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Abstract

The ability to answer complex questions posed in Natu-
ral Language depends on (1) the depth of the available
semantic representations and (2) the inferential mecha-
nisms they support. In this paper we describe a QA ar-
chitecture where questions are analyzed and candidate
answers generated by 1) identifying predicate argument
structures and semantic frames from the input and 2)
performing structured probabilistic inference using the
extracted relations in the context of a domain and sce-
nario model. A novel aspect of our system is a scal-
able and expressive representation of actions and events
based on Coordinated Probabilistic Relational Models
(CPRM). In this paper we report on the ability of the
implemented system to perform several forms of prob-
abilistic and temporal inferences to extract answers to
complex questions. The results indicate enhanced accu-
racy over current state-of-the-art Q/A systems.

1 Introduction

Current Question Answering (QA) systems extract
answers from large text collections by (1) classify-
ing the answer type they expect; (2) using question
keywords or patterns associated with questions to
identify candidate answer passages; and (3) ranking
the candidate answers to decide which passage con-
tains the exact answer. Few systems also justify the
answer by performing abduction in first-order pred-
icate logic (Moldovan et al., 2003). This paradigm
is limited by the assumption that the answer can
be found because it uses the question words. Al-
though this may happen sometimes, this assump-
tion does not cover the common case where an in-
formative answer is missed because its identification
requires more sophisticated processing than named
entity recognition and the identification of an answer
type. Therefore we argue that access to rich seman-
tic structures derived from domain models as well as
from questions and answers enables the retrieval of
more accurate answers as well as inference processes
that explain the validity and contextual coverage of
answers.

We consider several stages of deeper semantic pro-
cessing for answering complex questions. A first
step in this direction is the incorporation of “se-
mantic parsers” that recognize predicate-argument
structures or semantic frames when processing both
questions and documents. A second step is the iden-
tification of a topic model that contributes to the
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interpretation of the question and generates a pos-
sible index in an off-line battery of ontologies. The
third step consists of building a scalable and expres-
sive model of actions and events which allows the
sophisticated reasoning imposed by QA within com-
plex scenarios. We embed the three forms of seman-
tic representations and the inference they enable in
a novel, flexible QA architecture that allows us to
evaluate the impact of each new form of semantic
information on the accuracy of answering complex
questions.

The remainder of this paper is organized as fol-
lows. In Section 2 we present the semantic knowl-
edge that we extract from questions and answers
as well as our novel QA architecture. In Section
3 we detail our model of event structure. Section 4
presents the types of inference that are associated
with the event structure whereas Section 5 details
the results of the evaluations. Section 6 summarizes
the conclusions.

2 Semantic Structures for QA

Processing complex questions involves the identifica-
tion of several forms of complex semantic structures.
First we need to recognize the answer type that is
expected, which is a rich semantic structure, in the
case of a complex question, or a mere concept in
the case of a factual question. Second, we need to
identify the question class or the question pattern.
Third, in the case of a complex question, which is
part of a scenario, we need to model the topic of the
scenario.

At least three forms of information are needed for
detecting the answer type: (1) question classes and
named entity classes; (2) syntactic dependency in-
formation; and (3) semantic information taking the
form of (i) predicate-argument structures or seman-
tic frames and (ii) the representation of the question
topic. The following question illustrated the signifi-
cance of each of the three forms of information:
Q1: “What stimulated India’s missile program ?”
The question stem “what” is ambiguous, as multiple
answer types could be associated with a question
pattern “What stimulated X?”. To find candidate
answers, the recognition of “India” and other related
named entities, e.g. “Indian”, as well as the name
of the “Prithvi missile” or its related program is im-
portant. To better process question @1, the syntac-
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Figure 1: QA architecture based on several forms of semantic structures.

tic dependencies enable the recognition of predicate-
argument structures. The predicate-argument struc-
ture of Q1 is:

PREDICATE: Stimulate
ARGO (role = agent) ANSWER (part 1)
ARG1 (role = thing increasing): India’s missile progam
ARG2 (role = instrument) : ANSWER (part 2)

The predicate-argument structure was built based
on the definitions of the PropBank project (Kings-
bury et al., 2002). The structure indicates that the
answer may have the role of agent or even the role
of instrument. When additional information from
FrameNet (Baker et al., 1998) is used, we find that
the answer may have four other semantic roles, de-
rived as frame elements of two distinct frames:

FRAME: Stimulate
Frame element CIRCUMSTANCES: ANSWER (part 1)
Frame Element EXPERIENCER: India’s missile progam
Frame Element STIMULUS : ANSWER (part 2)
|
FRAME: Subject_stimulus
Frame element CIRCUMSTANCES: ANSWER (part 3)
Frame element COMPARISON SET: ANSWER (part 4)

Frame element EXPERIENCER: India’s missile program
Frame element PARAMETER: nuclear proliferation

None of these semantic roles are fully specified.
To interpret the semantic information constrained
by the thematic roles, we need to also have access to
a topic model of the scenario in which the question
is being asked. For example. for the question: Q2:
“How can a biological weapons program be detected
2” the topic model consists of (a) a set of typical
relations between topic concepts; and (b) a set of
possible paths of actions. As it is illustrated in Fig-
ure 1, the identification of (a) predicate-argument
structures and (b) semantic frames contributes to
the recognition of the expected answer as well as to
the formation of the topic model.

