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Abstract

We present a system for unsupervised tag-
ging of words into classes produced by
a distributional clustering technique called
co-clustering. A hidden Markov model
(HMM), trained on the high-frequency
terms in the lexicon, is used to “tag” oc-
currences of low-frequency terms. In experi-
ments using the Wall Street Journal portion
of the Penn Treebank, we show that pre-
viously reported problems in using Baum-
Welch estimation for part-of-speech tagging
do not occur in this context. We also show
how state-level term emission models can
be augmented to account for morphologi-
cal patterns using features automatically de-
rived from the output of co-clustering. Fi-
nally, we consider an alternative means of
extending the coverage of the lexicon, in
which low-frequency terms are added to the
lexicon as types, and compare this approach
with the token-level assignments made by
the HMM.

1 Introduction

Part-of-speech (POS) tagging is a necessary pre-
requisite for many text processing applications,
and a wide variety of syntactic lexical resources
and taggers are available for languages in which
the problem has been studied. However, using
a specific tagger and its tag set entails adopt-
ing the assumptions it embodies, which may not
be appropriate for a target application. In the
worst case, the domain of interest may include
text in a language not covered by available tag-
gers. Even when a tagger is available, the do-
main may involve usages substantially different
from those in the corpus for which the tagger
was developed. Many current taggers are tuned
to relatively formal corpora, such as newswire,
while many interesting domains, such as email,
netnews, or physicians’ notes, are replete with
elisions, jargon, and neologisms.

Fortunately, using distributional characteris-
tics of term contexts, it is feasible to induce

bush peters reagan noriega ...

john robert james david ...

president chairman head owner ...

japan california london chicago ...

Table 1: Sample members of four clusters from
the Wall Street Journal corpus.

categories having high agreement with part of
speech directly from a corpus of sufficient size,
as a number of studies have shown (Brown et
al., 1992; Schiitze, 1995; Clark, 2000). While
the categories induced in this way do not al-
ways agree perfectly with prior syntactic cate-
gories, they are specific to the corpus of interest,
reflect the predominant usages in that corpus,
handle neologisms seamlessly, and often have a
semantic dimension which it should be possible
to exploit.

We employ a method called co-clustering, de-
scribed in Section 2. While we judge our clus-
ters according to their agreement with part
of speech, we do not expect unsupervised ap-
proaches to POS tagging to replace supervised
ones anytime soon. Instead, the near-term
promise of these methods is more effective in-
formation retrieval and information extraction.
Table 1 shows sample terms from several clus-
ters induced from the Penn Treebank’s Wall
Street Journal corpus. We believe the ability to
form such classes automatically will enable ef-
fective named entity recognition requiring much
lighter supervision than is currently needed. In
producing these clusters, we use only the most
frequent terms in the corpus, for both efficiency
and statistical reliability. As results later in the
paper show, quality of cluster assignment de-
creases with a term’s corpus frequency. Never-
theless, to make these induced categories gener-
ally useful, we must be able to categorize every
token in a corpus.

The remainder of the paper explores several



ways to extend the reach of the distributional
lezicon (the output of co-clustering). Section 3
describes how we use a second-order hidden
Markov model and Baum-Welch re-estimation
on a partially labeled corpus to “tag” the whole
corpus. Section 4 improves this model with
morphological features automatically learned
from the distributional lexicon. Finally, in Sec-
tion 5, we explore an alternative to the HMM:
adding low-frequency terms to the lexicon based
on their type-level contextual behavior.

2 Co-Clustering

As in Brown, et al (1992), we seek a partition
of the vocabulary that maximizes the mutual
information between term categories and their
contexts. We achieve this in the framework of
information theoretic co-clustering (Dhillon et
al., 2003).

