Efficient Finite State Unification Morphology

Jan W. Amtrup
Kofax Image Products
5120 Shoreham Pl.

San Diego, CA 92122, USA,

Jan_Amtrup@mohomine.com

Finite state transducers are highly efficient
means for the representation and process-
ing of morphological knowledge. However,
the string representations normally used do
not easily provide the rich and detailed
linguistic descriptions needed for complex
applications in Computational Linguistics,
and long-distance phenomena are not easily
modeled. This paper describes the use of
typed feature structure as weights on transi-
tions in a finite state transducer to represent
linguistic objects. This method provides
a seamless integration into other linguistic
processing modules and facilitates the de-
scription of certain morphological phenom-
ena. By using a pre-computation model of
unification, we avoid the runtime complex-
ity of unification and achieve a level of ef-
ficiency comparable to character-based au-
tomata based on other weight structures.

1 Introduction

This paper describes the efficient combination
of finite state morphology mechanisms with de-
tailed linguistic descriptions based on a typed
feature structure formalism. Finite state sys-
tems are the predominant choice for morpholog-
ical analysis and generation, due to their high
run-time efficiency and the inherent simplicity
of the mechanism. They implement the two-
level view of morphology (Koskenniemi, 1983).
The paradigm is usually that a finite state trans-
ducer (FST) takes a series of surface charac-
ters as input and converts those into a sequence
of characters containing the lemma together
with characters that describe the morphological
properties of an input word. For example, the
Persian singular superlative adjective bzrgtryn
(biggest) would receive an analysis as in (1).

bzrgtryn = bzrg+Adj+Superl+Sing (1)

Unification formalisms based on feature
structures, on the other hand, provide a much
richer representation mechanism for linguistic

knowledge. Instead of a single, linear level as
in FST models, feature structures are graphs
that can reach considerable complexity. For in-
stance, (2) could be an appropriate analysis for
the aforementioned bzrgtryn.

. bzrgtryn — B

Adj

LEMMA "bzrg”

SURF "bzrgtryn”

LEX [LexMorph] (2)
REGULAR True
AdjInfi

INFL |COMPARISON Superlative
NUMBER Singular

The incorporation of typed feature structures
into conventional FST models is advantageous
for a number of reasons:

e Feature structures provide a richer descrip-
tion of linguistic objects, resulting in an
adequate interface to higher-level analysis
(e.g. syntax and semantics). This repre-
sentation is directly available and does not
have to be extracted from the result string
as in conventional FSTs.

e Surface and lemma characters and morpho-
logical properties are no longer treated uni-
formly. This inability of conventional FSTs
to distinguish between characters and fea-
tures is problematic, for instance in the
case of the analysis of infixation. Moreover,
the linear representation of morphological
features imposes an artificial ordering that
might complicate the formulation of mor-
photactic facts.

e Long-distance dependencies, also a source
of complication for FSTs, can easily be ac-
counted for using unification.

This paper presents the combination of finite
state transducers with typed feature structure
unification formalism based on the concept of
weighted FSTs (Mohri, 1997). The interpreta-
tion of feature structures as weights on transi-
tions of FSTs allows an integrated, elegant view
of the combination of both approaches. The sys-
tem presented here extends Amtrup (2003) in
describing the analysis of sequences, and in pro-
viding a constant time interpretation of the uni-
fication operation within a morphological ana-
lyzer. The basic formalization is described in
section 2. In section 3, we outline some aspects
of the implementation and the way knowledge
sources for this method are constructed. In sec-
tion 4, we present a solution for the great dispar-
ity in run-time efficiency between FSTs and uni-
fication formalisms, rendering unification mor-
phology as efficient in principle as conventional
FST methods.

2 The Unification Semiring

In order to introduce feature structures into a
two-level morphology system, we use weighted
finite state transducers (WFSTs). In a WFST,
each transition is associated with a certain
weight. During the course of the traversal of
a machine, the values of the weights are com-
bined using a multiplicative operation. If sev-
eral paths through a machine yield a result, the
accumulated weights are further combined using
an additive operation. The elementary weights
are organized in the structure of a semiring to
ensure proper processing (Mohri, 1997). Most
commonly, real numbers are used as weights,
for instance in applications in speech processing.
There, the tropical semiring (R, , min, 4, 0o, 0)
is used, which is constructed from the positive
real numbers, using the minimum operator as
multiplication and the addition for real num-
bers (Mohri et al., 2000).