Question @2 is mapped into its pattern and its
focus, which has the role of the topic of the ques-
tion. The document passages retrieved for the spe-
cific topic can be used to extract the most relevant
topic relations with the method detailed in Section 2.
The event structure, detailed in Section 3 enables
the recognition of possible paths of action in the
format of chains between the events lexicalized in
the topic relations. The set of possible paths of ac-
tions generate different interpretations of the ques-
tions focus, which facilitate the mapping of the orig-

Question PATTERN: How can X be detected?
Question FOCUS: X = biological weapons program

TOPIC MODEL
Topic relations: [develop —— program], [produce —- bilogical agents]

[stockpile —— weapons], [deliver —— missiles]

Possible paths of action
1) development ——> production ——> stockpiling ——> delivery
2) development ——> acquisition ——> stockpiling ——> delivery

Predicate—argument structure

PREDICATE: = detect
Arg0 (detector) : Answer (1)
Argl (detected): biological weapons program
Arg2 (instrument) ; Answer (2)

FOCUS Interpretation
1) program for producing biological weapons
2) program for acquiring biological weapons

PREDICATE: = produce
Arg0 (producer) : Answer
Argl (product): biological weapons

PREDICATE: = acquire
Arg0 (buyer) : Answer
Argl (object): biological weapons

Figure 2: Question processing based on topic models.

inal predicate-argument structure in other predicate
structures in which the semantic type of the answer
has less ambiguity. Figure 2 illustrates the mapping
of the predicate detect in the predicates produce and
acquire that can be extracted in parallel. This map-
ping enabled by the topic model corresponds to the
decomposition of the original complex questions into
a set of less complex questions.

Because the model for event structure has the ca-
pability of (1) incorporating domain knowledge in
OWL-based representations'; and (2) performs sev-
eral forms on inference on this knowledge, it can be
used to extract candidate answers from the passages
retrieved by the topic relations. The QA architec-
ture that takes advantage of these semantic struc-
tures and the inference they enable is illustrated
in Figure 1. The syntactic parse is produced by
the Collins parser (Collins, 1996), the Named En-
tity Recognizer (NER) is an implementation of the
NER reported in (Bikel et al., 1999) whereas the

1OWL is a markup language for the semantic web
(http://www.semanticweb.org) which allows for the specifi-
cation of ontologies and the semantic markup of documents
in an xml format on the web



predicate-argument structures and the frame ele-
ments are parsed with the techniques described in
Section 2.1. All these four operations are performed
both in the question processing module and in the
document processing module. The topic model, gen-
erated at question processing, has three roles: (1) it
provides an index for the event structures to find
ontological information; (2) it refines the definition
of the answer type; and (3) it improves the quality
of the retrieved answer passages because it makes
topic-relevant relations available. The derivation
of the topic model is based on the predicate argu-
ment structures derived from the question, whereas
the answer type and the event structures rely on
the frame semantics available from questions and
relevant passages. Because PropBank has higher
lexical coverage than FrameNet, whenever the se-
mantic frames cannot be recognized, the QA sys-
tem falls back on the predicate-argument structure
identified in questions and documents. This back-off
mechanism enables (1) indexing and retrieving rel-
evant passages from document collections by using
lexico-semantic knowledge; and (2) the recognition
of the event structure referred by questions and an-
swers. The Probabilistic Inference Networks (PINSs)
described in Section 5.2 select the answer structures
and identify the answers to be returned.

2.1 Predicate and Frame Structures

Proposition Bank or PropBank is a one million
word corpus annotated with predicate-argument
structures, which were described in (Kingsbury
et al., 2002). The corpus consists of the
Penn Treebank 2 Wall Street Journal texts
(www. cis.upenn.edu/~treebank). For every given
predicate lexicalized by a verb, a set of arguments se-
quentially numbered from Arg0 to Argb were anno-
tated. The general procedure was to select for each
verb the roles that seem to occur most frequently
and use these roles as mnemonics for the predi-
cate arguments. Generally, Arg0 would stand for
agent, Argl for direct object or theme whereas Arg2
represents indirect object, benefactive or instrument,
but mnemonics tend to be verb specific. For exam-
ple, the argument structure for the verb-predicate
steal has Arg0:agent, Argl:theme, Arg2:source, and
Arg3:beneficiary. Additionally, the argument may
include functional tags from Treebank, e.g. ArgM-
DIR indicates a directional, ArgM-LOC indicates a
locative, and ArgM-TMP stands for a temporal.