The input to our algorithm is two finite sets
of symbols, say X = {zo,z1,---,zn,} (e.8.,
terms) and Y = {yo,y1,---,yny } (e.g., term
contexts), together with a set of co-occurrence
count data consisting of a non-negative integer
Ny, for every pair of symbols (z;,y;) from X
and Y. The output is two partitions: X* =
{25: 2N, } and Y = {y§, ..., yx,. }, where
each z} is a subset of X (a “cluster”), and
each y; a subset of Y. The co-clustering al-
gorithm chooses the partitions X* and Y* to
(locally) maximize the mutual information be-
tween them, under a constraint limiting the to-
tal number of clusters in each partition.

Recall that the entropy or Shannon informa-
tion of a discrete distribution is:

Ix = —) P(z)InP(z). (1)

This quantifies average improvement in one’s
knowledge upon learning the specific value of
an event drawn from X. The mutual informa-
tion between random variables X and Y can be
written:

Mxy = Z P(z,y)In
zy

o @

P(z)P(y)

This quantifies the amount that one expects
to learn indirectly about X upon learning the
value of Y, or vice versa.

2.1 The Algorithm

We perform an approximate maximization of
M x+y~+ using a simulated annealing procedure

in which each trial move takes a symbol z or y
out of the cluster to which it is tentatively as-
signed and places it into another. The source
cluster, member element, and destination clus-
ter of each candidate move are each chosen
uniformly at random. When temperature 0 is
reached, all possible moves are repeatedly at-
tempted until no move leads to an increase in
the objective function.

2.2 Evaluation Methodology

While the clusters induced by this method dis-
play high agreement with part of speech, the re-
sulting set of categories is simultaneously more
and less granular than that defined by a typical
tagged corpus, such as the Penn Treebank. An
example of their greater granularity is the dis-
tinction between first and last names shown in
Table 1. At the same time, the treebank distinc-
tion between “NN” (noun) and “NNP” (proper
noun), which often only amounts to a difference
in capitalization, is not generally reflected in the
clusters, which are formed from case-normalized
data. Schiitze (1995) provides a more general
discussion of typical discrepancies between prior
and induced categories.

Schiutze also measures the accuracy of his
method, by simplifying the problem and man-
ually labeling clusters. We adopt a more repli-
cable methodology. If we treat each token as a
joint occurrence of a cluster and tag, the con-
ditional entropy of tag, given cluster, may be
computed as follows:

Iric =Ir — Mrc (3)

This quantifies the average amount of uncer-
tainty in tag prediction, given a clustering. A
slightly more intuitive measure, borrowed by
analogy from language modeling, is exp(Ipc),
which we call the cluster-conditional tag per-
plexity. Minimum perplexity is 1.0, signifying
complete certainty in tag prediction.

2.3 Results

For the purposes of this study, the context of a
token was taken to be the tokens immediately to
its left and right. Special tokens were inserted
to denote the beginnings and ends of sentences.
Left and right occurrences of a given contex-
tual token were treated as distinct events. Using
data from the Wall Street Journal corpus of the
Penn Treebank, we clustered the 5000 most fre-
quent tokens and 5000 most frequent contexts,
each into 200 clusters.



Uniform 1/v
ML N(t)/N(x)
Interpolated | AN (t)/N(x) + (1 — \)/V

Table 2: Baseline token emission model vari-
ants. N(t) denotes the frequency of term ¢;
N(x) denotes the total frequency of all terms.
V is the size of the vocabulary.

The perplexity of tag prediction, in the ab-
sence of any additional information, on these
5000 words (which together account for about
91% of all tokens in the corpus) is about 23.6.
The perplexity, given their cluster assignments,
is 1.57. (Note that, because of polysemy, the
best that can be achieved is 1.23.) Part of our
success in achieving these numbers is due to an
observed tendency of the mutual information
criterion to segregate highly frequent closed-
class words (e.g., “the” and “to”) into single-
ton or small, cohesive clusters. In categorizing
the many open-class unclustered terms, we nat-
urally cannot benefit from this phenomenon.