For the purposes here, we define the Unifica-
tion Semiring (Amtrup, 2003) as follows: It is
the structure

2775,0,M.0.{T}H (3)

where
e 2775 is the power set of typed feature
structures. We use well-typed feature

structures (Carpenter, 1992) to describe
morphological properties of input words.
T € TFS is the most general feature struc-
ture, called top. L € TFS is the inconsis-

tent feature structure, called bottom. We
assume that the unification of two incom-
patible feature structures results in L.

e U is the operation of set union.

e (] is the operation of pairwise unification
of typed feature structures, defined as

()(A,B) ={fla€ Anbe BA
f=anbAf#1}

N is the unification operator over typed fea-
ture structures. The abovementioned T is
the identity of unification:

Ve e TFS\{L}:zNT =TnNz =xz. (5)

The computed set contains the results of
all successful unifications of any two feature
structures from the operand sets.

If this interpretation of weights is used with
a finite state transducer modeling the relation
between surface strings and lemmas, the result
of the traversal of a WFST is the lemma asso-
ciated with the input word. The feature struc-
tures contained in the final weight represent the
different linguistic interpretations of the input
word. This accounts for the interface problems
mentioned in the introduction by separating dif-
ferent kinds of information computed by the
analyzer, and provides an immediate interface
to other processing components in a complex
NLP system. Moreover, work on WFSTs can be
immediately integrated, e.g. Piskorski (2002),
Mohri and Riley (2001), and Mohri (2002).

The augmentation of finite state transduc-
ers with feature structures as weights does not
change the explanatory power of the basic regu-
lar approach. The weights merely provide an el-
egant way of conveying linguistic properties of a
word. Due to the finite nature of the universe of
possible weights and interpretations (see section
4 below), any weight structure could in princi-
ple also be realized by lexical description sym-
bols as shown in example (1). Additionally, the
unification operation between two weights along
the path of an analysis might fail, in which case
that particular path is abandoned. This behav-
ior is used to express long distance morphotac-
tic facts. It can be seen as analogous to unsuc-
cessful read operations on the register contents
of Finite State Register Automata, for which
Cohen-Sygal et al. (2003) have shown that it

does not change the equivalence to regular lan-
guages, but only reduces the size of the partic-
ular automaton.

3 Architecture and Applications

Morphological grammars describe how surface
characters are mapped to characters in the
lemma of a word, and provide feature struc-
tures denotating the morphological features of a
word. For instance, the rule in (6) accounts for
the distinction between positive, comparative,
and superlative adjectives in Persian.

Comparative =
Stem
(HasComparisonSignl[
infl.comparison: Null]

I (\7:7 tr:
HasComparisonSign[(6)
infl.comparison: Comparative])
| (\":?7 tryn:

HasComparisonSign[
infl.comparison: Superlative])
)3
This rule demonstrates some of the properties
of morphological grammars in our system:

e Rules are named regular expressions over
characters and feature structures. They
can refer to the transducers defined by
other rules by name. For instance, the rule
Comparative incorporates the rule Stem in
(6).

e Regular expressions over characters are
written as mappings between surface and
lemma. The format is the familiar notation
with a colon separating lower and upper
side content. For instance, tryn: denotes
that the string tryn, found in the surface,
does not generate any characters in the
lemma. Internally, all characters are repre-
sented in Unicode. We implemented most
of the common operators for regular ex-
pressions, namely concatenation, disjunc-
tion, Kleene iteration, optionality, intersec-
tion, and composition. Grouping of ex-
pressions is done with parentheses. Nega-
tion and difference have not yet been im-
plemented.

e Feature structures describe morphological
properties. We use well-typed feature
structures (Carpenter, 1992) in this formal-
ization. The type of the feature structure is
written in front of the pair of square brack-
ets, which then includes the features.

e Feature structures in the input grammar
are conceptually assigned to e-transitions
over characters. This makes grammars eas-
ier to read and write. During compilation,
weights are pushed onto character-bearing
transitions to facilitate e-removal.