The FrameNet project annotates roles defined for
each semantic frame. A frame is a schematic rep-
resentation of situations involving various partici-
pants, props and other conceptual roles, all called
Frame Elements (FEs). For example the frame
THEFT describes situations in which a PERPETRA-
TOR takes GOODS that belong to the VicTiM . The
MEANS by which this is accomplished may be also
expressed. The British National Corpus is used for
annotations.

(Gildea and Jurafsky, 2002) and (Gildea and

Palmer, 2002) report on the same statistical method
that labels argument roles from PropBank or FEs
from FrameNet on any English sentence that is syn-
tactically parsed. Their method consists of two clas-
sification tasks: (1) identifying the parse tree con-
stituents corresponding to the predicate arguments
or the FEs; and (2) recognizing the role of the
argument or FE. They have introduced seven fea-
tures that (a) were used for training both classifiers;
and (b) worked both for PropBank and FrameNet.
In (Surdeanu et al., 2003) seven additional fea-
tures were proposed, that enhanced the performance
of the classifiers. By using both sets of features
in our implementation using the SVM-light soft-
ware available from http://svmlight.joachims.org, we
automatically transformed the Question @3 into
the predicate-argument structure PAS(Q3) and the
Frame Structure FS(Q3):

Q3: What kind of nuclear materials were stolen from the Russian navy ?

PAS(Q3): What [Argl: kind of nuclear materials] were [Predicate: stolen]
[Arg2: from the Russian navy]?

FS(Q3): What [GOODS: kind of nuclear materials] were
[target-Predicate: stolen] [VICTIM: from the Russian navy]?

The expected answer, as predicted by PAS(Q3)
is the Argl of the predicate ’steal’, when the Arg2
has the head ’Russian navy’. Additionally, the an-
swer needs to be in the same semantic class as 'nu-
clear materials’. The FEs from FS(Q3) show that we
should search for an FE with the role GOODS when-
ever we find a target word of the frame STEAL. The
paragraphs containing candidate answers are parsed
similarly. For example, the correct answer A(Q3) is
transformed into the predicate-argument structure
PAS((A(Q3)) and the Frame Structure FS(A(Q3)):

A(Q3): Russia’s Pacific Fleet has also fallen prey to nuclear theft; in 1/96,
approximately 7 kg of HEU was reportedly stolen from a naval
base in Sovetskaya Gavan .

PAS(A(Q3)): [Arg1(P1) Russia’s Pacific Fleet] has [ArgM-DIS(P1) also]
[Predicate(P1): fallen] [Arg1(P1): prey to nuclear theft];
[ArgM-TMP(P2): in 1/96], [Arg1(P2): approximately 7 kg of HEU]
was [ArgM-ADV/(P2) reportedly] [Predicate(P2): stolen]
[Arg2(P2): from a naval base] [Arg3(P2): in Sovetskaya Gavan]

FS(A(Q3)): [VICTIM: Russia’s Pacific Fleet] has also fallen prey to
[GOODS: nuclear] [target-Predicate(P1): theft]; in 1/96,
[GOODS(P2): approximately 7 kg of HEU] was reportedly
[target-Predicate(P2): stolen] [VICTIM(P2): from a naval base]
[SOURCE(P2): in Sovetskaya Gavan]

In PAS(A(Q3)) we identify two predicates, in-

dexed P1 and P2. P2 is lexicalized with the same

word-lemma, as the predicate from @3, thus its

Argl(P2): “approximately 7 kg of HEU’ provides the

exact answer. It is to be noted that its Arg2(P2)

is ’a mnawval base’ which has a meronym relation
with the previously mentioned NP ’Russia’s Pacific

Fleet’, a meronym of ’Russian navy’. The same

meronymy needs to be resolved between the FE Vic-

TIM of stolen’ and the FE of VICTIM of theft in the

FS(A(Q3)). In the second case the meronymy is

identified since the second frame identifies an event

which is an example of the event identified by the
first frame.




2.2 Topic Models

In question processing two objects need to be identi-
fied: (1) the expected answer type and (2) the focus of
the question. For example, in question Q2: How can
a biological weapons program be detected ?”, the ex-
pected answer type is MANNER(of detection) and the
focus is “biological weapons program’. When process-
ing complex question the role of the focus becomes
more important, since it guides the recognition of
the topic model associated with the question, which
in turn enables the identification of partial answers
and the relations between them. To identify the ex-
pected answer type, we can rely on the question stem
(e.g. “How”) and its associated semantic classes or
we can determine the answer type by using a combi-
nation of features associated with the question stem
and one or more of the question words. For exam-
ple, the question “How long does it take to produce
weapons of mass destruction ?” has the answer type
TIME_SPAN determined by the combination of the
stem ’how’ and the adverb long’. This information
is much more relevant for identifying the expected
answer type than the fact that the predicate take’
has ArgM="how long’ and Arg2="produce weapons
of mass destruction’, which represents the focus of
the question.