3 HMM Tagging
3.1 Approach

We train a second-order HMM to perform as-
signment of novel terms to categories. In doing
so, we adopt a standard framework for statisti-
cal part of speech tagging (Brants, 2000; Cut-
ting et al., 1992; Abney, 1996), in which states
correspond to category bi-grams and each cat-
egory is associated with a distribution over the
terms in the vocabulary. To be precise, we es-
timate the joint probability of a sequence of to-
kens (¢;) and categories (c;) as:

P(T,C) = HP(C¢|Cz’71,C¢—2)P(ti|Cz‘) (4)

In all experiments, we use maximum likeli-
hood estimates of transition probabilities. Our
baseline experiments estimate emission proba-
bilities using the policies listed in Table 2: Uni-
form, in which each observed token is assigned
the same probability in every state; ML, in
which estimates are directly proportional to the
frequency with which a term has been observed
in a context; and Interpolated, in which the Uni-
form and ML estimates are mixed using weights
set by deleted interpolation.

Starting with randomly perturbed uniform
parameters, each model is trained using Baum-
Welch re-estimation. In this procedure, a token
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Figure 1: Cluster-conditional tag perplexity on
unclustered tokens with increasing iterations of
Baum-Welch.

of a known (clustered) term is fixed to the cor-
responding category, the probability of visiting
model states corresponding to other categories
constrained to be zero. This use of Baum-Welch
differs from important earlier uses. In Cutting,
et al (1992), for example, a lexicon is presumed,
which, for every term, lists possible parts of
speech, and Baum-Welch is used to resolve the
ambiguity. This approach has been shown to be
sensitive to starting conditions, and tagging ac-
curacy typically decreases with each iteration of
Baum-Welch (Merialdo, 1994; Elworthy, 1994).
In contrast, we “know” the categories of the
most frequent terms, but know nothing about
infrequent terms.!

3.2 Results

We trained three models, one for each estima-
tion method in Table 2, on five of the twenty-
five partitions of the Wall Street Journal corpus
from the Penn Treebank. Baum-Welch was run
for ten iterations. We also measured the perfor-
mance of a baseline approach which always pre-
dicts the most frequent category, conditioned
on the preceding two categories. Each model
was then used to tag the training corpus, and
its performance on unclustered tokens (i.e., in-
stances of terms not used in clustering—about
9% of all tokens) measured.

Figure 1, which plots cluster-conditional tag
perplexity against Baum-Welch iteration, dis-
plays two interesting phenomena. First, we do

' Note, too, that our work is not directly comparable
to similar uses of fully supervised Markov models, such
as Brants (2000) and Clark (2000), in which Baum-Welch
is not used.



not observe any of the models losing agreement
with the external tagging, as Baum-Welch pro-
gresses. This effect, which we attribute to struc-
tural differences between our problem and com-
parable results (e.g., (Cutting et al., 1992)), is
consistent in all our experiments.

Also of interest is the relatively poor showing
of the two multinomial emission policies, ML
and Interpolated. Of course, these naive models
have many more parameters than is typical of
successful models from the literature. For exam-
ple, Brants (2000) constructs estimates for all
terms occurring fewer than 10 times by pooling
terms with similar suffixes. In the following sec-
tion, we pursue a similar idea, but aim to learn
a succinct list of salient morphological features
automatically without restricting our attention
to suffixes. Again, we want to avoid language-
specific commitments, and seek to discover the
features of interest, wherever in the word they
may occur (note that the German prefix “ge-"
is morphologically significant).

4 Morphological Features
4.1 Learning Affixes

The idea we pursue is based on the observa-
tion that, under distributional clustering, terms
having similar morphological features tend to
cluster together. To the extent this is true, the
corresponding features will have high mutual in-
formation with cluster assignment. By treating
each of the known terms as a joint occurrence of
its cluster and each of the features it matches,
we can use Equation 2 to rank individual fea-
tures according to their morphological salience.

