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Abstract 

We propose a path-based transfer model for 
machine translation. The model is trained with 
a word-aligned parallel corpus where the 
source language sentences are parsed. The 
training algorithm extracts a set of transfer 
rules and their probabilities from the training 
corpus. A rule translates a path in the source 
language dependency tree into a fragment in 
the target dependency tree. The problem of 
finding the most probable translation becomes 
a graph-theoretic problem of finding the 
minimum path covering of the source 
language dependency tree. 

1 Introduction 

Given a source language sentence S, a statistical 
machine translation (SMT) model translates it by 
finding the target language sentence T such that the 
probability P(T|S) is maximized. In word-based 
models, such as IBM Model 1-5 (Brown et al 
1993), the probability P(T|S) is decomposed into 
statistical parameters involving words. There have 
been many recent proposals to improve translation 
quality by decomposing P(T|S) into probabilities 
involving phrases.  

Phrase-based SMT approaches can be classified 
into two categories. One type of approach works 
with parse trees. In (Yamada&Knight 2001), for 
example, the translation model applies three 
operations (re-order, insert, and translate) to an 
English parse tree to produce its Chinese 
translation. A parallel corpus of English parse trees 
and Chinese sentences are used to obtain the 
probabilities of the operations.  

In the second type of phrase-based SMT models, 
phrases are defined as a block in a word aligned 
corpus such that words within the block are aligned 
with words inside the block (Och et al 1999, 
Marcu&Wong 2002). This definition will treat as 
phrases many word sequences that are not 
constituents in parse trees. This may look 
linguistically counter-intuitive. However, (Koehn 
et al 2003) found that it is actually harmful to 

restrict phrases to constituents in parse trees, 
because the restriction would cause the system to 
miss many reliable translations, such as the 
correspondence between “there is” in English and 
“es gibt” (“it gives”) in German. 

In this paper, we present a path-based transfer 
model for machine translation. The model is 
trained with a word-aligned parallel corpus where 
the source language side consists of dependency 
trees. The training algorithm extracts a set of paths 
from the dependency trees and determines the 
translations of the paths using the word alignments. 
The result of the training process is a set of rules 
for translating paths in the source language into 
tree fragments in the target language with certain 
probabilities. To translate a sentence, we first parse 
it and extract a set of paths from its dependency 
tree S. We then find a set of transfer rules that 
cover S and produce a set of tree fragments 
obtained to form a tree T* such that T*=argmaxT 
P(T|S). The output sentence can then simply be 
read off T*. 

In the remainder of the paper, we first define 
paths in dependency trees. We then describe an 
algorithm for learning transfer rules and their 
probabilities. The translation algorithm is 
presented in Section 4. Experimental result is 
presented in Section 5. We then discuss related 
work in Section 6. 

2 Paths in Dependency Trees 

The dependency tree of a sentence consists of a set 
of nodes, each of which corresponds to a word in 
the sentence. A link in the tree represents a 
dependency relationship between a pair of words. 
The links are directed from the head towards the 
modifier. Except the root of tree, every node has 
exactly one incoming link. An example 
dependency tree is shown in Fig. 1. 

John found a solution to the problem.
det detsubj

obj to

 
Figure 1. An example dependency tree 



A sequence of nodes n1, …, nk, … nm and the 
dependency links between them form a path if the 
following conditions hold:  

a. ∀ i (1≤ i < k), there is a link from ni+1 to ni. 
b. ∀ i (k≤ i < m), there is a link from ni to ni+1. 

A set of paths is said to cover a dependency tree 
if the union of the nodes and links in the set of 
paths include all of the nodes and links in the 
dependency tree. 

3 Acquisition of Transfer Rules 

A transfer rule specifies how a path in the source 
language dependency tree is translated. We extract 
transfer rules automatically from a word-aligned 
corpus. For example, Fig. 2(b-g) are some of the 
rules extracted from the word aligned sentence in 
Fig. 2(a). The left hand side of a rule is a path in 
the source dependency tree. The right hand side of 
a rule is a fragment of a dependency tree in the 
target language. It encodes not only the 
dependency relations, but also the relative linear 
order among the nodes in the fragment. For 
example, the rule in Fig. 2(e) specifies that when 
the path Connect→ to→controller is translated 
into French Branchez precedes (but not necessarily 
adjacent to) sur, and sur precedes (but not 
necessarily adjacent to) contrôleur.  

Note that the transfer rules also contain word-to-
word mapping between the nodes in the source and 
the target (obtained from word alignments). These 
mappings are not shown in order not to clutter the 
diagrams.  