Complex questions rely on topic models for finding
the answer since it is unlikely that in a text collec-
tion the exact answer to a complex questions can be
found, but it is more likely that partial answers can
be detected, and then they may be combined for
generating the most informative answer. We used
an incremental topic representation that was intro-
duced in (Harabagiu, 2004). Information about a
topic is modeled through two incremental enhance-
ments of the topic signatures introduced in (Lin and
Hovy, 2000). The first enhancement determines a
set of seed relations. The methodology considers:
(1) filtering out outliers of the terms identified as
relevant with the statistical method based on likeli-
hood ratio reported in (Lin and Hovy, 2000)

(2) morphological expansion of the nouns and verbs
from the topic signature;

(3) semantic normalization through the NER and an
off-line ontology of 22,000 words; and

(4) selection of the topic seeds with the same like-
lihood ratio method applied for acquiring the topic
concepts. The seeds are the most relevant [Verb-
Noun] pairs which have a predicate-argument rela-
tionship.

For question Q3 words like ’say’, ’have’ or “identify
were filtered out, living words like "weapons’, ’sarin
and ’produce’ as the most relevant topic concepts.
The morphological expansion added words like ’pro-
duction’ whereas the semantic normalization unified
’Russian’ and ’Iraqi’ into NATIONALITY and ’ bomb’
or ’building’ into ARTIFACT.

The seed relations that was selected for ques-
tion Q3 is [develop - program]. The relation is fur-
ther used to produce a corpus of paragraphs re-
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lated to the corpus, from which new topic relations
can be extracted. Two types of relations are tar-
geted: (1) syntax-based relations (e.g. Verb - Sub-
ject, Verb - Object and Verb - Prepositional Attach-
ment) and (2) salience-based relations, which model
long-dependency relations to a seed concept. The
relations are ranked based on a methodology intro-
duced in (Riloff, 1996) each relation is ranked based
on its Relevance-Rate and its Frequency. The Fre-
quency of an extracted relation counts the number of
times the relation is identified in the relevant para-
graphs. The Relevance-Rate = Frequency / Count,
where Count measures the number of times an ex-
tracted relation is recognized in any paragraph con-
sidered.

This ranking allows us to select a new topic rela-
tion, and to resume the topic modeling procedure,
this time on a new corpus generated by the most
recently discovered relation. We stop the discovery
process when we have identified 20 topic relations.
Some of the topic relations discovered for question
Q)2 are illustrated in Figure 2.

The second enhancement of topic representations
reported in (Harabagiu, 2004) considers the notion
of topic theme that associates clusters of topic rela-
tion with text segments. The segmentation is pro-
duced by the TEXTTILING algorithm (Hearst, 1997).
The nominalization of the verb corresponding to the
most relevant topic relation in a segment is consid-
ered to be linked to the nominalization from the fol-
lowing topic-relevant segment. Such segments are
called themes and the chains of nominalizations rep-
resent possible paths of actions. Two such paths are
represented in Figure 2

3 From Semantic Extraction to
Inference for QA

Semantic extraction allows us to identify predica-
tions in the input text. For processing complex
questions we further identify the question class or
the question pattern as well as relevant parts of the
scenario which we refer to as the topic model. A
significant gap remains between a) the unstructured
and intuitively chosen tag sets used in FrameNet or
PropBank and the relation names and clusters in
the topic model and b) a formal characterization of
the interrelated events, actions, states and relations
holding among them. The explicit representation of
such frame semantic and event structure information
is needed for for the potential use of such resources
for question answering.

In previous work (Chang et al., 2002), we bridged
the gap by defining a formalism that unpacks the
shorthand of frames into structured event represen-
tations. This allows annotated FrameNet data to
parameterize event simulations (Narayanan, 1999)
that produce fine-grained, context-sensitive infer-
ences. We have extended this work to further incor-
porate the topic model and theme described earlier.
Currently, the list of extracted predicate-argument



structures, the topic model and the answer type
predicate are used to index into a set of parame-
terized event representations instantiated to specific
values based on the extracted predicate-argument
bindings (see Figure 3). The answer type predicate
translates to a specific inference procedure.

Figure 3 (middle) shows the representation of ex-
tracted predicate-argument bindings in our param-
eterized event formalism, Embodied Construction
Grammar (ECG)(Bergen and Chang, in press), that
maps annotations to event simulations. ECG is a
constraint-based formalism similar in many respects
to other unification based linguistic formalisms such
as HPSG or LFG (features, roles, constraints, simple
and complex slots, subcasing, and a self reference).
ECG differs from other linguistically motivated pro-
posals in 1) the use of an evokes relation that mod-
els the priming of a background schema (role inher-
itance is lazy and explicitly specified) and 2) the
complex network of conceptual schemas in ECG are
designed to map utterances to mental simulations
in context to produce a rich set of inferences. It is
thus ideally suited for our current goal of translat-
ing frames to conceptual representations. Figure 3
(middle left) shows the THEFT schema instantiated
to the bindings extracted from the answer passage.
Figure 3 (middle right) shows the schema instance
enhanced with inferentially derived additional bind-
ings.