Because of redundancy among the highest-
scoring features, however, employing a feature
set constructed simply by collecting the best
features is an inefficient use of model capac-
ity. For example, in English the suffix fea-
tures tion$ and ion$ provide approximately
the same syntactic information. Use of one ren-
ders the other largely redundant.

We focus, therefore, on finding a good ensem-
ble of features. We posit a single categorical-
valued meta-feature F' which encompasses a list
of individual features [f1,- -, fn]. The value of
F, given a term, is the index of the first match-
ing feature in its list, evaluated in order, or 0 if
none matches. By treating F' as a random vari-
able and manipulating the members of its fea-
ture list to maximize mutual information with
cluster assignment, we produce a set of individ-
ual features which are morphologically salient

Procedure OptFeatSet(Features, ListSize, NIts)
List = RandomUList(Features, ListSize)
For It = 1 to Nlts
List = TryOp(SwapInFeature, List)
List = TryOp(ResizeMember, List)
List = TryOp(ReOrder, List)
Return List

Table 3: Basic optimization procedure for con-
structing a list of morphological salient features.

and reasonably disjoint.

The automatic learning of morphological af-
fixes for use in part of speech tagging has
been proposed previously (Brill, 1995; Mikheev,
1997). The approach described here is distin-
guished from these in its simplicity and, more
importantly, in its eschewal of hand-crafted syn-
tactic resources, such as a syntactic lexicon or
tagged corpus.

We say a feature is any string of contiguous
characters, of length one to five, that matches a
cluster member. In addition, whenever such a
string is a prefix (or suffix), we define a second
feature anchored to the beginning (or end) of
the term. For efficiency, we only consider fea-
tures that match at least 20 cluster terms.

Table 3 lists the procedure used to construct
a feature list. We produce an initial list (List)
by choosing at random a specified number (List-
Size) of distinct features from the candidate set
(Features). Then, for a specified number of it-
erations (NIts), we repeatedly apply three op-
erations, adopting any new list that has higher
mutual information than the current list. The
following operations are attempted:

e SwapInFeature. Choose at random a
candidate feature not currently in the list
and substitute it for a random list member.

e ResizeMember. Add or remove a charac-
ter from either end of a random list mem-
ber, as long as this results in a feature from
the candidate set.

e ReOrder. Swap the list positions of two
random list members.

4.2 Extending Emission Models

Given a feature set, in addition to the token ob-
served at a particular point in the corpus, we
now have a Boolean feature vector representing
the term’s morphological characteristics. We
consider two principal means of incorporating



Conjunctive
1T N(#0)/N ()
Conjunctive, with term
N@/NG - I NGG)/NE)
Mixture

2 AN(fi(t) /N (%)
{alfi(®}
Mixture, with term
AN (t)/N (%) +{-\,;(t)} AN (fi(£))/N ()

Table 4: Four emission models that incorporate
Boolean token features, fi,---, f,. The expres-
sion f;(t) is true or false, depending on whether
term ¢ matches feature f;. The notation N(z)
stands for the number of observed occurrences
of z; N (%) means the sum of occurrences of any
event in a particular context.

this vector, conjunctive and disjunctive (or miz-
ture), as shown in Table 4. The conjunctive
model treats feature measurements as indepen-
dent simultaneous events, and takes the proba-
bility of their joint occurrence as the product
of the individual probabilities. The mixture
model, on the other hand, reflects a generative
process where exactly one of the matching fea-
tures, with probability equal to A; (set using
EM), is presumed to be responsible for each ob-
served token. In either principal variation, we
can also observe or be blind to the literal term.

The methods we use to account for morpho-
logical features are prefigured in the literature.
Weischedel, et al (1993), combine estimates con-
junctively, while Brants (2000) employs a mix-
ture model over all word endings of various
lengths—both in a completely supervised set-
ting. We are aware of no work conducting a
comparison of the two approaches in either the
supervised or unsupervised setting.