3.1 Applications

The combination of finite state transducers and
typed feature structures presented here is in-
tended to be used mainly within machine trans-
lation systems using a unification formalism for
other aspects of representation. One of the pri-
mary advantages we see is the seamless integra-
tion possible by using a common mechanism to
describe linguistic objects. The prototype ap-
plication is a Persian-English Machine Transla-
tion system. On the analysis side, two finite
state grammars are employed, one for tokeniza-
tion and one for Persian morphology. English
morphological generation will also be handled
by a WFST.

The Persian morphological analyzer contains
about 60 rules of varying complexity. Consider
rule (7) as an example.

Indicative =
((my: \7:7 Verb[tense: Imperfective])
| Verb[tense: NonImperfective]

)

PastStem

PastInfl
Verb[tense: Past];

(7)

It demonstrates how unification can be used
to simultaneously build structure and handle
certain long-distance phenomena. In this case,
the optional imperfective prefix my interacts
with the inflectional suffix morphemes. Due to
the presence of feature structures as weights,
their underlying type system can be used to
express the permitted combinations. Here, the
two types Imperfective and Past interact to
result in Imperfect, while NonImperfective
and Past result in Preterite.

Identical behavior can be expressed in con-
ventional FST morphology systems by applying
a filter to an over-generating analyzer. The fil-
ter restricts the analyses to cases that adhere
to the particular morphotactic rules in ques-
tion. The disadvantage of this method of treat-
ing constraints is that the filtered FST is almost
twice as large as the unconstrained one.

The English morphological grammar in our
prototype is simple in comparison, and only de-

scribes inflectional variation. The morpholog-
ical system was tested on a corpus of approx-
imately 100,000 Persian words of news items.
The analysis speed is around 300 words per
second (without transducer minimization) on a
small machine (Pentium II, 400MHz). On av-
erage, five different morphological analyses are
produced for each input token.

Generation of surface forms from stems and
associated linguistic descriptions can be per-
formed analogous to morphological analysis by
traversing the WFST in reverse order. However,
in order to ensure that all morphological fea-
tures of the word to be generated are taken into
account, the weight resulting from the traversal
through the reversed transducer must be iden-
tical to (or at least subsumed by) the original
description. Moreover, for reasons of efficiency,
it might be appropriate to check for compatibil-
ity with that description during the generation
process (cf. (Amtrup, 2003)).

3.2 Sequences of Analyses

It is often necessary to analyze more than one
input word at a time during the traversal of a
WEFST. For instance, the stream of input char-
acters for a contraction like I've should lead to
the creation of two conceptual words, one for
the pronoun and one for the verb. Moreover, a
finite state model might not only be used as a
morphological analyzer, but also as a tokenizer.
In this application, a continuous stream of char-
acters has to be separated into a sequence of
token descriptions.

Conventional finite state models are able to
do this without any modification. Since the up-
per level is a sequence of characters, one partic-
ular character (e.g. the space character) can
be designated to separate analyses belonging
to different words, and processing proceeds as
usual. Using feature structures as weights com-
plicates this. They contain morphological prop-
erties of words, and features are accumulated
by unification. This is beneficial in the case
of long-distance dependencies, as already men-
tioned. However, it precludes the construction
of separate analyses for two or more words with-
out modification. For instance, consider the
above example I've. The weights along the path
through the WFST would initially describe a
pronoun. Once the contracted have is recog-
nized, the weights would belong to a verbal in-
terpretation. The combination (by unification)
of both is most likely not successful.

To account for this, we introduce a special
eject transition that instructs the mechanism to
finish the analysis of one word and start with
a new word. This transition is written as @ in
a grammar and contains the Unicode character
\uFFFF on both the lower and the upper side.
Using this method, a simple tokenizer could be
written as in (8).