A(Q3): Russia’s Pacific Fleet has also fallen prey to nuclear theft; in 1/96,

approximately 7 kg of HEU was reportedly stolen from a naval
base in Sovetskaya Gavan .

FS(A(QQ)): [VICTIM: Russia’s Pacific Fleet] has also fallen prey to
[GOODS: nuclear] [target-Predicate(P1): theft]; in 1/96,
[GOODS(P2): approximately 7 kg of HEU] was reportedly
[target-Predicate(P2): stolen] [VICTIM(P2): from a naval base]
[SOURCE(P2): in Sovetskaya Gavan]

ISCHEMA INSTANCE: FN:THEFT SCHEMA INSTANCE: FN:THEFT

Subcase_of: FN:Committing_Crime Subcase_of: FN:Committing_Crime

Subcase_of: FN:Take Subcase_of: FN:Take

Evokes: FN:Crime_Scenario as FNC Evokes: FN:Crime_Scenario as FNC

Roles Roles

PERPETRATOR: ?x:AGENT

VICTIM: "Russian Navy, Pacific Fleet,Naval Base"
GOODS: "approx. 7 KG of HEU"

SOURCE: "in Sovetskaya Gavan"

MEANS: ?m

OWN(?PERPETRATOR, "approx. 7KG HEU")

}

Crime

VICTIM: "Russian Navy, Pacific Fleet,Naval Base"
GOODS: "approx. 7 KG of HEU"
SOURCE: "in Sovetskaya Gavan"

own(VICTIM, GOODS)

COMMTTING CRIME
/ \ VOKE CRIME/ SCENARIO

al(SOURCE, GOODS)

MEANS) N
'\ own(PERP, GOODS) *

FN:THEFT CPRM  SELL(PERP.GOTDS)

at(SOURCE, PER HEFT(

Figure 3: From Semantic Extraction to Inference

Figure 3 (bottom) shows a fragment of the event
simulation for the THEFT frame (all the informa-
tion in this simulation is generated from informa-
tion in the FrameNet database). Preconditions and
world states that obtain before the event include
a) VICTIM owns the GOODS, b) the PERPETRATOR
is at the SOURCE and c¢) the GoODS are at the
SOURCE. The THEFT event can be a simple transi-
tion or can zoom-in to a complex event with phases
(such as start, ongoing, finish, interrupt, cancel, re-
sume, stop). Complex events can include monitoring

and detection conditions as well as resource produc-
tion, consumption and locking. The completion of
THEFT results in a) the PERPETRATOR owning the
GooDs and b) the evocation of the CRIME SCENARIO
schema, which gets simulated if other conditions ob-
tain (such as AUTHORITIES notice the CRIME). The
effect of one action may probabilistically enable, dis-
able, interrupt, or terminate other possible events
(such as OWN provides evidence for the future SELL
event). The result of running the inference process
for this example results in 1) identification of rele-
vant unbound roles (PERPETRATOR and MEANS) and
2) highly probable new assertions and bindings (the
perpetrator owns the goods after the theft). 1) sug-
gests new scenario-based query expansion strategies
and is a result of updating the state variables after
the new evidence (extracted predicate-arguments) is
asserted as this process is called filtering. 2) is
the resultant state after executing the action and
is computed by a) executing the action and identi-
fying reachable states and b) updating the state
after the action to find the Maximum A Poste-
riori (MAP) probabilities. These procedures are
amongst the important inference methods for struc-
tured stochastic processes and are directly supported
by our implementation.

Technically, the event structure implementation
uses a factorized model of states based on Tempo-
rally Extended (aka Dynamic) Probabilistic Rela-
tional Models (Murphy, 2002; Pfeffer, 2000; Getoor
et al., 2001) that enable a variety of inferences that
update and revise the state variables (forward and
backward in time). Central to the representation
of actions and events is an event model called ex-
ecuting schemas (or x-schemas), motivated by
research in both sensorimotor control and cognitive
semantics (Narayanan, 1997). X-schemas are ac-
tive structures based on Stochastic Petri Nets (Cia-
rdo et al., 1994) that cleanly capture sequentiality,
concurrency and event-based asynchronous control?.
Our implementation integrates the PRM based state
model with the x-schema based action model and is
called Coordinated Probabilistic Relational Models
or CPRM. Our CPRM implementation, KarmaSIM,
is linked to existing linguistic resources (FrameNet
and WordNet) and to ontologies on the semantic
web. To address the vexing issue of domain spe-
cific Knowledge Acquisition (KA), in past work we
have constructed automatic translators from OWL-
based event and process ontologies (such as OWL-
S) to the CPRM modeling framework, KarmaSIM
(Narayanan and Mcllraith, 2003). WordNet, Open-
CYC, and SUMO are also available in OWL. For
the experiments reported here, we used the OWL-

2X-schemas have been shown to provide a cognitively
motivated basis for modeling diverse event-structure re-
lated linguistic phenomena, including aspectual inference
(Chang et al., 2002), metaphoric inference (Narayanan,
1997) and event-based reasoning in narrative understanding
(Narayanan, 1999).



based Teknowledge WMD ontology® to instantiate
the general frames obtained from FrameNet?. The
CPRM model populated with domain knowledge to
functions as a QA system component for answer ex-
traction (see Figure 2).