An interesting related piece of work is that of
Clark (2003), in which a character-level HMM
models word structure during the clustering
process. In contrast, our approach produces
a succinct list of relevant patterns, which can
be reviewed and potentially put to other uses,
without wasting capacity on non-informative
aspects of word structure (i.e., stems).

4.3 Results

Table 5 shows pattern lists produced using four
different list sizes. We take it as confirmation

5| s$ ion$ 1y$ ed$ ing$

10 | 1y$ s$ ed$ e$ t$ ion$ ing$ n$

1r

15 | al$ s$ 1y$ er$ e$ ed$ io y$ t$

n$ ing$ i er o

20 | ed$ s$ th st$ ve$ al$ c$ e$ 1y$
io r$ nt$ ing$ y$ As d$ t$ n$ e a

Table 5: Feature lists of various sizes automati-
cally derived from Penn Treebank co-clustering
output. Each element is the regular expression
for the corresponding feature.

Model Feature list size Rand
5 |10 ]15]20 | 10
Partitions 00-04 (training)
Conj. 406 | 4.07 | 4.13 | 4.05 || 4.70
.. w/term || 4.26 | 4.23 | 4.22 | 4.15 4.72
Mixture 4.04 | 4.36 | 4.63 | 4.57 4.89
.. w/term | 3.99 | 4.34 | 4.62 | 4.55 4.87
| Uniform | 4.84
Partitions 10-2/ (test)
Conj. [ 415 [ 419 [ 4.22 [ 47
Mixture 4.19 | 450 | 4.73 | 4.71
. w/term || 4.07 | 4.47 | 4.72 | 4.67

| 5.01 |

| Uniform

Table 6: Training and test set cluster-
conditional tag perplexity of unclustered Penn
Treebank tokens, using various emission models
and feature sets, after ten iterations of Baum-
Welch.

of the procedure that most of the patterns are
anchored on the end of a term, and that most
have a straightforward morphological interpre-
tation.? Tt is also interesting that larger lists
tend to include features present in smaller lists.

Table 6 shows the cluster-conditional tag per-
plexity of unclustered tokens using various fea-
ture sets and emission models. All models in-
corporating the features out-perform the mod-
els that do not use them, improving on the
perplexity of the uniform model by almost a
point. Beyond this general improvement, how-
ever, no clear winners emerge among modeling

Tt is difficult to determine the import of the very
general single-character features at the end of the longer
lists; presumably, the procedure selects wide-coverage
features with weak syntactic significance, because more
specific features would cause a large number of un-
matched terms to be grouped into the default category.



alternatives or feature list sizes. Between the
two principal modeling variants, there is an in-
teresting discrepancy in the value of the literal
token. While the mixture model appears to ben-
efit a small amount from its use, the conjunctive
model is clearly better off without it.

The mixture model shows greater sensitivity
to the feature set used, while the conjunctive
model performs more or less consistently with
all feature sets. Perplexity of the mixture model
appears to trend upward as a function of feature
list size, but this result is not entirely consistent
with the results of experiments we have con-
ducted with other corpora. Greater variability
(as well as best overall performance) does ap-
pear to be a characteristic of the mixture model.

In an effort to determine how much of the im-
provement is due to the syntactic significance of
the features, we ran the list optimizer again to
produce a list of size ten, this time using mu-
tual information between terms (instead of term
clusters) and features as the objective function.
The result? is a feature list that effectively par-
titions the co-clustering vocabulary but carries
little syntactic significance. Perplexities using
this feature set are reported in the column la-
beled “Rand 10.” As expected, the performance
is close to that of the uniform model.

We also applied the models to a hold-out set
of documents from the same corpus, all doc-
uments in partitions 10 through 24. Because
of the small training set, it is virtually certain
that new documents contain tokens that have
not previously been encountered (truly novel,
as opposed to unclustered, tokens). The occur-
rence of such tokens effectively rules out the ap-
plication of models that cannot smooth over the
occurrence of zero-frequency terms, such as the
ML model or any of the Conjunctive with Term
variants. The table shows that application to
novel data does not alter the ordering among
the more robust models, however. In fact, it
appears to add, fairly consistently, only about
a tenth of a point of perplexity to all results.

