Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics.

M. Collins and S. Miller. 1998. Semantic Tagging using
a Probabilistic Context Free Grammar, In
Proceedings of the Sixth Workshop on Very Large
Corpora.

M. Collins and N. Duffy. 2001. Convolution Kernels for
Natural Language, Advances in Neural Information
Processing Systems 14, MIT Press.

D. Fisher, S. Soderland, J. McCarthy, F. Feng and W.
Lehnert. 1996. Description of The UMass System As
Used For MUC-6. In Proceedings of the Sixth
Message Understanding Conference.

R. Grishman. 1996. The NYU System for MUC-6 or
Where's the Syntax?. In Proceedings of the Sixth
Message Understanding Conference.

H. Lodhi, C. Sander, J. Shawe-Taylor, N. Christianini
and C. Watkins. 2002. Text Classification using
String Kernels. Journal of Machine Learning
Research.

A. Meyers, R. Grishman, M. Kosaka and S. Zhao. 2001.
Covering Treebanks with GLARF. In Proceedings of
of the ACL Workshop on Sharing Tools and
Resources.

S. Miller, M. Crystal, H. Fox, L. Ramshaw, R.
Schwartz, R. Stone, and R. Weischedel. 1998. BBN:
Description of The SIFT System As Used For MUC-
7, In Proceedings of the Seventh Message
Understanding Conference.

K.-R. Müller, S. Mika, G. Ratsch, K. Tsuda, B.
Scholkopf. 2001. An introduction to kernel-based
learning algorithms, IEEE Trans. Neural Networks,
12, 2, pages 181-201.

E. Riloff. 1993. Automatically constructing a dictionary
for information extraction tasks. In Proceedings of
the 11th National Conference on Artificial
Intelligence, 811-816.

V. N. Vapnik. 1998. Statistical Learning Theory. Wiley-
Interscience Publication.

D. Zelenko, C. Aone and A. Richardella. 2003. Kernel
methods for relation extraction. Journal of Machine
Learning Research.