We have developed a protocol that allows us to
take predicates and frames extracted from the input
text and perform a variety of causal and event struc-
ture related inferences for QA. Currently, the main
APIT between the semantic extraction and inference
components makes use of 1) extracted predicate-
argument structures, 2) extracted topic models and
3) a set of extracted answertype predicates. The
topic models provide an index into the CPRM model
database (compiled from existing FrameNet and Se-
mantic Web (OWL-based) databases). CPRM Mod-
els matching the topic model are retrieved and in-
stantiated by the predicate argument bindings spec-
ified by the semantic parse output. The answertype
predicates are mapped to specific structured proba-
bilistic inference procedures afforded by the CPRM
models. The next section outlines the currently im-
plemented CPRM inference algorithms and their use
for question and answer processing.

4 Inference With CPRMs for QA

Inference in structured probabilistic models of dy-
namic systems (as in the CPRM model) consists of
the following kinds of computations. Here X; is a
state variable at time ¢ (lowercase z; is a value as-
signment), and y; is an observation value at time ¢.
Filtering:Compute P(X¢|y;..;)- State update based
on the observation sequence.

Prediction: Compute P(X¢ip|y1..¢). Predict the
state at some future time ¢ + h based on the obser-
vation sequence up to time t.

Smoothing: Compute P(X;_n,|y1...t). Recompute
previously estimated states in the present of current
evidence.

MAP: Compute argmaz,, ,(P(z1..¢y1..+). Com-
pute the best assignment of state values given the
observation sequence.

Reachability:Given a CPRM S with an initial state
X; and a final state Xy, is Xy € R(S, Xy)?

We compiled a list of complex, semantically rich,
high frequency answer types for questions in the
AQUAINT CNS data.? The top four categories were
to 1) Support/Justification for a proposition, 2) the
ability of an agent to perform a specific act, 3) tem-
poral projection or predictions from a state, and 4)
hypothetical situations (including counterfactuals).

3http://www.reliant.teknowledge.com/DAML/WMD.owl

4The compilation process is not completely automated,
since none of the owl ontologies were rich enough to cover
our event structure model. For the experiment, we restricted
any information added to the OWL-based ontologies to the
class documentation strings provided in the ontology. We are
currently trying to use semantic extraction to automatically
generate this information from the documentation.

5AQUAINT is an ARDA sponsored QA program. The
Center for Non-Proliferation (CNS) data is a data source re-
leased to the AQUAINT project.

In our model, these map straightforwardly into the
running of various inference procedures (including
their sequential application) described in Section 3.
For counterfactuals, we use the idea of model inter-
vention (proposed by (Pearl, 2000)). The exact de-
tails of the algorithm for counterfactuals is outside
the scope of this paper. Table 4 summarizes the
various query types and the corresponding inference
algorithms. We don’t know of any previously im-
plemented QA system (going from text to inference)
capable of handling these kinds of questions.

[ Answer Type [[ Inference Type ||
Just (Proposition) MAP
Ability(Agt,Act) F;S
Prediction(State) P;R;MAP
Hypothetical(I,State) F;Rp

Table 1: The type of answer required and the inference
algorithm used in the CPRM model. Here MAP stands
for Maximum A Posteriori estimation, F for filtering, S
for smoothing, R for reachability, and P for predictive
inference. , indicates sequential application. The symbol
I represents a specific intervention into the CPRM net-
work (Pearl 2000) as specified by the hypothetical con-
dition. Computing reachability after the intervention is
given by R;.

5 Evaluating Semantically based QA

The previous sections described techniques to incor-
porate semantic components at increasing levels of
depth and complexity. We now report on experi-
ments conducted to evaluate the utility of these dif-
fering We report on results pertaining to the impact
of (1) the identification of semantic structures and
(2) inference through CPRMs on a baseline state-of-
the-art Q/A system that emerged after five years of
TREC evaluations.

5.1 Evaluating semantic information

To evaluate our novel QA architecture we have used
a set of 400 questions pertaining to four different
topics: (T1) UN inspections; (T2) Thefts in Russia’s
nuclear navy, (T3) Status of India’s Prithvi ballistic
missile project and (T4) China’s participation in non-
proliferation regimes. For each topic we have created
a gold standard consisting of (1) 100 questions; (2)
one or several text spans considered correct answers
by two independent judges; (3) the syntactic parse
produced by the Collins parser (Collins, 1996) which
was manually corrected; (4) the predicate argument
structures of the questions and its corresponding
answer, produced automatically and then corrected
manually; (5) the semantic frames whenever they
could be identified. The answers were extracted
from the AQUAINT CNS corpus. The gold standard
was used for evaluating the precision (P(Arg)) and
recall (R(Arg)) of identifying the correct boundaries
of predicate arguments. We have also computed and