In an effort to determine how much can be
gained from additional training data, we trained
a conjunctive model, (feature list size 10) on the
first ten partitions of the corpus—effectively dou-
bling the training set. This yielded a perplexity
of 3.85, an improvement over the 4.07 realized
on the smaller training set. We surmise that
training on a truly large corpus should lead to
further improvements.

3%ti Acyinhmulo a

Threshold | Augmented | HMM | Together
10 2.11 3.86 3.37
5 2.35 3.69 3.03
2 2.67 3.38 2.90

Table 7: Perplexity of tag prediction measured
on terms categorized using lexicon augmenta-
tion, on those categorized using a conjunctive
model with 10 features, and on both groups to-
gether.

5 Lexicon Augmentation

Instead of using an HMM to extend coverage of
the category space to low-frequency terms, an
alternative is to add them to the lexicon based
on their type-level distributional characteristics.
This tends to be less expensive than the initial
clustering. Not only do these terms have sparser
distributions, resulting in quicker computation,
but the process of assignment into a static clus-
ter space is also comparatively inexpensive.

Of course, in contrast to the HMM, this pro-
cedure cannot account for the phenomenon of
polysemy, but we might expect the prevalence
of polysemy among the infrequent terms of a
coherent corpus to be low. In exchange for re-
duced flexibility in categorizing a term, this pro-
cedure potentially benefits from a more direct
use of a term’s corpus-wide behavior. In con-
trast, the HMM makes assignments based on
single occurrences (arguably, however, making
more effective use of the wider context in which
a token is embedded).

5.1 Approach

Given a specified frequency threshold k, we
assign each unclustered term with corpus fre-
quence of at least k to a cluster. Each possible
cluster assignment is attempted, and the result-
ing change in the objective function measured.
Whichever assignment maximizes the resulting
score becomes the presumed class of the term.

5.2 Results

We applied this procedure to all terms having
corpus-wide frequencies of at least 10, 5, and 2,
and labeled each newly assigned term with its
chosen category. The conjunctive model (fea-
ture list size 10) was then trained on the first
five partitions of the corpus, labeled in this way.

Table 7 presents the results of this experi-
ment. The perplexities listed in the “Together”
column were measured on the same set of to-
kens as in other experiments involving the five-



partition sub-corpus. In comparison with other
results, these numbers show a marked improve-
ment. The other two columns help to explain
this improvement. The augmentation proce-
dure is surprisingly reliable at low term frequen-
cies, although the reliability degrades as the fre-
quency threshold is lowered. In spite of this, the
added constraint improves the performance of
the HMM over previous numbers, even when it
is relegated to classifying single-occurrence to-
kens.

Much remains to be explained and explored
here. More interesting combinations of the two
techniques are possible. Instead of picking a
single class for each term, for example, the aug-
mentation procedure might be used to pick a
small set of candidate classes. The HMM could
then be constrained to choose from among these
classes in processing individual tokens. This
procedure would exploit the wider context of in-
stances of the low-frequency terms on which the
augmentation procedure is weakest, and might
mitigate the polysemy problem.

6 Conclusion

Distributional clustering can be used to infer
a corpus’s syntactic classes and to categorize
high-frequency terms. To make this categoriza-
tion useful, in applications such as information
extraction, a reliable means must be devised to
categorize low-frequency terms as well.

We have proposed several methods to achieve
this. Training a HMM on data partially tagged
with the inferred categories, we are able to ac-
count for each novel token. Despite contrary
results reported in the literature, repeated itera-
tions of Baum-Welch estimation cause all model
variants to correlate increasingly with the man-
ual POS tags. By enhancing token emission
models with morphological features automati-
cally derived from the data, we are able to im-
prove this agreement further. Finally, we show
how a reliable type-level categorization can be
combined with the HMM to realize further im-
provements.
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