Connect cables to controller Branchez les câbles sur contrôleur

Connect to controller Branchez sur contrôleur

Connect cables Branchez les câbles

power cables câbles d' alimentation

both cables deux câbles

Connect both power cables to the controller

Branchez les deux câbles d' alimentation sur le contrôleur

(a)

(b)

(c)

(d)

(e)

(f)

1 2 3 4 5 6 7 8 9

Connect to the controller Branchez sur le contrôleur
(g)

 
Figure 2. Examples of transfer rules extracted 

from a word-aligned corpus 

3.1 Spans 

The rule extraction algorithm makes use of the 
notion of spans (Fox 2002, Lin&Cherry 2003). 
Given a word alignment and a node n in the source 
dependency tree, the spans of n induced by the 
word alignment are consecutive sequences of 
words in the target sentence. We define two types 
of spans: 

Head span: the word sequence aligned with the 
node n. 

Phrase span: the word sequence from the lower 
bound of the head spans of all nodes in the 
subtree rooted at n to the upper bound of the 
same set of spans. 

For example, the spans of the nodes in Fig. 2(a) are 
listed in Table 1. We used the word-alignment 
algorithm in (Lin&Cherry 2003a), which enforces 
a cohesion constraint that guarantees that if two 
spans overlap one must be fully contained in the 
other. 

Table 1. Spans of nodes in Figure 2(a) 

Node Head Span Phrase Span 
Connect [1,1] [1,9] 
both [3,3] [3,3] 
power [6,6] [6,6] 
cables [4,4] [3,6] 
to  [8,9] 
the [8,8] [8,8] 
controller [9,9] [8,9] 

 

3.2 Rule-Extraction Algorithm 

For each word-aligned dependency tree in the 
training corpus, we extract all the paths where all 
the nodes are aligned with words in the target 
language sentence, except that a preposition in the 
middle of a path is allowed to be unaligned. In the 
dependency tree in Fig. 2(a), we can extract 21 
such paths, 6 of which are single nodes 
(degenerated paths). 

We first consider the translation of simple paths 
which are either a single link or a chain of two 
links with the middle node being an unaligned 
preposition. An example of the latter case is the 
path Connect→to→controller in Fig. 2(a). In such 
cases, we treat the two dependency link as if it is a 
single link (e.g., we call “Connect” the parent of 
“controller”).  

Suppose Si is a simple path from node h to node 
m. Let h' and m' be target language words aligned 
with h and m respectively. Let s be the phrase span 
of a sibling of m that is located in between h’ and 
m’ and is the closest to m’ among all such phrase 
spans. If m does not have such a sibling, let s be 
the head span of h. 



The translation Ti of Si consists of the following 
nodes and links: 
• Two nodes labeled h' and m', and a link from h' 

to m'. 
• A node corresponding to each word between s 

and the phrase span of m and a link from each 
of these nodes to m’. 

Fig. 2(b-e) are example translations constructed 
this way. The following table lists the words h' and 
m' and the span s in these instances: 

Table 2. Example spans 

Example h' m' s 
Figure 2(b) câbles deux [4,4]
Figure 2(c) câbles alimention [4,4]
Figure 2(d) Branchez câbles [1,1]
Figure 2(e) Branchez contrôleur [4,6]

In general, a path is either a single node, or a 
simple path, or a chain of simple paths. The 
translations of single nodes are determined by the 
word alignments. The translation of a chain of 
simple paths can be obtained by chaining the 
translations of the simple paths. Fig. 2(f) provides 
an example. 

Note that even though the target of a rule is 
typically a path, it is not necessarily the case (e.g., 
Fig. 2(g)). Our rule extraction algorithm guarantees 
the following property of target tree fragments: if a 
node in a target tree fragment is not aligned with a 
node in the source path, it must be a leaf node in 
the tree fragment.  

3.3 Generalization of Rules 

In addition to the rules discussed the in the 
previous subsection, we also generalize the rules 
by replacing one of the end nodes in the path with 
a wild card and the part of speech of the word. For 
example the rule in Fig. 2(b) can be generalized in 
two ways. The generalized versions of the rule 
apply to any determiner modifying cable and both 
modifying any noun, respectively.  

*/Det cables */Det câbles

both */N deux */N

both cables deux câbles

generalize

 
Figure 3. Generalization of Transfer rule 

3.4 Translation Probability 

Let Si be a path in the source language dependency 
tree and Ti be a tree fragment in the target 

language. The translation probability P(Ti|Si) can 
be computed as  

( ) ( )
( ) MSc

STcSTP
i

ii
ii +
=

,|   

where c(Si) is the count of Si in the training corpus, 
c(Ti,Si) is the number of times Ti is the translation 
of Si, and M is a smoothing constant. 

4 Path-based Translation 

Given a source language sentence, it is translated 
into the target language in the following steps: 

Step 1: Parse the sentence to obtain its dependency 
structure. 

Step 2: Extract all the paths in the dependency tree 
and retrieve the translations of all the paths. 