Fi-score as FﬂArg)z%. Table 2 lists



| Corpus | P(Arg) | R(Arg) | Fi(Arg) |

PropBank 85.4 85.6 85.5

AnswerBank 89.4 89.5 89.4

| Corpus | P(Role) [ R(Role) | Fi(Role) ||

PropBank 88.5 92.7 90.5

AnswerBank 86.8 95 90.7
Table 2: Identification of predicate-argument struc-
tures.

| Corpus | P(FE) [ R(FE) | Fi(FE) |

FrameNet 75.2 77 76.08

AnswerBank 73.5 74 73.74

[ Corpus | P(Role) [ R(Role) | Fi(Role) |

FrameNet 91.57 89.13 90.33

AnswerBank 90.2 88.5 89.34

Table 3: Identification of frame structures.

the results. The Table also lists the precision of clas-
sifying the arguments (P(Role)), the recall for argu-
ment classification (R(Role)) and the corresponding
F-score. The results are presented for two corpora:
the PropBank section 23; and AnswerBank, which
represents our gold standard. Table 3 presents sim-
ilar results for recognizing the boundaries of frame
elements (FEs) from FrameNet and for classifying
their semantic roles.

5.2 Evaluating the CPRM model for QA

We experimented with the QA system on the
AQUAINT CNS data. Since there are no imple-
mented QA systems that perform the kinds of com-
plex inferences described above, our evaluation with
respect to the current state-of-the-art baseline re-
lates to the enhanced set of questions and answer
types our system can handle. We wanted to calibrate
to extent and type of inferences needed for different
questions in the CNS scenario data as well as the ex-
tent to which such inferences require manual domain
model building. To this end, we created a set of 400
hand-annotated question answer passages for the
gold standard. We measured the performance of our
system with along the following dimensions. 1) How
well did the automatically constructed CPRM do-
main models (from the OWL ontologies) fare when
compared to the manually constructed (from gold-
standard CNS data) CPRM model? 2) How capa-
ble was our CPRM event model in performing a set
of complex event-structure based inferences required
for QA?

To test (1), we manually compiled CPRM domain
models based on our core theory of events and on
the gold standard annotations (we used a 60-20-
20 build-validate-test dataset). We compared this
to the semi-automatically generated from the OWL
databases of WMD processes. For our first exper-
iment, we looked at how many of the complex, se-

mantically rich inference types could be made by
our system for the two models. Figure 4 shows the

Percent correct by inference type

Justification, 87

_wa
Prediction, 83
80

Manually generated
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pothetical, 73]
* Jusification, 72

OWL-based Domain Jbilty, 69
Model
65

Predn#ion, 63

% correct (compared to gold standarc

pothetical, 51

Justification Prediction Ability Hypothetical

[=+—OWL-based Domain Model —=— Manually generated from CNS data |

Figure 4: Performance of the CNS-based (gold stan-
dard) and OWL-derived CPRM models based on infer-
ence type

performance of the two systems on the CNS gold-
standard annotations (the results are for the test
data of 80 questions). Note that both the manually
built and the OWL-based models perform reason-
ably well for the different inference types we looked
at. This is somewhat encouraging given that this is
the first inference based QA system (that we are
aware of) that goes from textual input to infer-
ence. The main shortcoming of the OWL-derived
models was that they lacked detailed specifications
of the processes, their resource requirements, and
a detailed list of agent abilities, preconditions, ef-
fects and maintenance conditions. We are seeking to
overcome this deficiency through a variety of auto-
matic techniques, semantic web resources, and Sub-
ject Matter Expert (SME) input using the CPRM
GUI to bootstrap and enhance the acquisition of
domain specific knowledge. However, results from
these efforts remains future work.

To test (2), we looked at the percentage of in-
ferences by different types of event-structure infer-
ences that had to be made to generate the answer
for the questions in the 400 gold standard anno-
tations. The categories we looked at were aspec-
tual inferences (Phases of events, viewpoints (zoom-
in, zoom-out)), action and process-feature infer-
ences (Preconditions, Effect, Resources (produced,
consumed, locked)), metaphoric inferences (we only
looked at Event Structure Metaphors (Lakoff 1999).
We counted the number of inferences made by the
human and by the model (the CNS-based manually
built model) for each category in the annotated data.
We looked at the precision (number of correct infer-
ences) and recall (number of total made) .

Table 4 shows our initial results. Note that all

6We computed an f-score based on ( ;ﬁ'_’;) for both the

CNS gold-standard based CPRM model and for the OWL
derived model.




[ Component | Number [ Miy [ Mys |

Aspectual 375 .74 .65
Action-feature | 459 .62 .45
Metaphor 149 .70 .62

Table 4: Inferences broken by Event Structure compo-
nent. My refers to the f-score of the manually con-
structed CNS gold-standard model, Ms¢ to the model
derived from OWL.