Token = [A-Za-z0-9]: +;
Space = \u0020: | \u0008: |
\u000a: | \u000d:;
(8)
Sentence =

(Token Space+ @)* Token Spacex Q;

During compilation, character transitions
with this specific runtime semantics can be
treated as any other transition for the most
part. Only operations that either could sepa-
rate the lower and upper side of a transition
(e.g. eremoval) or that affect the position of
weights within the WFST (e.g. weight pushing,
cf. Mohri and Riley (2001)) need to receive ad-
ditional consideration. During compilation, the
tokens used to record the progress of the traver-
sal through the WFST have to be augmented to
account for the possibility of multiple results.

4 Constant Time Unification

One major obstacle in practical terms for the
combination of finite state methods and unifi-
cation approaches is the large disparity in run-
time efficiency. FST machines are well known
for their very high speed. Attaching unification
operations to a sizeable portion of the transi-
tions in an F'ST carries the risk of reducing this
speed considerably. This is due to the fact that
the predominantly used unification algorithm
(Huet’s algorithm, cf. Knight (1989)) is almost
linear in the size of the feature structures in-
volved, and not constant as operations on other
semirings. Such a reduction in efficiency might
render the combination approach unusable un-
der certain circumstances. In this section, we
describe a method to eliminate the linear com-
plexity of feature structure unification during
the runtime of a WFST.

We use a pre-computation method that cal-
culates all admissible combinations of weight el-
ements during the compilation of the WFST,
and reduce the unification operation to table
lookup, which is constant in complexity. Thus,
finite state morphology with unification can be
performed as efficiently as with other semirings.

The weight elements attached to transitions
in a compiled grammar are sets of feature struc-
tures. The elements of these sets were either
introduced directly in the original source gram-
mar, or are constructed from those during com-
pilation by unification.

Since unification is commutative, associative,
and — most importantly — idempotent, the
transitive closure of the weights for a particu-
lar grammar under pairwise unification exists
and is finite.

Formally, this transformation means estab-
lishing an isomorphism between the unification
semiring and a semiring whose inner monoid
consists of a set of natural numbers equipped
with an operation ® that performs table lookup
according to the precomputed unification table.
The identity element is the number correspond-
ing to {T} in the original monoid. We decided
not to change the additive operation of the outer
monoid, which is linear set union. This does not
seem to be crucial, since it is only carried out
once at the end of an analysis.

In order to assess the runtime ramifications of
this modification, we compiled the Persian mor-
phological grammar described above with and
without using the table lookup conversion. The
original grammar contains 166 distinct weight
elements. Constructing the transitive closure
increases this number significantly, namely to
31536. With 9.1 million active cells, the unifi-
cation table is only lightly populated (density
0.916%). For space reasons, we decided to use
a sparse vector representation in one dimension
of the table, which renders lookup logarithmic
in the number of active cells in a row (there are
289 such cells on average). We tested the gram-
mar on the corpus of 100,000 words of Persian
news articles mentioned above, and achieved an
efficiency improvement of 87%.

5 Related Work

Several extended models have been proposed
in the literature that incorporate feature struc-
tures and unification within a finite state mor-
phology model. The approach closest to the one
presented here (but without the formalization of
feature structure weights as a semiring) is Trost
(1991), who describes feature structures as fil-
ters on transitions in finite state transducers.
Those filters describe morphotactic restrictions
and are responsible for building structural de-
scriptions.

Other models restrict the complexity of fea-

ture structures allowed to a level at which they
can be easily integrated into the finite state
paradigm. Kiraz (1997) incorporates simple
feature structures (pairs of feature names and
atomic values) directly as distinct symbols on
the upper level of an FST. Beesley and Kart-
tunen (2003) use flag diacritics as a mecha-
nism to introduce some unification capabilities
on atomic symbols into an FST. They provide
two implementations for this model. One uses
explicit symbols and operators, using special
transitions carrying the symbols and instruc-
tions. Alternatively, the feature operations can
be compiled directly into the machine, since
they are equivalent to conventional FST oper-
ations. Both of these methods target the for-
mulation of morphotactic restrictions that are
difficult or awkward to express in terms of fi-
nite state operators and are not concerned with
structure building. A formal definition of a sim-
ilar extension to FSTs with additional operators
to facilitate the use of atomic registers appears
in Cohen-Sygal et al. (2003). The two last ap-
proaches allow destructive write operations on
the additional memory of the transducer, which
a unification operation as described here does
not permit. The effects of sequences of destruc-
tive operations on generation using the same au-
tomaton are not immediately clear.