Step 3: Find a set of transfer rules such that 
a) They cover the whole dependency tree. 
b) The tree fragments in the rules can be 

consistently merged into a target language 
dependency tree. 

c) The merged tree has the highest probability 
among all the trees satisfying the above 
conditions. 

Step 4: Output the linear sequence of words in the 
dependency tree.  

4.1 Merging Tree Fragments 

In Step 3 of our algorithm, we need to merge the 
tree fragments obtained from a set of transfer rules 
into a single dependency tree. For example, the 
mergers of target tree fragments in Fig. 4(b-d) 
result in the tree in Fig. 4(e). Since the paths in 
these rules cover the dependency tree in Fig. 4(a), 
Fig. 4(e) is a translation of Fig. 4(a). The merger of 
target tree fragments is constrained by the fact that 
if two target nodes in different fragments are 
mapped to the same source node, they must be 
merged into a single node.  
Proposition 1: The merger of two target tree 
fragments does not contain a loop. 
Proof: The unaligned nodes in each tree fragment 
will not be merged with another node. They have 
degree 1 in the original tree fragment and will still 
have degree 1 after the merger. If there is a loop in 
the merged graph, the degree of a node on the loop 
is at least 2. Therefore, all of the nodes on the loop 
are aligned nodes. This implies that there is a loop 
in the source dependency tree, which is clearly 
false.  
Proposition 2: If the condition parts of a set of 
transfer rules cover the input dependency tree, the 
merger of the right hand side of the rules is a tree. 
Proof: To prove it is a tree, we only need to prove 
that it is connected since Proposition 1 guarantees 
that there is no loop. Consider the condition part of 
a rule, which is a path A in the source dependency 



tree. Let r be the node in the path that is closest to 
the root node of the tree. If r is not the root node of 
the tree, there must exist another path B that covers 
the link between r and its parent. The paths A and 
B map r to the same target language node. 
Therefore, the target language tree fragments for A 
and B are connected. Using mathematical 
induction, we can establish that all the tree 
fragments are connected. 

The above two propositions establish the fact 
that the merge the tree fragments form a tree 
structure. 

(a)

(b)

(c)

(d)

existing cables câbles existants

both cables deux câbles

coaxial cables câbles coaxiaux

both existing coaxial cables

deux câbles coaxiaux existants
(e)

 
Figure 4. Examples of word ordering 

4.2 Node Ordering 

For each node in the merged structure, we must 
also determine the ordering of among it and its 
children. If a node is present in only one of the 
original tree fragments, the ordering between it and 
its children will be the same as the tree fragment. 
Suppose a node h is found in two tree fragments. 
For the children of h that come from the same 
fragment, their order is already specified. If two 
children m1 and m2 come from different fragments, 
we determine their order as follows: 
• If m1 and m2 are on different sides of h in their 

original fragments, their order can be inferred 
from their positions relative to h. For example, 
the combination of the rules in Fig. 4(b) and 
Fig. 4(c) translate both existing cables into 
deux câbles existants. 

• If m1 and m2 are on the same side of h and their 
source language counterparts are also on the 
same side of h, we maintain their relative 
closeness to the parent nodes: whichever word 
was closer to the parent in the source remains 
to be closer to the parent in the target. For 
example, the combination of the rules in Fig. 
4(c) and Fig. 4(d) translates existing coaxial 
cables into câbles coaxiaux existants.  

• If m1 and m2 are on the same side of h but their 
source language counterpart are on different 
sides of h, we will use the word order of their 
original in the source language.  

4.3 Conflicts in Merger 

Conflicts may arise when we merge tree fragments. 
Consider the two rules in Fig. 5. The rule in Fig. 
5(a) states that when the word same is used to 
modify a noun, it is translated as même and appears 
after the noun. The rule in Fig. 5(b) states that 
same physical geometry is translated into 
géométrie physique identique. When translating the 
sentence in Fig. 5(c), both of these rules can be 
applied to parts of the tree. However, they cannot 
be used at the same time as they translate same to 
different words and place them on different 
location. 

same */N */N même

same physical geometry géométrie physique identique

(a)

(b)

the disks have the same physical geometry
(c)

 Figure 5. Example Conflicts 

4.4 Probabilistic Model 

Our translation model is a direct translation model 
as opposed to a noisy channel model which is 
commonly employed in statistical machine 
translation. Given the dependency tree S of a 
source language sentence, the probability of the 
target dependency tree T, P(T|S),  is computed by 
decomposing it into a set of path translations: 

( ) ( )∏
∈

=
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where C is a set of paths covering S; Si’s are paths 
in C; Ti’s are possible translations for the 
corresponding Si’s and T is the merger of all Ti’s. 
Note that the paths in C are allowed to overlap. 
However, no path should be totally contained in 
another, as we can always remove the shorter path 
to increase the probability without compromising 
the total coverage of C. 