[AH [ PAS [ Fs [ T™ |
[49 (12%) || 130 (32%) | 78 (19%) | 42(10%) ||
[PASFTM || FS+TM | ES{IM ES+Inf__|
|

T41(35%) || 94(23.5%) | 203(50%) | 294(73.5%) ||

Table 5: Number of correct answer types identified by
semantic information originating in: the Answer Hierar-
chy (AH), the predicate-argument structure (PAS); the
topic model (TM); the event structure (ES) and the
CPRM inference (Inf) for a set of 400 complex questions.

three of the categories of inferences are fairly com-
mon in the data, and our initial results are quite en-
couraging. The more domain general inference types
regarding the aspectual and metaphoric inferences
about events seem to fair reasonably well (recall that
all these inferences are impossible in the state-of-
the-art baseline QA system). The lower score the
action-feature inference seems to tied to the lack of
domain knowledge in our model regarding domain
specific process details (such as the specific resources
for the production (or dispersal) of WMD). We ex-
pect this number to increase considerably with more
domain specific knowledge using the techniques de-
scribed earlier. We are also conducting a detailed
study of other important categories of event related
causal inferences.

5.3 Evaluating the Answers

The focus of our experiments was to measure the im-
pact of (1) the identification of semantic structures
and (2) inference through CPRMs on state-of-the-
art Q/A techniques that emerged after five years of
TREC evaluations. As reported in (Moldovan et al.,
2002), most of the errors of Q/A systems are de-
termined by (a) the incorrect identification of the
expected answer type and (b) the inability to ex-
pand question keywords with the ideal words that
enhance the retrieval of the candidate answers.
Table 5 lists the results obtained for the identifica-
tion of correct answer types. The answer hierarchy
(AH) comprising more than 8000 WordNet concepts
and mapping into 15 name classes was the source of
only 12% of the correctly recognized answer types,
in contrast with the more than 70% that is cor-
rectly identified for factoid questions when process-
ing TREC-like data. To evaluate the contribution
of predicate-argument structures (PAS), we consid-
ered that the answer type can be defined not only
as a semantic class, but also as an argument of a
specific predicate. Whenever the answer would be

recognized as the same argument of the same predi-
cate or of a directly related predicate” we considered
that the answer type is recognized correctly. Simi-
larly, when the frame structures could be identified
in the question and the answer, the answer type can
be indicated by the frame element (FE), and its cor-
rect identification accounts for our resolution of a
correctly predicted answer type. The topic models
(TMs) contribute to the recognition of the answer
type if any of the relations they induce pertains to
the expected answer, which may be either the re-
lation itself, a more complicated structure that in-
cludes any of the topic relations or any concept that
takes part in any topic relation but was not acces-
sible directly from the question words. The event
structure (ES) was considered a valid source for find-
ing the answer type if any of the schemas that were
instantiated contained at least a semantic class or re-
lation that corresponds even partially to the answer
structure, whereas the combination between ES and
the inference procedures (Inf) determines the answer
type either by considering only the semantic infor-
mation available from the ES or by adding to it the
answer types determined by inference. The results
listed in Table 5 show that the schema instantia-
tions, through their very general semantic coverage
account for most of the answer types which are rec-
ognized, whereas the addition of answer types deter-
mined by inference accounts for almost 73.5% of the
correct answer types of the evaluated complex ques-
tions. When processing the test questions only with
the AH, 8% of the answers were correct. In con-
trast, when all the other semantic structures were
available and probabilistic inference could be per-
formed, 52% of the extracted answers were correct.
In future work we plan to investigate ways in which
the semantic structures presented in this paper could
improve the quality of paragraph retrieval and key-
word selection.

6 Issues and Discussion

The last few years have witnessed a good deal of ac-
tivity on predicate extraction (aka semantic parsing
(Gildea and Jurafsky, 2002; Kingsbury et al., 2002)).
Until now it has been unclear if and how predicate
extraction might help in the performance of an ac-
tual NLP task. Often the intuitive justification of-
fered was that predicate extraction was an interme-
diate step toward semantic inference (Gildea and Ju-
rafsky, 2002). As far as we know the results reported
in this paper constitute the first demonstration that
sophisticated textual analysis including predicate-
argument extraction can be combined with deep se-
mantic representation and inference models to en-
hance a state-of-the-art QA system to answer new
question types that pertain to causal and tempo-

"Directly related predicates are those that (a) belong to
the same verb hierarchy in WordNet or (b) are arguments
of the target predicate (either because they are infinitives or
because they belong to a relative clause).



ral aspects of complex events. Importantly, we be-
lieve our work demonstrates a flexible architecture
and methodology that harnesses the increasingly
widespread availability of semantically motivated re-
sources (such as WordNet, FrameNet, and the Se-
mantic Web). Our current efforts are directed at
more effective knowledge acquisition and at expand-
ing the coverage of system both in terms of the do-
main models and question and answer types sup-
ported. We believe that our flexible architecture
and CPRM based computational model for combin-
ing predicate and frame parsing with deep inference
could point the way for building the next generation
of semantically rich QA systems.
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