Zajac (1998) modifies the architecture of an
FST to use feature structures instead of char-
acters as the upper level in an FST. Instead of
concatenation, unification is used as sequencing
operation on that level. The surface characters
that take part in building the lemma are ini-
tially collected in string variables, and are con-
catenated within a feature structure to form the
final lemma. This concatenation leads to prob-
lems during generation, when all possible seg-
mentations of a lemma have to be explored.

6 Conclusion

We have presented a formalization of the inte-
gration of typed feature structures and unifi-
cation into a finite state model of morphology.
This enables us to create a uniform representa-
tional level across all components of a natural
language processing system. The formulation
of sets of feature structures as elements of a
weight system forming a semiring allows for a
rigid view of the resulting weighted finite state
transducer, allowing us to adopt existing results
and algorithms.

We showed how the current implementation

is used in a Persian-English machine transla-
tion system, and described a technical extension
to account for multiple analyses. The run-time
speed is acceptable with around 300 words per
second.

Finally, we described the reformulation of
unification as table lookup during the runtime
of a morphological analyzer, which results in an
efficiency equal to that of other weighted finite
state transducers. In experiments, this modifi-
cation resulted in a speed improvement of 87%.

References

Jan W. Amtrup. 2003. Feature Structures as
Weights in Finite State Morphology. In Pro-
ceedings of the Workshop on Finite State
Methods in Natural Language Processing, Bu-
dapest, Hungary, April.

Kenneth R. Beesley and Lauri Karttunen. 2003.
Finite State Morphology. CSLI Publications.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge University Press.

Yael Cohen-Sygal, Dale Gerdemann, and Shuly
Wintner. 2003. Computational Implementa-
tion of Non-Concatenative Morphology. In
Proceedings of the Workshop on Finite State
Methods in Natural Language Processing,
pages 59-66, Budapest, Hungary, April.

George Anton Kiraz. 1997. Compiling Rule
Formalisms with Rule Features into Finite-
State Automata. In Proceedings of the 35th
Annual Meeting of the Association of Com-
putational Linguistics, Madrid, Spain.

Kevin Knight. 1989. Unification: A Multi-
Disciplinary Survey. ACM Computer Sur-
veys, 21:98-124.

Kimmo Koskenniemi. 1983. Two-level Model
for Morphological Analysis. In Proceedings of
the 8th International Conference on Artificial
Intelligence, IJCAI’83, pages 683-685, Karl-
sruhe, Germany.

Mehryar Mohri and Michael Riley. 2001. A
Weight Pushing Algorithm for Large Vo-
cabulary Speech Recognition. In Proceed-
ings of FuroSpeech 2001, Aalborg, Denmark,
September.

Mehryar Mohri, Fernando Pereira, and Michael
Riley. 2000. The Design Principles of a
Weighted Finite-State Transducer Library.
Theoretical Computer Science, 231:17-32,
January.

Mehryar Mohri. 1997. Finite-State Transducers
in Language and Speech Processing. Compu-
tational Linguistics, 23:269-311.

Mehryar Mohri. 2002. Generic e-Removal and
Input e-Normalization for Weighted Trans-
ducers. International Journal of Foundations
of Computer Science, 13(1):129-143.

Jakub Piskorski. 2002. DFKI Finite-State Ma-
chine Toolkit. Technical report, Deutsches
Forschungszentrum fiir Kunstliche Intelli-
genz, Saarbriicken, Germany.

Harald Trost. 1991. A Morphological Com-
ponent for the Recognition and Generation
of Word Forms in Natural Language Un-
derstanding Systems: Integrating Two-Level
Morphology and Feature Unification. Applied
Artificial Intelligence, 4(4):411-457.

Rémi Zajac. 1998. Feature Structures, Unifi-
cation and Finite-State Transducers. In In-
ternational Workshop on Finite State Meth-
ods in Natural Language Processing, Ankara,
Turkey. Bilkent University.