4.5 Graph-theoretic Formulation 

If we ignore the conflict in merging tree fragments 
and assign the weight -log P(Ti|Si) to the path Si,  
the problem of finding the most probable 
translation can be formulated as the following 
graph theory problem:  

Given a tree and a collection of paths in the tree 
where each path is assigned a weight. Find a 
subset of the paths such that they cover all the 
nodes and edges in the tree and have the 
minimum total weight. 



We call this problem the Minimum Path 
Covering of Trees. A closely related problem is 
the Minimum Set Covering Problem: 

Given a collection F of subset set of a given set 
X, find a minimum-cardinality subcollection C 
of F such that the union of the subsets in C is X. 

Somewhat surprisingly, while the Minimum Set 
Covering Problem is a very well-known NP-
Complete problem, the problem of Minimum Path 
Covering of Trees has not previously been studied. 
It is still an open problem whether this problem is 
NP-Complete or has a polynomial solution. 

If we assume that the number of paths covering 
any particular node is bounded by a constant, there 
exists a dynamic programming algorithm with 
O(n) complexity where n is the size of the tree 
(Lin&Lin, 2004). In the machine translation, this 
seems to be a reasonable assumption. 

5 Experimental Results 

We implemented a path-based English-to-French 
MT system. The training corpus consists of the 
English-French portion of the 1999 European 
Parliament Proceedings1 (Koehn 2002). It consists 
of 116,889 pairs of sentences (3.4 million words). 
As in (Koehn, et. al. 2003), 1755 sentences of 
length 5-15 were used for testing. We parsed the 
English side of the corpus with Minipar2 (Lin 
2002). We then performed word-align on the 
parsed corpus with the ProAlign system 
(Cherry&Lin 2003, Lin&Cherry 2003b). 

From the training corpus, we extracted 
2,040,565 distinct paths with one or more 
translations. The BLEU score of our system on the 
test data is 0.2612. Compared with the English to 
French results in (Koehn et. al. 2003), this is 
higher than the IBM Model 4 (0.2555), but lower 
than the phrasal model (0.3149). 

6 Related Work and Discussions 

6.1 Transfer-based MT 

Both our system and transfer-based MT systems 
take a parse tree in the source language and 
translate it into a parse tree in the target language 
with transfer rules. There have been many recent 
proposals to acquire transfer rules automatically 
from word-aligned corpus (Carbonell et al 2002, 
Lavoie et al 2002, Richardson et al 2001). There 
are two main differences between our system and 
previous transfer-based approach: the unit of 
transfer and the generation module. 

The units of transfer in previous transfer based 
approach are usually subtrees in the source 

                                                      
1 http://www.isi.edu/~koehn/europarl/ 
2 http://www.cs.ualberta.ca/~lindek/minipar.htm 

language parse tree. While the number of subtrees 
of a tree is exponential in the size of the tree, the 
number of paths in a tree is quadratic. The reduced 
number of possible transfer units makes the data 
less sparse. 

The target parse tree in a transfer-based system 
typically does not include word order information. 
A separate generation module, which often 
involves some target language grammar rules, is 
used to linearize the words in the target parse tree. 
In contrast, our transfer rules specify linear order 
among nodes in the rule. The ordering among 
nodes in different rules is determined with a couple 
of simply heuristics. There is no separate 
generation module and we do not need a target 
language grammar. 

6.2 Translational Divergence 

The Direct Correspondence Assumption (DCA) 
states that the dependency tree in source and target 
language have isomorphic structures (Hwa et. al. 
2002).  DCA is often violated in the presence of 
translational divergence. It has been shown in 
(Habash&Dorr 2002) that translational divergences 
are quite common (as much as 35% between 
English and Spanish). For example, Fig. 6(a) is a 
Head Swapping Divergence. 

Even though we map the dependency tree in the 
source language into a dependency tree in the 
target language, we are using a weaker assumption 
than DCA. We induce a target language structure 
using a source language structure and the word 
alignment. There is no guarantee that this target 
language dependency tree is what a target language 
linguist would construct. For example, derived 
dependency tree for “X cruzar Y nadando” is 
shown in Fig. 6(b). Even though it is not a correct 
dependency tree for Spanish, it does generate the 
correct word order. 

X swim across Y

X cruzar Y nadando X cruzar Y nadando

(a) (b)
X cross   Y swimming

 
Figure 6. Translational Divergence 

7 Conclusion and Future Work 

We proposed a path-based transfer model for 
machine translation, where the transfer rules are 
automatically acquired from a word-aligned 
parallel corpus. The problem of finding the most 
probable translation is formulated as a graph-
theoretic problem of finding the minimum path 
covering of the source language dependency tree. 
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